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Abstract: In this study, time varying channel estimation problem was realized by using Kalman Filters. In the first part of 

the study, the introduction and some definitions were given. In the second part, the problem was analyzed and some useful 

theoretical and practical informations were given. In the third part of the study, the method Kalman Filters were explained and 

the simulation algorithm was given. In the last part of the study the simulation results were given and these results were 

explained and commented. 
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1. Introduction 

1.1. Definitions 

Channel: In its most General sense can describe 

everything from the source to the sink of the radio signal. 

Including the physical medium. 

Channel Model: Is a mathematical representation of the 

transfer characteristics of the physical medium. 

� Channel models are formulated by observing the 

characteristics of the received signal. 

� The one that best explains the received signal behavior 

is used to model the channel. 

Channel Estimation: The process of characterizing the 

effect of the physical medium on the input sequence. 

1.2. General Channel Estimation Procedure 

 

Figure 1. General Channel Estimation Procedure. 
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Aim of any channel estimation procedure: 

� Minimize some sort of criteria, e.g. MSE. 

� Utilize as little computational resources as possible 

allowing easy implementation. 

Why Channel Estimation? 

� Allows to receiver to approximate effect of the channel 

on the signal. 

� The channel estimate is essential for removing inter 

symbol interference, noise rejection techniques etc. 

� Also used in diversity combining, ML detection, angle 

of arrival estimation etc. 

1.3. Defining the Problem 

Many transmission channels can be characterized as being 

linear but not time invariant. These are referred to by various 

names such as fading dispersive channels or fading multipath 

channels. 

If we sample the output of the channel, then it can be shown 

that a good model is the low-pass tapped delay line model. 

 

Figure 2. Tapped delay line channel model. 

The input-output description of this system is: 
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This is really nothing more than an FIR filter with time – 

varying coefficients. To design effective communication or 

sonar systems it is necessary to have knowledge of these 

coefficients. 

2. Problem 

The problem becomes one of estimating ][khn based on 

the noise corrupted output of the channel. 
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Where ][nw  is observation noise. 

The linear model could be applied to estimate the 

deterministic parameters. In linear model the filter 

coefficients were time invariant. So, the linear model is not 

enough for this problem because there are too many 

parameters to estimate and the coefficients are time varying 

so we need KALMAN FILTERS. 

To see more clearly why we use Kalman, let 2=p  and 

assume 0][ =nw  for 0<n  
The observations are, from (2), 

]0[]0[]0[]0[]1[]1[]0[]0[]0[ 000 wvhwvhvhx +=+−+=  

]1[]0[]1[]1[]0[]1[ 11 wvhvhx ++=
]2[]1[]1[]2[]0[]2[ 22 wvhvhx ++=  

Without corrupting noise we can not determine the tapped 

delay line weights. A way to solve this problem is to realize 

that the weights will not change rapidly from sample to 

sample, as an example, in a slow fading channel. For 

example in figure 2 this would correspond to an amplitude 

modulation which is slow. 

 

Figure 3. Fading Channel. 

Statistically, we may interpret the slow variation as a high 

degree of correlation between samples of the same tap weight. 

This observation naturally leads us to model the tap 

weights as random variables whose time variation is 

described by a Gauss – Markov model. 

Hence, we suppose that the state vector is 

][]1[][ nunAhnh +−=                        (3) 

Where
T

nnn phhhnh ]]1[]...1[]0[[][ −= , A is known pxp

matrix, and ][nu  is vector WGN with covariance matrix Q . 

To simplify the modeling the uncorrelated scattering can 

be used. It assumes that the tap weights are uncorrelated with 

each other and hence independent due to the jointly Gaussian 

assumption. As a result, we can assume A , Q  and C the 

covariance matrix of ]1[−h  , be diagonal matrices. 

The vector Gauss – Markov model then becomes p 

independent scalar models. The measurement model 

becomes, from (2), 

][][]]1[...]1[][[][ nwnhpnvnvnvnx ++−−= where 

][nw  is assumed to be WGN with variance 
2σ  and the 

][nv  sequence is assumed to known (since it is provided the 

input to the channel). 

3. Kalman Filters 

We can now form the MMSE estimator for the tapped 
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delay line weights recursively in time using the Kalman 

Filter equations for a vector state and scalar observations.  
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(a): Prediction. 

(b): Minimum Prediction MSE. 

(c): Kalman Gain. 

(d): Correction. 

(e): Minimum MSE. 

4. Simulations 

The Kalman equations are initialized by, 

hh CMh =−−=−− ]11[,]11[̂ µ . 

We implemented the Kalman Filter estimator for a tapped 

delay line having 2=p  weights. We assume a state model 

with  
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Simulation Results 

 

Figure 4. Realization of TDL Coefficients. 

A particular realization is shown in figure 4. In which 

]0[nh  is decaying to zero while ]1[nh is fairly constant. This 

is because the mean of the weights will be zero in steady – 

state. Due to the smaller value of 11][A , ]0[nh  will decay more 

rapidly. 

Also, note that the eigenvalues of A are just the diagonal 

elements and they are less than 1 in magnitude. For this tap 

weight realization and the input shown in first part of figure 

5, the noiseless output is shown in second part of figure 5 as 

determined from (1). When observation noise is added with 

1.02 =σ , we obtain channel output shown in third part of 

figure 5.  

 

Figure 5. Input – output waveforms of channel. 

The Kalman filter is applied with 0]11[̂ =−−h  and

IM 100]11[ =−− , which were chosen to reflect little 

knowledge about the initial state. In the theoretical 

development of the Kalman filter the estimate of the initial 

state is given by the mean of ]1[−s . In practice this is 

seldom known, so that we usually just choose an arbitrary 

initial state estimate with a large initial MSE matrix to avoid 

‘biasing’ the Kalman filter towards that assumed state. The 

estimated tap weights are shown in figure 6. After an initial 

transient, the Kalman filter locks on to the true weights and 

tracks them closely. 

 

Figure 6. Kalman filter estimate. 



20 Korhan Cengiz:  Time Varying Communication Channel Estimation Using Kalman Filters  

 

The Kalman filter gains are shown in figure 7. They 

appear to attain a periodic steady – state, although this 

behavior is different than the usual steady – state which is 

discussed previously since ][nv  varies with time and real 

steady – state is never attained. Also, at times the gain is 

zero, as for example in ][][ 11 nKK =  for 40 ≤≤ n . This is 

because at these times ][nv  is zero due to the zero input and 

thus the observations contain only noise. The Kalman filter 

ignores these data samples by forcing the gain to be zero. 

 

Figure 7. Kalman filter gains. 

The minimum MSEs are shown in figure 8 and are seen to 

decrease monotonically, although this generally will not be 

the case for a Kalman filter. 

 

Figure 8. Kalman filter minimum MSE. 

5. Conclusion 

In this paper, some definitions are given, then the problem 

statement was explained, the method Kalman Filters and its 

algorithm was given. Finally the simulation results were 

given and they are commended. 

As a conclusion, in time varying coefficients, we can not 

use linear model, we need Kalman Filters because in this 

problem it is not possible to extend linear approach to this 

problem since there are too many parameters to estimate. We 

assumed the filter coefficients are time invariant. 

Consequently, the linear model could be applied to estimate 

the deterministic parameters.  

In this paper, the channel is modeled as an FIR filter with 

time varying coefficients. The observation model is assumed 

to be Gauss-Markov for tap weights. Kalman filter is used to 

estimate the time varying coefficients of the channel. 
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