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Abstract: In this work, we analyze the significance of dielectric polarizability on the study of electronic orientation in 

material which facilitates the understanding of the relative importance of the various contributions of the electronic 

polarizability of oxide based materials on electromagnetic wave propagation through it. In the mathematical formulation, 

Poisson equation in two dimensions was used to obtain polarizability constant, b. The polarizability constant was then varied 

and used in conjunction with the dielectric constants to assess the influence of b on wave propagation through the material. 

Based on this, electromagnetic wave equation was solved to obtain the wave function E(x, y) in one and two dimensions with 

position and time for different in relation to various values of the polarizability constant. The graphs for real and complex 

values of the wave function in relation to polarizability were depicted respectively in figures. The graphs were found to display 

various characteristic behaviour for different polarizability constants. 
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1. Introduction 

The polarizability is one of the quantitative measures of 

the dielectric polarization in study of electronic orientation 

in materials for which according to dielectric spectroscopic 

measurements emanate from the ionic [1, 2] and molar 

polarization in the case of fluid and electronic in the case of 

solid and this is a quantity which is a measure of the 

polarizability of the individual molecule, whatever the state 

of aggregation of the materials. Ignoring gross features such 

as interface and structural irregularities, dielectric 

polarization can be electronic, ionic or orientation in nature 

The electronic and ionic polarizabilities arise from spring-

like mechanism while the orientational polarizability does 

not.[3]. In polar liquids, the molecules exhibiting such 

nature of polarizability have a permanent dipole moment µ 

invariant with variation of field for all realistic field 

magnitudes. The dielectric constant provides a common 

measure of solvent polarity that depict show much the inter-

ionic Columbic interaction energy is reduced in a solvent 

compared to a vacuum. [1] Therefore, polarizable solvents, 

such as water and formamide, can effectively shield the 

charges on solute ions from one another, which is reflected 

in their high dielectric constants. The problem involved in 

ordering effect of the field energy and the disordering 

influence of thermal energy is such that each molecule with 

a permanent dipole moment µ makes a contribution to the 

polarization proportional to the field. [4]. However, 
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Langevin idea that said that the dipole must be aligned 

completely in order to achieve saturation value failed to 

consider dipole-dipole interaction [5] (i.e., he neglected Eµ) 

and hence the expression he obtained for polarization 

cannot be used without modification when such an 

interaction in magnetic field is significant especially as it is 

caused by induced dipoles, which gives rise to dispersions. 

At frequency at which dispersion caused by permanent 

dipoles occurs in those materials in which it exists, ionic 

polarization mechanisms are both fully operative, i.e. have 

low frequency or state value giving rise to completely real 

and complex components of polarization which maybe 

within ultra violet, visible and infra-red regions of the 

electromagnetic wave spectrum. From recent dielectric 

spectroscopy measurements it was shown that, as expected 

for an ionic medium, ion conductivity dominates the low 

frequency response and that a dielectric response was only 

measurable above about 1 GHz, but in most of the studied 

carried out already, it has benne found that exhibited rather 

modest dielectric constants within a range of 10 and 16 

within 1GHz frequency domain, [6, 7, 8, 9, 10]. 

In this article, we present a simple model involving the 

analytical study of the electromagnetic field behaviour as it 

relates to influence of electronic orientation in dielectric 

polarization as it plays role in understanding the dielectric 

behavior of materials especially dielectric materials since 

induced electronic and ionic polarization gives rise to 

dispersion within the ultraviolet, visible, and infrared regions 

of E. M spectrum depending on the structure, composition 

and surroundings. 

2. Theoretical Framework 

In the theoretical frame work we considered the 

mathematical behaviour of a material placed within an 

externally applied field. Here we use Maxwell equation to 

link up the effect of polarizability on the propagating field 

which invariably culminated in the formulation of the poison 

equation which formed the main base for the analysis. 

The orientational polarization for steady state as it relates 

to applied field, E is given by 

Where χ  and o
ε  stands for the orientational and electric 

polarizability of the material and permittivity of free space 

respectively. 

The complex polarizability counterpart the correspondingly 

gives rise to complex polarization is given as 

oP Eε χ=
⌢

                                      (1) 

χ  is complex susceptibility 

This gives rise for an expression 
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Equations (2) and (3) can be solved to give 
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We begin with Maxwell’s equations that relate 

electromagnetic field through material medium and the solid 

property of the material 

4 1j D
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c c t

π ∂= +
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                            (4) 

4divD jπ=                                     (5) 

1 B
CurlE

c t

∂= −
∂

                                (6) 

where D Eε=  and B Hµ=  

ε and µ are the dielectric constant and permeability while j 

is the current due to the conduction electrons. The 

permeability is assumed to be unity. 

Conversely, since 4D E πρ= + , ρ  now is considered to 

result from charge density ρ
/
 given by 

divρ= ρ/                                      (7) 

Associated with j
/
 the current density that exists in parallel 

with the current density due to conduction electrons j given by 

                                  (8) 

From equations 4 and 5, we 

/j
t

ρ∂=
∂

                                      (9) 

Equation [6] represents the additional current [known as 

bound current] in conjunction to the current associated with 

the conduction electrons. 

Conversely, we consider j to be absorbed into 
D

t

∂
∂

, as we 

regard the entire solid as the medium through which 

electromagnetic wave propagates. For consistency, we take 

j=0 in equation [1 and 2] obtaining 

              (10) 

For wave with time variation 
i te ω

 travelling in the z-

direction with E and H parallel to x-and y- directions 

respectively, we have 

, ,x y x y
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∂
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On the account that field propagating through a metal 
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induces polarization we have 

4 j E
CurlE

c t

π ∂= +
∂

                            (13) 

of which with the time independent electric field expi tω , we 

can write 

j Eσ=                                     (14) 

Equations (13) and (15) enable us to write the expression 

interims of Poison equation 
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which we now solve using method of separation of variable 

Poisson equation in 2-dimension 
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Let both equation be –b 
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Where 
o

P Eε χ=  

 
Fig. 1. Wave function E(x,y) as a function of position and time for real part 

when b = 1. 

 
Fig. 2. Wave function ѱE(x, y) as a function of position and time when b = 1 

for imaginary part. 

 

Fig. 3. Wave function ѱE(x,y) as a function of position and time for real part 

when b = 2. 

 
Fig. 4. Wave function ѱE(x,y) as a function of position and time when b = 2 

for imaginary part for b =2. 
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Fig. 5. Wave function E(x,y) as a function of position and time for real part 

when b = 5. 

 

Fig. 6. Wave function E(x,y) as a function of position and time when b = 5 

for imaginary part for b=5. 

 
Fig. 7. Wave function ѱE(x,y) as a function of position and time for real part 

when b = 0.2. 

 
Fig. 8. Wave function ѱE(x,y) as a function of position and time when b = 

0.2 for imaginary part for b=0.2. 

 
Fig. 9. Wave function ѱE(x,y) as a function of position and time for real part 

when b = 0.002. 

 
Fig. 10. Wave function ѱE(x,y) as a function of position and time when b = 

0.002 for imaginary part for b=0.002. 

 
Fig. 11. Wave function ѱE(x,y) as a function of position and time for real 

part when b = 10-13. 

 
Fig. 12. Wave function ѱE(x,y) as a function of position and time when b 

=10-13

 for imaginary part. 
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3. Result/Discussion 

The expression for polarizability, b in terms of the 

electronic orientation was obtained from the Poisson’s 

equation that was derived from Maxwell’s equation. This 

formed the main basis of where the analysis is based on. The 

imposition of the polarizability terms on the propagating 

wave culminated from the fact that the solution of the 

Poison’s equation enabled us to obtain the constant which 

was the ingredient in the analysis. The real and complex 

wave function obtained were analyzed based on the effect of 

the polarizability on the propagated wave through the 

material. From the analysis, it was observed from fig. 1 and 

fig. 2, that the field profile was fractal in for both real and 

complex part of the result as obtained in equations (25) when 

the polarizability is unity. However, the fractal shape of the 

profile as shown in figs. 3 and 4 changed pattern as the value 

of the polarizability, b was increased to 2. The same trend 

went on when b was increased to 5. There was an observed 

change on the profile when b was remarkably decreased to 

0.2, milimetre value and subsequently to micron value (0-

002). Here the profile made an inclination to with the y- 

component as b was further decreased to 0.002 as in figs. 7 

and 9. However, when b was further decreased to tetra (10
-12

) 

value, the inclination remained stabilized which is an 

indication that the threshold value of the polarizability had 

been attained. This also depicts the fact that the polarizability 

is not a linear function as it depends on so many factors 

including temperature the dielectric nature of the material. 

4. Conclusion 

From the study, we successfully derived Poisson’s 

equation that contains dielectric constant with an element of 

polarizability terms from combination of 1 and 3 of Maxwell 

equations that was solved to obtain the expressions that 

depicted effect of the polarizability on both real and complex 

parts of electromagnetic field propagated through oxide 

based thin film with reference to copper oxide thin film. In 

the analysis, the influence of the polarizability on the profile 

was made manifest as depicted on the graphs where the 

behavour of the graphs changed with the variation of the 

polarizability terms though not in linear manner. 
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