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Abstract: The reference data given in technical literature on the characteristics of spatial stiffness and elasticity of rail threads 

in the conditions of joint action on the rails of vertical and horizontal lateral forces and torsion are very different and in some 

cases contradictory. This situation is due to the lack of an accurate analytical solution to this problem and the provision for 

reference materials only experimental research data, which are clearly different, not only for different railway structures, but also 

significantly differ in different conditions of acting external forces (P, H, Mtor). The purpose of this article is to present a new 

method of analytical solution of the problem of determining the spatial characteristics of stiffness and elasticity of rail threads 

and also computation the stresses and strains that occur in them, under conditions of complex joint action on rail threads of 

vertical and horizontal dynamic forces (Pdyn, Hdyn) simultaneously with the external torque moment Mtor arising from off-center 

forces applied to the rails from wheel loads. The complex method of solving the problem was used in the paper. It includes the 

theoretical part and the results of the experiment. Using the experimental researches characteristics of horizontal lateral stiffness 

of the rail threads of the head and sole at different constructions of the modern rail fastenings was measured. The second task of 

determination of the real values of the characteristics of spatial elasticity and stiffness modulus of the rail thread under joint 

vertical and lateral horizontal bends of the rail in conjunction with its simultaneous torsion was solved by the theoretical methods. 

As the results of author’s researches were obtained new values of the characteristics of spatial stiffness and elasticity 

modulus of rail threads under joint vertical and lateral horizontal bends of the rail in conjunction with its simultaneous 

torsion. These characteristics were obtained for the modern railway track constrictions with rails (R65, R50, UIC60) on 

concrete and wooden sleepers and with rail fastenings unlined or lined types (KB, KPP-5, KPP-1, D0). And also these 

characteristics were obtained in the functional dependence on the ratio of vertical and horizontal lateral forces P/H. 
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1. Introduction 

When designing a railway track, it is necessary to perform 

calculations and predict possible stresses and deformations in 

the rails and other elements of the track structure under the 

action of rolling stock wheels. 

For this purpose as a rule apply engineering calculations of a 

track on durability. But in the existing calculation methods that 

are used on many railways [1, 2, 3, 4], the vertical dynamic force 

Pdyn from the wheels of rolling stock is usually considered as the 

main acting force on the rail. In this case, taking into account 

other acting forces on the rail (ie transverse lateral forces Hdyn, or 

horizontal longitudinal forces Hx-x, or torques moments Mtor from 

the eccentrically applied forces) in the calculations is usually not 

taken into account directly, but in some cases it taken into 

account by individual coefficients (so-called impact factor «f»). 

However, in many cases, these coefficients are not 

accurately confirmed for the dynamic forces actually acting on 

the rails, do not take into account the correct characteristics of 

the spatial elasticity of rail threads, and do not take into 
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account the resistance of rail fasteners of different 

constructions, and thus, the values of stresses and strains 

obtained by the existing calculation methods differ 

significantly from the same magnitudes, that are obtained in 

experimental studies of the rail threads, of the rail threads, 

especially in curved sections of track. Thus, in the end, the 

current method of track calculations for strength does not 

allow to obtain sufficiently accurate results of deformations 

and stresses in the rail threads under the actual wheel loads, 

especially in difficult conditions of joint action on the rail 

vertical and horizontal dynamic forces Pdyn and Hdyn. 

Examples of comparing results of determining the stress in 

the rail R50 and R65, obtained by theoretical calculations and 

by experimental measurements, are given at the end of this 

article (for different operating conditions). 

2. Analysis of Previous Researches and 

Statement of the Problem 

But with the full formulation of the analytical solution of the 

problem of calculating the strength of the railway track, which 

aims to determine the exact values of deformations and stresses 

in the head and sole of the rails, it is necessary to take into 

account the effect on the rail thread of all external forces and it is 

necessary to consider in connection the whole complex of spatial 

deformations in the rail thread, namely: vertical and horizontal 

bending of the rail thread, bending of the head and sole relative to 

the neck of the rail and also rotation of the rail relative to the 

longitudinal axis X from the action of eccentrically applied forces 

Pdyn and Hdyn. These deformations and stresses of rail threads in 

analytical calculations can be determined with sufficient 

accuracy only by a complete solution of the problem, provided 

that the characteristics of the spatial elasticity of rail threads, also 

determined with sufficient accuracy. 

The characteristics of the spatial elasticity of the rail thread 

include: stiffness in the vertical and horizontal planes, and the 

stiffness of the rail thread during torsion (βz, βy, βφ), as well as 

functionally related modules of elasticity of the subrail base in 

the vertical and horizontal planes (lateral and longitudinal) and 

the modulus of elasticity in torsion (Uz, Uy, Uφ). In this case, it is 

especially important for accurate analytical calculations to find 

the correct functional relationships between the external forces 

acting on the rail thread from the wheels of the rolling stock and 

the resulting deformations and stresses in this rail thread, taking 

into account all the characteristics of the spatial elasticity of the 

rail thread and particular characteristics of rail fasteners of 

different constructions. However, as already mentioned, a 

common feature of all the characteristics of stiffness and 

elasticity given in technical literature at lateral bending and 

torsion of the rail thread (for any track structures) is the lack of 

functional dependence of these characteristics on the actual 

dynamic vertical and horizontal forces Pdyn and Hdyn. 

Our modern experimental and theoretical researches in 

2012-2016 [5, 6, 7] established the actual existence of a direct 

functional dependence of the real values of stiffness and 

modulus of elasticity of the rail thread during lateral bending 

and torsion from the vertical and horizontal wheel loads acting 

on the rail and in addition, it was found that this dependence, 

cause a real influence on the variability of the characteristics 

of stiffness and elasticity of the rail threads in the lateral plane 

and during torsion, depending on the ratio Рdyn/Hdyn. 
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(Index (fr) in the formulas means that these characteristics 

must be determined taking into account the resistance of friction 

on the sole of the rail and the resistance of the rail fasteners). 

These researches were performed on the South-Western 

Railway (Ukrainian Railways) on the example of tests of 

various constructions of the railway track on reinforced 

concrete and wooden sleepers with modern designs of domestic 

fasteners unlined and lined types (KB, KPP-5, KPP-1, D0). 

Thus, to solve the problem in full formulation (with the 

definition of exact values of deformations and stresses in the 

rail thread) it is necessary first of all to determine with sufficient 

accuracy the specified characteristics of the spatial elasticity of 

rail threads under joint action of vertical and horizontal 

dynamic forces Pdyn and Hdyn and torque ex
torM  from the 

off-center application of external forces. And only after that it is 

possible to pass to definition of the required spatial 

deformations of rail threads and stresses in this rail threads. 

Theoretical bases of calculations of a rail on horizontal 

bending and torsion was developed by distinguished 

Ukrainian scientist professor S. P. Tymoshenko
1

 at the 

beginning 20 century (1926-1932) [8, 9]. 

Taking the rail as a beam of infinite length, which rests and 

is attached to an elastic base, and considering horizontal 

bending of the rail in conjunction with simultaneous torsion 

under action of horizontal force H, that eccentrically applied 

to the head of the rail (Figure 1) prof. Tymoshenko composed 

the system from two differential equations for calculating rail 

horizontal strains and its torsion deformations as follows: 
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In the system of equations (1), the first equation determines 

the lateral transverse bending of the rail from the action of the 

transverse horizontal force H; the second equation determines 

the torsion of the rail relative to the longitudinal axis (X-X) 

passing through the center of torsion (which for the rail 

coincides with the center of bending (·) 0). In this case, the 

torsion (according to the theory of prof. Tymoshenko) consists 

                                                             
1
 Prof. S. P. Tymoshenko should be well known to scientists and mechanical 

engineers of the USA, as he worked for a long time in the USA (1922–1955) 

including: the American Society of Mechanical Engineers; the University of 

Michigan; Stanford University at Palo Alto. In the USA he published several 

scientific monographs: “Resistance of Materials”, “Theory of Elasticity”, “Theory 

of Vibrations” and others. 
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of 2 types: «pure torsion» of the entire rail and «bending 

torsion» of the head and sole of the rail relative to its neck. 

 

Figure 1. Calculated model of the rail thread (by prof. Tymoshenko). 

In the right part of the 1-st formula equation (1) is recorded the 

lateral reaction of the sole of the rail «q» (relative to the one unit 

length of the rail) to the action of the external horizontal lateral 

force H: 

0 2( )y

dQ
q U y h

dx
φ= = − ⋅             (2) 

In the right part of the 2-nd formula equation (1) is recorded 

the reaction of the one unit of rail length to the action of 

external torque moment ex
torM , which consists of pure torsion 

M1 and bending torsion of the head and sole of the rail relative 

to its neck M2. 

2 0 2 2( )
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q h m U y h h U

dx
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In equations (1, 2, 3, 4) taken: 

y0 - horizontal transverse displacement of the center of 

bending of the rail (·) 0 (the same is torsion center) in the 

calculated cross section; 

φ - angle of turn of the calculated cross section of the rail; 

Uy - modulus of elasticity of the rail base (in the horizontal 

transverse plane); 

Uφ - modulus of elasticity of the base of the rail in torsion 

relative to the longitudinal axis X; 

q - lateral reaction of the sole of the rail (relative to the one 

unit length of the rail); 

Q - transverse forces that arise in the head and in the sole of 

the rail under action of external force H; 

mx - reactive torque moment, attributed to the one unit 

length of the rail; 

h2 - distance from the rail center of torsion to the bottom of 

the rail sole; 

hQ - distance between the centers of gravity of the head and 

the sole of the rail (in the calculations can usually be taken hQ - 

as the distance from the center of gravity of the sole to the 

point of application of the horizontal force H); 

C=F
4
·G/(4π

2
·Ip) - rigidity of a rail at «pure» torsion 

(according to Saint-Venant); 

( ) / ( )
head sol head sol
z z z zD E I І I І= ⋅ ⋅ +  - rigidity of the rail 

during bending rotation of the head and sole of the rail relative 

to its neck (according to Tymoshenko). 

In formulas for “C” and “D” indicated: F – cross sectional 

area of the rail; G – shift modulus of rail steel; Ip – polar 

moment of inertia of the rail; E – modulus of elasticity of the 

rail steel; head
zI , sol

zI  – moments of inertia of the head and 

sole of the rail relative to the axis Z. 

The theory of prof. Tymoshenko became the basis for 

further research in this area. A number of scientists in the 

future (in the twentieth century) tried to improve the 

theoretical solution or test the numerical results of the theory 

of prof. Tymoshenko [10, 11, 12], but as a rule, no significant 

successful results were achieved. 

However, the main disadvantage of the decision of prof. 

Tymoshenko was not taking into account the action of vertical 

forces P on the rail and the resulting friction forces on the sole 

between the rail and the subrail base, as well as the lack of 

consideration of the attachment of the rail to the elastic base, 

which gives a significant discrepancy with the real picture of 

wheel and rail operation. 

It should be noted that the most successful and effective 

task of improving the solution of prof. Tymoshenko managed 

to perform one of the leading professors of VNIIZT (Russia) 

prof. Yershkov, who in 1950-60 considered and performed in 

detail a study [13, 14] on the calculations of the rail thread for 

transverse bending and torsion in a more complex (than prof. 

Tymoshenko) version: under the joint action on the rail 

vertical and horizontal forces P and H, taking into account the 

emerging on the sole of the rail friction forces. The rail was 

considered as a beam on an elastic base. 

However, the researches of prof. Yershkov were made on 

outdated (for now) structures (the main experiments were 

adopted rails type I-a (close analogue of R43), wooden 

sleepers, crutches. In addition, as shown by our modern 

research [6, 7, 15], some theoretical and practical results 

obtained in the works of prof. Yershkov, need significant 

corrections. Therefore, the application of research results from 

prof. Yershkov is currently practically impossible for modern 

track structures, due to a significant change of the upper 

structure of the track and their geometric and physical 

characteristics, as well as taking into account the need for 

certain corrections these results on the whole. 

Based on the analysis of previously performed researches on 

the subject for our solution - the solution of the problem of 

calculating stresses and strains in the railway track in the full 

formulation, we take as a basis the theoretical solutions of 

professors Tymoshenko and Yershkov (despite some remarks to 

them) and we will consider the work of the rail thread on the 

spatial bending in the longitudinal vertical and transverse 

horizontal planes and also on its simultaneous torsion relative to 

the longitudinal axis «X» - from the joint action on the rail 
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vertical and horizontal forces P and H and torque moment Мtor. 

3. Elaboration of Basic Calculation 

Schemes and Calculation Algorithm 

for Solving the Problem 

Given the complexity of the problem, the general 

calculation scheme includes two separate schemes: 

1. (Figure 2-a) is a diagram of the propagation of the wave of 

elastic deflections of the rail thread in the vertical longitudinal 

plane XOZ and in the horizontal longitudinal plane XOY with 

joint action on the rail thread of vertical force P and horizontal 

force H. For the 1-st stage to simplify the obtaining of analytical 

formulas, the forces P and H are taken as concentrated forces 

applied in the calculated cross section ZOY; 

2. (Figure 2-b) - the scheme of action of external forces and 

moments on the elementary section of the rail thread, in the 

calculated cross section in the plane ZOY and the emerging 

reactive components of the resistance of the rail thread to 

external forces and moments. 

In general, the calculation scheme is accepted 

approximately similar to the scheme of prof. Yershkov [13, 

14], in which he considered the problem of calculating the rail 

thread on the joint action of the vertical force P and the lateral 

horizontal force H. But we made significant corrections in the 

basic calculation scheme in accordance with the classical 

theory of work under load of beams on an elastic basis. 

Accordingly, changes have been made in the integration of the 

plots of vertical (zi=f(x)) and horizontal deflections (yi=f(x)) in 

solving the problem. Also in addition we put in to the 

calculation scheme a diagram of the distribution along the 

length of the angles of rotation (φi=f(x)) of the rail in the plane 

ZOY relative to the vertical axis Z. 

 

Figure 2. Basic calculated model for determining the characteristics of spatial stiffness and elasticity of the rail threads (by prof. O. Yershkov and prof. E. 

Danilenko). In figure. b) denotes: Ctor R – Center of torsion (for rail); Cgr R – center of gravity (for rail); Cgr h – senter of gravity (for head of rail); Cgr S – center of 

gravity (for sole of rail). 

The accepted basic calculation scheme is universal in the 

sense that allows to consider work of a rail thread (in settlement 

section) under interaction of the set of external loadings 

(vertical force P, horizontal transverse force H, the moment of 

torsion), at simultaneous consideration and taking into account 

working conditions of the same rail threads, as beams of infinite 

length fixed on an elastic basis in longitudinal vertical and 

longitudinal horizontal planes and taking into account 

resistance of rail fastenings depending on its designs. 

The moment of torsion from external forces according to 

calculation scheme is determined by the formula: 

1
ex
torM Н h P e′= ⋅ ± ⋅              (5) 

The sign ±  before P·e is accepted depending on the sign 

±  before eccentricity «e». 

The main calculation equations for solving the problem of 

determining the desired values of deformations and stresses of 

the rail thread with its lateral transverse bending and torsion 

relative to the longitudinal axis X are the equations of prof. 

Tymoshenko (1-a) and (1-b), as well as equations (2, 3) and 

(10, 11). However, to determine the desired values of the 

lateral displacements of the rail thread (yi) and the desired 

angles of rotation (φi) must first determine the unknown 

characteristics of the elasticity of the rail thread in the 

transverse horizontal plane (Uy) and torsion (Uφ) and, as well 

as characteristics stiffness of the rail thread «EIz», «C», «D» 

and corresponding geometric cross - sectional characteristics 

of the rail h2, hQ. Geometric characteristics EIz, h2, hQ – are 

determined from reference data. Other unknown 

characteristics - modulus of elasticity (Uy, Uφ) - are 

determined in the process of solving the problem, and above 

all from the consideration of the equations of equilibrium of 
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the rail thread for the accepted calculation scheme
2
. 

It should be noted, that in solving this problem the effect of 

the vertical force P is considered only as a factor that directly 

affects to the formation of the characteristics of the stiffens 

and elasticity of the rail thread during its lateral horizontal 

bending and torsion. 

Equilibrium equations for rail thread are based on the 

general principle of resistance of materials: the equality of 

external forces acting on the structure that is considered, the 

forces of reactive resistance that occur in the structure. 

For the accepted calculation scheme, the equations of 

equilibrium of the rail thread will be as follows: 

- in the vertical longitudinal plane ZOX: 

zq PΣ =                  (6) 

or in integral form: 

z

z

x

z

x

U z dx P

+

−
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- in the horizontal transverse plane YOZ: 

            (8) 

or in integral form: 
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- when torsion the rail relative to the longitudinal axis X: 

2 2
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     (11) 

After replacing the expression in square brackets in the 

formula (11) by the horizontal lateral force H (according to the 

formula (9)), the equation of equilibrium of the rail thread 

during torsion will have a simpler form: 

2 1'

x

x

U dx h H H h P e

φ

φ

φ φ
+

−

⋅ ⋅ − ⋅ = ⋅ − ⋅∫       (12) 

                                                             
2
 New method of calculating the stress state of the rail thread under combined 

action on the rail of Pdyn and Hdyn and Mtor can be named after the authors of its 

development professors O. Yershkov and E. Danilenko. 

The right-hand side of equation (12) is the torque moment 

of external forces: 

1
ex
torM Н h P e′= ⋅ − ⋅  (5) and characteristics 1h′ ; e  - are 

the eccentricities of the application of external forces H and P 

relative to the center of torsion of the rail (·) 0 (see Figure 2-b). 

Further, taking into account that the problem of calculating 

deformations and stresses in the vertical plane has already 

been solved in the «Rules for calculating the railway track for 

strength» [4] we simplify our problem and solve only the 

equation of equilibrium of the rail in the horizontal the 

transverse plane XOY and the equation of equilibrium of the 

rail thread during its torsion relative to the longitudinal axis X, 

but in both cases we take into account the influence of the 

vertical force P on the desired deformation of the transverse 

bend and torsion of the rail thread. 

3.1. At the First Stage We Consider the Problem of 

Transverse Lateral Bending of a Rail Thread at Joint 

Action on a Rail of Vertical and Horizontal Forces 

The calculation scheme for solving the problem of lateral 

bending of the rail thread taking into account the forces of 

friction on the sole of the rail, with the joint action on the rail 

of the vertical force «P» and the horizontal force «H» is taken 

in Figure 2. 

Resistance reactions qy and Ty on the sole of the rail in the 

calculated cross section (Figure 2-b) (attributed to the unit 

length of the rail), taking into account the friction forces on the 

sole of the rail, according to research prof. Yershkov [13, 14] 

are determined by the formulas (13): 





⋅⋅=
⋅−⋅=

fzU

hyU

z

y

y

20y

T

)(q ϕ
            (13) 

where Uy – is the modulus of elasticity of the subrail base at 

the horizontal transverse bending of the rail thread from the 

action of only the lateral horizontal force (excluding the action 

of vertical forces and friction forces on the sole of the rail); 

y0 – is the horizontal lateral deflection of the rail in the cross 

section of the applied force H (here the displacement of the 

center of the lateral bending of the rail is taken); 

Uz – is the modulus of elasticity of the subrail base with 

vertical bending of the rail thread; 

z – is the vertical deflection of the rail in the cross section of 

the application of force; 

f – is the coefficient of friction on the sole of the rail. 

Turning further to the consideration of the rail thread as a 

long beam on an elastic basis, it is necessary to consider the 

calculation scheme in Figure 2-a), which shows the spatial 

bending of the rail thread under the combined action of 

vertical P and horizontal (lateral) load H. 

It is obvious that when the rail thread is laterally bent along 

the entire length of the rail sole, there will be continuously 

distributed reactive forces qy from the base resistance, as well 

as reactive components of friction forces Ty along the rail sole 

(as a result of acting vertical forces during horizontal 

movement of the rail sole). 

HTq yy =+ ΣΣ



63 Eduard Danilenko and Vitalii Molchanov:  A New Method for Solving the Problem of Determining the Characteristics of  

Spatial Stiffness and Elasticity of the Rail Threads and Stresses and Strains in Rails 

The sum of all reactions of resistance on the sole of the rail 

in the horizontal transverse plane according to formula (8) is 

equal to the external lateral force H. 

To solve the problem mathematically and for generalization 

the action of all forces along the length of the transverse 

(lateral) deformation of the rail we need to express equation 

(8), in integral form (9). 

And then it is necessary to solve equation (9) with respect to 

the desired value of the modulus of elasticity (Uy) of the rail 

thread in the transverse (lateral) plane. 

Here ±xy are the limits of integration at horizontal lateral 

bending. 

As calculations show, the desired modulus of elasticity Uy, 

in the transverse bending of the rail thread, which must be 

determined in this problem, is not equal to the initial modulus 
0

yU Uy≠ , which is initially accepted under the action of only 

lateral force H ≠ 0 and in the absence of vertical force P (P=0). 

The initial modulus of lateral elasticity (
0Uy ) is known 

because it is determined in advance in experimental studies of 

the stiffness of the rail threads in different designs of the track 

(usually at P = 0). 

Equation (9) is the starting point for solving the problem of 

lateral bending of the rail thread from the joint action of lateral 

and vertical forces and taking into account the forces of 

friction on the sole of the rail and the resistance of the rail 

fasteners. But to solve equation (9) in the form we need, we 

must to consider this equation in more detail and make some 

necessary transformations. Consider these transformations. 

From the theory of calculation of beams on an elastic basis 

[4, 15] and according to figure 2-a can be seen that to ensure 

sufficient accuracy of calculations, the first integral of the 

equation (9) can be taken within limits: –xy = –π/ky to +xy = 

+π/ky. 

The second integral cannot be taken within the same limits 

[13], as it exists only when moving the sole of the rail on the 

base, which is possible only if the friction forces on the sole of 

the rail are less than the elastic forces of resistance to 

movement on the sole, ie in the presence of inequality: 

0 2( )>y zU y h U z fφ− ⋅ ⋅ ⋅            (14) 

Under conditions of stable equilibrium of the rail, ie with 

the equality of the forces of elastic resistance of the base to the 

forces of friction on the sole of the rail, inequality (14) takes 

the form of the equation: 

0 2( )y zU y h U z fφ− ⋅ = ⋅ ⋅            (15) 

In equation (15) in addition to the desired value Uy - the 

horizontal lateral modulus of elasticity of the rail thread, the 

following are unknown: y0 - horizontal transverse 

displacement of the center of bending of the rail from the force 

H, and φ - the angle of torsion of the rail section. The 

following values are considered know in advance: z – is the 

vertical displacement of the rail thread under the influence of 

force P and also Uz - is the modulus of elasticity of the rail 

thread during vertical bending (these values are known from 

the solution of the problem of vertical bending of a rail thread 

lying on a solid evenly elastic base) [4]). 

According to the accepted calculation scheme (figure 2-b) it 

is possible to write down formulas for definition of size of 

horizontal transverse displacements of a head and a rail sole in 

settlement cross-section where forces Н and Р are applied: 

0 2soly y hφ= − ⋅                 (16) 

/
0 1heady y hφ= + ⋅                (17) 

Many studies have shown that the stiffness of the rail thread 

on the sole is significantly greater than the stiffness on the 

head, ie in general can be written: 

head
sol

y
y

δ
=                 (18) 

The coefficient «δ» depends on the type of rails, type of 

fasteners and underrail supports. In the works of prof. 

Yershkov [12, 13] for rails of types R43, I-a and R50, which 

are embedded on wooden sleepers, it was assumed δ = 2.0. 

In our researches in 2012-2016 [5, 7, 15] it is established 

that for modern types of fasteners of Ukrainian railways the 

value of the coefficient δ can vary widely from δ = 2,0 to δ = 

4,0 when using different types of rails, fasteners and underrail 

supports. Therefore, for further considerations, it is advisable 

to take the value of the ratio in general: 

head

sol

y

у
δ =                  (19) 

Using formulas (16), (17) and (19) we can make a 

relationship between the values of the horizontal transverse 

deformations of the head and sole of the rail thread: 

/
0 1

0 2

y h
y h

φφ
δ

+ ⋅
− ⋅ =            (20) 

From the formula (20) after simple transformations, we can 

obtain a formula for determining the angle of turn of the rail 

section φ as a function of the transverse lateral displacement of 

the center of bending of the rail thread y0: 

0

1 2

( 1)y

h h

δφ
δ

⋅ −
=

′ + ⋅
              (21) 

For further solutions, we also need to find the ratio between 

the values of the horizontal transverse deflection y0 of the rail 

thread along the line of the centers of bending along the X-X 

axis and the transverse deflections along the sole of the rail 

thread. We can obtain that equation after transformation the 

formula (16) by inclusion in it formula (21) for calculating the 

angle φ and solving this equation with respect to the deflection 

of the sole ysol. As a result we will receive: 
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/
1 2

0 2 0/
1 2

( )
  ( )sol

h h
y y h y

h h
φ

δ
+

= − ⋅ = ⋅
+ ⋅

,       (22) 

For a further solution, we use the next most important (after 

equation (9)) equation (15), which determines the condition of 

stable equilibrium of the elastic resistance of the base and the 

friction forces on the sole of the rail. 

To do this, convert the original equation (15) to the 

following form: 

0 2

0

( )y

z

U y h
z

U f

φ− ⋅
=

⋅
,            (23) 

And then after substitution in the formula (23) instead of the 

expression (y0-φ·h2) equal to it the right part of the formula 

(22), and performing some transformations, you can get a very 

important formula for the ratio of vertical and horizontal 

deformations of the rail thread at point 0, which is both center 

of torsion and bending of the cross section of the rail under the 

action of forces H and P: 

0 1 2

0 1 2

( )

( )

y

z

Uz h h

y h h U fδ
′ +

= ⋅
′ + ⋅ ⋅

          (24) 

Formula (24) is very important because it establishes the 

relationship between the vertical and horizontal deflections of 

the rail z0 / y0 in the calculated cross section under the joint 

action of forces H and P (Figure 2-b) for conditions of stable 

equilibrium of the rail (ie with equal elastic resistance of the 

base to friction forces on the sole of the rail). This formula 

allows you to determine the magnitude of the horizontal 

deflections of the rail thread in the center of the bend (y0), as 

well as deflections along the sole (ysol) and the head (yhead) 

after some transformations. 

For further considerations, we note that the vertical 

deflection of the line of the centers of bending of the rail is the 

same for the entire cross section of the rail, ie it is also equal to 

the vertical deflection of the sole of the rail z0=zsol. 

Using the well-known from the theory of calculation of 

beams on an elastic basis the relationship (25) between the 

magnitude of the deflections in the vertical and horizontal 

planes and the ordinates of the diagrams of elastic deflections 

distributed along the length of the rail thread (see Figure 2-a) 

after some transformations we can get once more very 

important formula (26) by next way. 

From the theory of calculation of beams on an elastic basis 

[4, 15, 16] it is known that the required vertical and horizontal 

displacements in the calculated sections are determined by the 

following expressions: 

2

2

z
i zi

z

y

i yi
y

P k
z

U

H k
y

U

η

η

⋅ = ⋅ ⋅ 
⋅ = ⋅
⋅ 

             (25) 

where ηzi, ηyi – are the ordinates of the diagrams of elastic 

deflections distributed along the length of the «x» rail, 

respectively, in the vertical and horizontal planes. These 

ordinates are determined depending on the argument (kz · xi) or 

(ky · xi) and show a picture of the distribution of deflections 

(vertical and horizontal, respectively) along the length of the 

rail for the case of joint application of vertical and horizontal 

forces P and H in one calculated section (see Figure 2-a). 

In addition to the previously accepted notation in formulas 

(25) marked: 

kz, ky – coefficients of relative rigidity between the elastic 

base and the rail, respectively:

 

4 / (4 )z z yk U EI=  – with 

vertical bending of the rail thread; 4 / 4y y zk U EI=  – at 

horizontal bending of a rail thread. Coefficients ky and kz 

determined from the theory of calculation of beams on elastic 

basis [4, 15, 16]. 

After substituting expressions (25) in equation (24), 

performing the appropriate transformations, we obtain the 

required formula (26) to determine the ordinates of the plot of 

horizontal transverse deflections (ηy0)i (see Figure 2-a). 

This ratio is truthful for the line of deflection centers of the 

rail thread along its entire length. 

( )
( )

0 1 2
0

1 2 0

( ) '
( )

'

z i z
y

y

h h k P f

h h k H

η δ
η

⋅ + ⋅ ⋅ ⋅ ⋅
=

+ ⋅ ⋅
       (26) 

Formula (26) is the desired formula for determining the 

ordinates of the plot of horizontal transverse deflections (ηy0)i 

(along the axis of the centers of bending of the rail) in any 

section along the length of the rail thread as a function of 

several given parameters known from the condition of the 

problem, namely: from the ordinates of known vertical 

deflections (ηz)i; as a function of the ratio of acting forces 

(P/H), and also as a function of the coefficients of relative 

stiffness of the rail thread kz / ky0 (when bending the rail thread 

in vertical and transverse horizontal planes): 

In formula (26) the values ηz0 and kz are considered to be 

given from the solution of the problem of vertical bending of 

the rail thread for the rail as a beam on an elastic basis. 

The coefficient of relative stiffness of the base of the rail 

thread and rail (ky0) when exposed to the rail only the lateral 

force H and in the absence of force P (P = 0), is determined by 

solving the differential equation: 

4
0

04
0z y

d y
EI U y

dx
+ ⋅ = ,          (27) 

The solution of this equation [15, 16] for determining the 

horizontal transverse deflections of the rail thread (y0) (for the 

line of the centers of bending), within the entire length from 

xmin to xmax has the form: 

00

0 0 0(cos sin )
2

yk xy

y y
y

H k
y e k x k x

U

− ⋅⋅
= ⋅ ⋅ ⋅ + ⋅

⋅
  (28) 

After substitution in equation (28) value Uy in the form of a 

known ratio Uy and ky: 
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4
0( ) 4y y zU k EI= ⋅ ,             (29) 

and taking in the expression (28) abscissa 0x =  (for the 

section at the point of application of force H) we obtain the 

formula (30) to determine the magnitude of the deflections for 

the line of the centers of bending (y0) and from the formula (30) 

we obtain the expression (31) to determine the relative 

stiffness coefficient ky0: 

0 3
08 ( )y z

H
y

k EI
=

⋅ ⋅
,            (30) 

30
08

y
z

H
k

EI y
=

⋅
             (31) 

The value of the modulus of elasticity of the subrail base is 

determined by the formula (29). 

To be able to apply formula (24) to solve the problem of 

determining the horizontal deflections of the rail thread on the 

plane of the sole depending on the vertical deflections of the 

rail, with joint action on the rail thread forces P and H, 

consider the existing relationship between transverse 

deflections of rail thread on the sole and on the line of bending 

centers of the rail X-X. 

For this solution it is sufficient to use the previously given 

relations between ysol and y0 (see formula (22)). 

From which it follows that in order to move from the 

transverse deflections along the line of the centers of bending 

(y0) to the transverse deflections along the sole of the rail (ysol), 

it is necessary to multiply the value (y0) by a factor 

( ) ( )1 2 1 2/h h h hδ′ ′+ + ⋅ . This conclusion also applies to the 

ordinates (η0) of the plot of deflections (η0). 

Thus, we obtain the final required formula for determining 

the ordinates of the diagram of the transverse horizontal 

deflections of the rail thread on the sole (ηy sol) (taking into 

account the friction forces) in any cross section along the 

length X-X under combined action on the rail vertical and 

horizontal forces: H ≠ 0 and P ≠ 0: 

0

( ) zi z
y sol i

y

k P f

k H

ηη ⋅ ⋅ ⋅
=

⋅
           (32) 

At the next stage of solving the problem it is necessary to 

determine the modulus of elasticity of the subrail base at the 

transverse horizontal bending of the rail thread (
( )fr
yU ) from 

the joint action of horizontal and vertical forces: H ≠ 0; P ≠ 0 

(taking into account the elastic resistance of the base and the 

forces of friction on the sole of the rail). 

To solve this problem, proceed as follows. 

1) In experimental studies of the vertical bending of the rail 

thread under the influence of the vertical concentrated force P 

prof. Yershkov [13] found that the vertical modulus of 

elasticity of the subrail base is defined as the ratio of the total 

force to the total value of the vertical deflections along the 

entire length of the deformed rail, ie: 

max

min

z x
z

x

P P
U

z dx
ω +

−

= =

⋅∫

             (33) 

When solving the problem of rail deflection as beams on an 

elastic basis, it is established that for practical purposes it is 

sufficient to take for calculations the elastic wavelength of 

deflections, including the entire zone of positive deflections 

plus two sections of the negative deflection zone (on both 

sides of the positive zone) up to absolutely minimum ordinate 

ηmin = –0,0432. That is, the length of the elastic wave of 

deflections is taken into account in the range from xmin = –π / 

kz to xmax = +π / kz (let's call it the calculated length of the 

elastic wave of vertical deflections). That is, you can take the 

area of the plot of the ordinate vertical deflection of the rail 

within the integration from –xmin = –π / kz to +xmax = +π / kz, 

where area of the plot is: 

z

z

k

z

k

z dx

π

π

ω

+

−

= ⋅∫ .     (34) 

Then equation (33) can be rewritten as follows: 

max

min

x

z

x

U z dx P

+

−

⋅ =∫  or 

z

z

k

z

k

U z dx P

π

π

+

−

⋅ ⋅ =∫     (35) 

2) Consider now in more detail the equilibrium equation (9) 

in the horizontal plane, expressed in integral form. 

Under the first integral the expression (y0 – φ·h2) denotes the 

transverse displacements of the rail sole, and the whole integral 

without the modulus of elasticity Uy is the area of the plot of the 

ordinates of the horizontal transverse deflection of the rail sole 

( )sol
yω , which for practical purposes, similarly to vertical 

deflections, is also accepted within xmin = –π / ky; xmax = +π / ky: 

( )2

y

y

k

sol
y

k

y h dx

π

π

φ ω

+

−

− ⋅ ⋅ =∫          (36) 

That is, the entire first integral of equation (9) can be 

rewritten as: 

( )2

y

y

x

sol
y y y

x

U y h dx Uφ ω
+

−

− ⋅ ⋅ = ⋅∫        (37) 

Now substitute expression (37) in equation (9) and rewrite 

equation (9) relative to the horizontal (transverse) modulus of 

elasticity of the rail thread (Uy), then we obtain the formula 

(38), in which (Uy) is expressed as a function not only of the 

factors that characterize deformation in the transverse plane of 
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the rail thread ( / sol
yH ω ), but also it take into account the 

influence of vertical bending and friction forces on the sole of 

the rail (which is characterized by the second integral of the 

expression (9)): 

y

y

x

z

x

y sol
y

H U z f dx

U
ω

+

−

− ⋅ ⋅ ⋅

=
∫

          (38) 

In formula (38) the second term in the numerator– is the 

second integral of equation (9)
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y
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z

x

U z f dx

+

−

 
 ⋅ ⋅ ⋅
  
 
∫ , 

which denotes the sum of friction forces on the sole of the 

rail and which can exist only within the elastic wavelength of 

the horizontal bend of the rail, ie within from –xy = –xfr up to 

+xy = +xfr, so we can write that xy varies within: 

fr у frx х х+ ≥ ≥ − ,             (39) 

where xfr – is the half-wavelength of the friction section on 

the sole of the rail under the combined action of the horizontal 

force H and the vertical force P. That is, the formula (38) can 

be rewritten as follows: 

fr

fr

x

z

x

y sol
y

H U z f dx

U
ω

+

−

− ⋅ ⋅ ⋅

=
∫

          (40) 

The value xfr cannot be greater than the length of the active 

(positive) half-wave zone of the horizontal transverse bending 

of the rail, ie, xfr ≤ 3π / 4ky as the friction on the sole of the rail 

from the action of vertical force P is realized only on the active 

part of the horizontal bending of the rail (look Figure 2-a). 

Because from equation (35) it follows that when integrating 

within the full length of the elastic wave of vertical deflections 

(within the calculated area +π / kz ≥ xz ≥ –π / kz) there is an 

equality that expressed the second integral of formula (35), 

then for the area ( fr у frx х х+ ≥ ≥ − ), where the friction is 

realized on the sole of the rail with the combined action of 

horizontal and vertical forces H and P, we can write: 

fr

fr

x

z

x

U z dx a P

+

−

⋅ ⋅ = ⋅∫              (41) 

And then the formula (40) can be rewritten as: 

y sol
y

H f a P
U

ω
− ⋅ ⋅=             (42) 

Here «а» – is the coefficient that determines the ratio of 

areas: plots of horizontal deflections of the rail thread within 

the length of the friction section (from +xfr to –xfr) to the area 

of the plot of horizontal deflections at the full length of the 

elastic wave (from +π / kz to –π / kz), ie «а» is the coefficient 

showing the share of action vertical force P in the formation of 

the area of the friction plot, ie in the formation of resistance 

forces to transverse movement of the rail along its sole under 

the joint action of the horizontal transverse force H and the 

vertical force P. 

The value of the coefficient «a» is determined from the ratio 

of formulas (41) and (35): 
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                (43) 

After integration, we obtain the final expression to 

determine the coefficient «a» in the form: 

cos 1

cos 1

z frk x

z fre k x
a

e π π

− ⋅

−

⋅ ⋅ −
=

⋅ −
          (44) 

From the formula (44) it can be seen that the values of the 

coefficient «a» vary depending on xfr – the length of the elastic 

half-wave of the friction section along the sole of the rail at 

horizontal bending from the joint action of forces H and P; as 

it will be shown below, the length of the section xfr in turn 

depends on the ratio of vertical and horizontal forces xfr = f(P / 

H). And in addition, the values of the coefficient «a» vary 

depending on kz – the coefficient of relative stiffness of the 

base and rail in the vertical plane. 

The result of solving the problem (that proposed here) is 

very significantly different from the solution of prof. Yershkov 

[13, 14], where he accepted constant value of the coefficient a 

= const = 0,9. 

In opposite to the accepted prof. Yershkov value of the 

coefficient a =const=0,9, in our modern research 2012-2016. 

[6, 7, 15] was found that the value of the coefficient «a» is not 

to be constant, but on the contrary varies significantly 

depending on: the design of the subrail base, rail fasteners, 

and above all, depending on the ratio of vertical and 

horizontal forces (P/H) and length xfr – elastic half-wave of 

friction on the sole of the rail at horizontal bending of the rail 

under conditions of joint action of forces P and H, ie a=f (kz, 

P/H, xfr). 

The graph of the dependence of «а» and xfr as a function of 

(P/H) has the form shown in Figure 3, where for example we 

give two graphs: a = f(P / H) and xfr = f(P / H) for next designs 

of railway track: a) rails - R65; sleepers - reinforced concrete, 

a diagram of sleepers is 1840 sleep/km; fastners are KB; b) 

rails - R50; sleepers - wooden, diagram of sleepers is 1840 

sleep/km, fasteners are D0. 
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Figure 3. Graph of the dependence of «a» and xfr as a function of P/H: a) for rails R65 on reinforces concrete sleepers; b) for rails R50 on wooden sleepers. 

The graphical dependences а=f(P/Н) and хfr=f(P/Н) for 

other constructions of railway track have a similar form (up to 

Figure 3). The numerical values of «a» and xfr for specific P/H 

ratios are given in the example of calculations. 

For modern constructions of the upper structure of railway 

track, the coefficient «a» can vary in the range from amin = 0 to 

amax = 1,0 and can not be a > 1,0, as the plot of friction forces 

can exist only within the wavelength of the horizontal 

transverse bend of the rail 2·xfr (see Figure 2-a). And when amin 

= 0 that corresponds P = 0, there will be the equality take 

place: 
( )fr
у уU U= . The result obtained in our research fully 

corresponds to the mathematical logic of the physical 

characteristics accepted for consideration. (On the contrary, in 

the existing interpretation of the solution of prof. Yershkov 

[13, 14], when Р=0 and a ≠ 0 formulas (48) and (50), which 

given below, do not correspond to mathematical logic). 

The half-wavelengths of friction on the sole of the rail xfr, 

for example for R65 rails with KB fasteners on reinforced 

concrete sleepers can vary from 
min 0frх =  (when Pmin=0) up 

to 
max 100 125frх = ÷  cm (when Pmax/Hmax=2,6÷3,5) for 

different structures of the upper track with different fasteners. 

(It will be recalled that in the decisions of prof. Yershkov it 

was recommended to take 
max 120frх =

 
cm for all cases for the 

construction of the upper structure of the track on wooden 

sleepers with rails type R43 and R50). 

In addition, the coefficient of friction on the sole of the rail 

prof. Yershkov assumed as constant f = 0,15 for D0 type 

fasteners on wooden sleepers. In fact, the coefficient f should 

be taken differently for different fasteners and for different 

sleepers. According to our researches, the coefficient of 

friction on the sole of the rail f should be taken differently 

depending on the types of rail fasteners and rail supports. 

Namely, for the fasteners listed in table 1 should be taken f 

respectively equal to: KB – 0,3; KPP-5 – 0,32; KPP-1 – 0,28; 

D0 – 0,15. 

As will be shown below, the coefficient «a» has a significant 

effect on the determination of the modulus of elasticity 
( )fr
уU  

for the rail thread in the horizontal transverse plane. 

3) After solving the problem of determining the coefficient 

«a» and half-wave length of friction xfr for different designs of 

upper structure of railway track, we can proceed to finding one 

of the most important characteristics of the rail thread - the 

actual (real) modulus of transverse elasticity of the subrail 

base for rail thread 
( )fr
уU  under the combined action of 

horizontal force H and the vertical force P (taking into 

account the friction forces on the sole of the rail and taking 

into account the resistance of the subrail base and fasteners). 

Because of the area of the plot of the ordinates of the 

transverse displacements of the rail sole 
sol
yω  in the 

experiments with the combined action of the vertical force P 

and horizontal H is always determined in the presence of 

friction forces on the rail sole, therefore in formula (42) the ratio 

( / sol
yH ω ) (by analogy with (33)) should be considered as the 

real modulus of elasticity of the track 
( )fr
уU  in the horizontal 

transverse plane in the presence of a vertical force P and taking 

into account the friction forces on the sole of the rail: 

( )fr
ysol

y

H
U

ω
=                 (45) 

Then further, substituting (45) in the formula (42) and 

transferring the desired value of the modulus of elasticity 
( )fr
yU  to the left, we obtain a new equation in the form of a 

ratio between: Uy – the modulus of elasticity of the subrail 

base for rail thread at horizontal bending - for the case of 

acting only horizontal forces H ≠ 0 (in the absence of 

vertical force P = 0) and the real modulus of elasticity of 

the subrail base 
( )fr
уU  for the same rail thread, that exists 

in the real interaction of the track with the rolling stock 

under the joint action of vertical force P ≠ 0 and horizontal 

force H ≠ 0 (ie taking into account the friction forces on the 
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rail sole). 

( )fr
y y sol

y

f a P
U U

ω
⋅ ⋅= +              (46) 

Now, if in the formula (40) the area of the plot 
sol
yω  of 

transverse lateral displacements along the sole of the rail is 

expressed through the relation (47), which follows from (45): 

( )

sol
y fr

y

H

U
ω = ,               (47) 

and then substitute this expression into formula (46), then 

making the appropriate transformations, we obtain the final 

calculation formula (48) to determine the desired value of the 

actual transverse horizontal modulus of elasticity of the 

subrail base of the rail thread with the combined action of 

vertical and horizontal forces (P ≠ 0; H ≠ 0) and taking into 

account the friction forces on the sole of the rail and the 

resistance of the subrail base with fasteners. 

( )fr
y y

H
U U

H f a P
= ⋅

− ⋅ ⋅
         (48) 

Given the fact that in the conditions of this problem it is 

indicated that the problem is solved for the influence of the 

wheels of the rolling stock on the track, we can rewrite 

equation (48) in another form (taking according to the 

condition of the problem H = Hdyn; P = Pdyn). 

( ) dynfr
y y

dyn dyn

H
U U

H f a P
= ⋅
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      (49) 

Or you can rewrite the formula (48) in a slightly different 

form, that is known from the reference literature [17, 18] as a 

formula obtained by prof. Yershkov. To do this, multiply the 

numerator and denominator of the right-hand side of equation 

(48) by a factor 1 / Pdyn, then we obtain: 

( )

dyn

dynfr
у y

dyn

dyn

Н

Р
U U

Н
f a

Р

=
− ⋅

.           (50) 

Formulas (48), (49), (50) obtained in our studies to 

determine the transverse horizontal modulus of elasticity of 

the subrail base of the rail thread, which is attached by 

fasteners to the elastic base in the vertical longitudinal plane 

XOZ and in the horizontal longitudinal and transverse planes 

XOY and ZOY, and is subject to deformation of vertical and 

horizontal bending with simultaneous torsion relative to the 

longitudinal axis X-X, from the joint action of external forces - 

vertical P and transverse horizontal H, as well as torque 

moment М
ex

tor from eccentric application of forces P and H, 

on the first view differ little from formulas (51) and (52), 

which is given in prof. Yershkov studies [14, 13] and in 

reference literature [17, 18] (according to the results of prof. 

Yershkov): 

y
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y U

af
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H
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H
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⋅−

=          
(51)

  

y

dyn
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dyn
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y U

f
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H
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−

=
9,0

)(
        

(52)
 

However, this is not so. The formulas (48), (49), (50) 

obtained by us are qualitatively different from formulas (51) 

and (52). 

First, the values of the modulus of elasticity of the rail 

thread Uy and the coefficient of relative stiffness ky0 under the 

action of the rail only horizontal force H (and the absence of 

vertical force P = 0) are determined in another way, namely by 

formulas (29) and (31). 

Second, the coefficient «a», which shows the ratio of the 

areas of the plots of the horizontal deflections of the rail thread 

in the presence of friction forces on the sole of the rail and in 

their absence, is not a constant value and it is determined by 

formula (44), which differs from the recommended value a = 

0,9 in studies prof. Yershkov. The coefficient «a» can take 

values from the largest amax (at the most unfavorable ratio of 

forces Pmax/Hmax) to the minimum amin (in the absence of vertical 

force P=0). At values of vertical and horizontal loading on a rail 

close to real forces of interaction between a wheel and a rail 

Pdyn/Hdyn, the coefficient «a» should be recommended to accept 

as the most probable value aprob when 
prob

fr frx x= . 

Thirdly, as already mentioned, it is necessary to take 

different values of the coefficient «a» for different types of 

fasteners on reinforced concrete and wooden sleepers and also 

it is determined as different values depending on friction 

coefficients «f». 

The results of calculations of real values of the actual 

modules of transverse elasticity for the subrail base of rail 

threads (
( )fr
уU ), with the joint action of vertical Pdyn and 

horizontal Hdyn wheel loads on the rail are given in table 1 for 

different types of track construction with rails of types R65 

and R50, for track on reinforced concrete sleepers with 

fasteners type KB, KPP-5, KPP-1, and on wooden sleepers 

with fasteners D0, depending on the ratio forces P/H (from 

probable to maximum values). 

Functional dependences of the real values of the modulus of 

elasticity as a function of the ratio of vertical and horizontal 

wheel loads acting on the rail thread ( )dyndyn

fr

y HPfU =)(

 are shown in Figure 4.  
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Figure 4. Graphs of functional dependences of modules of transverse elasticity on the ratio of vertical and horizontal forces ( )
dyndyn

fr

y HPfU =)(  acting 

on the rail thread for railway track with rails R65 and R50 on reinforced concrete and wooden sleepers with different fastening structures. 

Table 1. Accounted values of the real modulus of elasticity of the subrail base under horizontal transverse bending of the rail thread and under torsion for track 

structures with rails R65 and R50 on reinforced concrete and wooden sleepers with fasteners types KB, KPP-5, D0 (given depending on P/H). 

/P Н  

KB KPP-5 D0 

( )fr
yU , kg/cm2 ( )fr

Uφ , kg/rad ( )fr
yU , kg/cm2 fr

Uφ
( )

, kg/rad ( )fr
yU , kg/cm2 ( )fr

Uφ , kg/rad 

For rail of types R65 

0,000 255,81 52116,68 349,47 33100,93 211,65 62783,25 
1,000 311,1392 63389,01 425,2673 40280,26 221,538 65717,74 

1,500 376,6273 76731,03 516,9069 48960,13 231,783 68756,62 

2,336 623,3871 127003,9 877,9239 83154,77 256,300 76029,52 
3,000 1412,533 287778,3 2221,62 210426,4 283,908 84219,10 

For rail of types R50 

0,000 178,70 24303,67   155,51 29017,48 
1,000 225,50 30668,73   164,31 30659,90 

1,500 281,550 38285,42   173,35 32346,53 

2,336 510,39 69415,06   195,14 36412,08 
3,000 1530,59 208164,26   220,14 41078,09 

Notes. *) The ratio Р/Н=0 corresponds to the value of the real modulus Uy at Р=0; 

**) The ratio Р/Н≈2,336 – corresponds to the interaction of rolling stock and track for a freight 4-axle car on trolleys CNII-H3-0 when moving at a speed of V = 

80 km/h in the curve R = 900-800 m; 

***) The ratio Р/Н≈1,3-1,5 – corresponds to the value of the real module when moving a passenger car in the curve R = 900-800 m at a speed of V = 90 km/h. 

3.2. In the Second Stage of Solving the Problem We 

Consider the Deformation of the Rail Thread During 

Torsion Relative to the Longitudinal Axis X-X 

To solve the problem in full, taking into account the action 

of all forces on the length of the deformation of the torsion of 

the rail the equation of equilibrium of the rail thread in integral 

form, as already indicated from the beginning of the article is 

written by formula (11). 

After some simplifications, which are also given at the 

beginning of the article, equation (11) is written in a simpler 

form (12). 

According to experimental studies of prof. Yershkov [13] 

integral 

x

x

dx

φ

φ

φ
+

−

⋅∫  – is the area of the plot of the torsion angles 

plot ωφ within the wavelength of the rail torsion (which 

practically corresponds to the length of the lateral bend of the 

rail). 

That is: 

x

x

dx

φ

φ

φφ ω
+

−

⋅ =∫                         (53) 

Prof. Yershkov in [13] found that: 

( )1

''

sol
y

h
φ

δ ω
ω

− ⋅
= ,               (54) 

head
ysol

y

ω
ω

δ
= ,                 (55) 

where 
sol
уω  and 

head
уω  – are the area of the diagrams of 

the transverse displacement of the sole and the head of the rail 

(with the joint action on the rail of horizontal and vertical 

forces H and P); 

h′′  – the distance between the points of measurement of the 

transverse displacement of the head and sole of the rail; δ  – 

the ratio of the areas of the diagrams of the displacement of the 
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head and sole of the rail, determined by the formula: 

head
y

sol
y

ω
δ

ω
=                 (56) 

(According to our researches [7, 15] for practical purposes, 

with a sufficient degree of accuracy, you can take a coefficient 

« δ » equal to the ratio of the transverse stiffness of the rail 

thread on the sole and on the head). 

sol
y

head
y

β
δ

β
=                (57) 

Thus, the equation (12) after substituting the expression (53) 

and its solution relative to Uφ, will look like: 

( )1 2'H h h P e
Uφ

φω
+ − ⋅

=            (58) 

Next, substituting in equation (58) the value ωφ of the 

formula (54), we obtain the following expression to determine 

the modulus of elasticity Uφ of the subrail base when torsion 

the rail thread: 

( )
( ) ( )

1 2'

1 1sol sol
y y

H h h h P e h
Uφ δ ω δ ω

′′+ ⋅ ′′⋅ ⋅= −
− ⋅ − ⋅

      (59) 

If we take into account that in real conditions of interaction 

between rolling stock and track the area of the plot of 

transverse displacements 
sol
уω  is determined in the presence 

of vertical force P and friction forces on the sole of the rail, 

then the ratio / sol
уH ω should be identified as the real value of 

the lateral modulus of elasticity of the subrail 
( )fr
yU  that is 

determined taking into account the friction forces on the sole 

of the rail (see the author's articles [7, 15] on this problem): 

( )fr
ysol

y

H
U

ω
=                (60) 

Then, substituting (60) in equation (59), we obtain in the 

final form a formula for determining the real (actual) value of 

the modulus of elasticity of the rail thread during torsion φ
(fr)

U  

for the case of joint action of vertical and horizontal forces (H 

≠ 0 and P ≠ 0) and taking into account friction forces on the 

sole of the rail and the resistance forces of the subrail base 

with fasteners: 

( )

( )

1 2( ) ( )

( )

'

1

1

fr fr
y

fr
y

h h h
U U

P e h
U

H

φ δ

δ

′′+ ⋅
= ⋅ −

−
′′⋅ ⋅− ⋅

− ⋅

        (61) 

If the measurements of the transverse displacement of the 

rail head are determined opposite the point of application of 

the horizontal force H, and the displacement of the sole of the 

rail is determined close to the lower plane of the sole (which 

usually occurs in experiments), then we can take 1 2h h h′′ ′= +  

and then formula (61) will take simpler look: 

( )

( )

2

( ) ( )

( )

1

1

fr fr
y

fr
y

h
U U

P e h
U

H

φ δ

δ

′′
= ⋅ −

−
′′⋅ ⋅− ⋅

− ⋅

           (62) 

The sign «-» in front of the 2nd component in the right part 

of equations (61) and (62) corresponds to the scheme of 

loading the rail shown in Figure 2-b, when the moment of 

torsion of the external forces М
ex

tor is determined by the 

formula (5). For the case of applying a vertical load to the left 

of the axis of symmetry of the rail (in equations (61) and (62) 

should put a sign «+» before the second term in that case value 

«e» we take without any sign). 

From the formula (61) it can be seen that the real (actual) 

modulus of elasticity of the rail thread during torsion 
( )fr

Uφ  

(for the case of joint action of vertical and horizontal lateral 

forces (P≠0 and H≠0)) functionally depends on the modulus 

of elasticity of the rail thread in transverse bending 
( )fr
yU , as 

well as it depends on the ratio acting forces Р/Н and from the 

eccentricity of the application «e» of the vertical force P, and 

also from the ratio of the stiffness of the rail thread on the head 

and sole during transverse bending 

sol
y

head
y

β
δ

β
= . 

Formula (61) in this form was obtained for the first time in 

studies of the deformation of the rail thread during torsion. 

This formula differs significantly from the results obtained in 

the studies of prof. Yershkov [13, 14] and, as will be shown 

below, formula (61) differs significantly from its other possible 

interpretations, including in function of the stiffness of the rail 

thread during torsion βφ. 

The results of calculations of real (actual) modulus of 

elasticity of the rail thread during torsion as a function 

Uφ=f(P/H) for different designs of railway track with rails R65 

on reinforced concrete and with rails R50 on wooden sleepers 

for different designs of fasteners are given in table 1. 

The functional dependence of the modulus of elasticity of the 

rail thread during torsion ( / )
fr

U f P Hφ =  for different track 

structures with rails R65, R50 on reinforced concrete and 

wooden sleepers is shown in Figure 5. For other designs of 

track constructions and for some values of vertical and 

horizontal loading on rails, which are closed to real forces of 

interaction (Pdyn/Hdyn), under the results of calculations are 

given in the example at the end of this article.  
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Figure 5. Graphs of functional dependences of modulus of elasticity of a subrail basis under torsion of a rail thread on a ratio of operating vertical and 

horizontal forces ( )
dyndyn

fr HPfU =)(

φ
 for track construction with rails R65 and R50 on reinforced concrete and wooden sleepers at various designs of 

fastenings. 

3.3. At the Next Stage We Turn to the Determining of 

Another Important Characteristic – the Stiffness of the 

Rail Thread During Torsion (βφ) 

From the classical theory of torsion of the rods [19] there is 

a formula for determining the angle of turn of the rod is known 

which has the form: 

ex
torМ

φ
φ

β
=                  (63) 

where βφ – the stiffness of the rod during torsion; 
ex
torМ  – torque moment of external forces (determined by 

the formula (5)). 

When considering the horizontal bending and torsion of 

the rail thread is not attached to the supports on the action 

of the lateral transverse force H and the torque moment 

caused ex
torМ  by the action of the lateral force H and the 

eccentrically applied vertical load P in [13] prof. Yershkov 

obtained the following relationship between the angle of 

turn of the rail and the torque moment ex
torМ  applied to the 

rail (for the calculated cross section at the place of 

application of torque moment): 

( )2
1 2 1 22

ex
tor

Q

M

D h r r r r
φ

⋅

=
⋅ ⋅ ⋅ ⋅ +

,          (64) 

where: hQ – the distance between the centers of gravity of the 

head and sole; 

D – rigidity of the rail during bending torsion of the head 

and sole of the rail relative to its neck (according the formula 

prof. Tymoshenko [8, 9]). 

head sol
z z

head sol
z z

I І
D E

I І

⋅
=

+
              (65) 

As can be seen from the comparison of formulas (63) and 

(64) that denominator in the expression (64): 

( )2
1 2 1 22 QD h r r r rφβ = ⋅ ⋅ ⋅ +          (66) 

this is the stiffness of the rail thread during torsion βφ, which 

lies freely and is not fixed on the rail supports, under the action 

on it the torque moment from horizontal lateral force H and 

from the eccentrically applied vertical force P. And in that 

case the vertical bending of the rail thread from the force P is 

not taken into account and the friction forces on the sole 

between the rail and the rail supports are not taken into 

account too. 

In expressions (64) and (66) in addition to the already 

mentioned characteristics D and hQ there are very important 

coefficients r1 and r2, which are defined in the studies of prof. 

Yershkov [13, 14] as: r1 – coefficient characterizing the 

bending-torsional rigidity of the rail, which is determined by 

the formula: 

1 2
Q

C
r

Dh
=                 (67) 

r2 – the coefficient of relative stiffness of the rail base and 

the rail during torsion, which is determined by the formula: 

2

U
r

C

φ=                  (68) 

Based on the results of research [13, 14] prof. Yershkov 

obtained for the typical design of the track on wooden sleepers 
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with rails types R43 and R50 ratio: r2 / r1 ≈ 0,15. Therefore, 

after some transformations and substitution into expression 

(64), the value r2 = 0,15·r1, formula for the angle of turn of the 

rail thread in [14] is reduced to the form: 

2 2
1 22,30

ex
tor

Q

M

D h r r
φ

⋅

=
⋅ ⋅ ⋅ ⋅

           (69) 

Thus, the expression for the stiffness of the rail thread βφ in 

the final version of prof. Yershkov [14] is reduced to the form: 

2,30
U

C
C

φ
φβ = ⋅ ⋅            (70) 

And from the expression (70) as a result the formula 

expressing dependence between the modulus of elasticity of a 

subrail basis at torsion (Uφ) and stiffness of a rail thread at 

torsion (βφ) is deduced in the following form: 

21

5,30
U

C
φ φβ=

⋅
            (71) 

The formula (71) was proposed by prof. Yershkov as 

universal for determining the relationship between the 

modulus of elasticity of the sub-rail base in torsion (Uφ) and 

the stiffness of the rail thread in torsion (βφ) for all types of 

rails laid on wooden sleepers, regardless of the design of rail 

fasteners. And in that case it was proposed to determine the 

stiffness of the rail thread by the formula (66). 

The formula (71) after the publication of prof. Yershkov’s 

researches in [13, 14] in 1960 became widely known and 

began to be used in the calculation stresses in rails taking into 

account torsion deformations. In particular, this technique 

formed the basis of calculations of reference data on the 

torsional characteristics of the rails for the «Handbook of 

Railway Engineer» in 1972 [17] and was used in other widely 

published publications [18, 2]. 

However, our new researches (2012-2016) [6, 7, 15] has 

shown that the use of the above methodology is not correct and 

requires significant adjustments in general, including to 

ensure the correctness of the final results in relation to modern 

structures of the upper structure of the track. 

1) First of all it is necessary to note that accepted prof. 

Yershkov in [13, 14] used the constant ratio of coefficients r2 / 

r1 ≈ 0,15 incorrectly for different types of rails, for different 

diagrams of laying sleepers and, moreover, for different track 

designs. 

The results of our researches showed that the value of the 

ratio (r2 / r1 ≈ 0,15) can be taken only for the construction of 

the track on wooden sleepers with rails types R43 and R50 

(with which prof. Yershkov just conducted experimental 

research). For example, for the same track design on wooden 

sleepers with a sleeve diagram of 1840 sleep/km for rails 

UIC60 should take the ratio r2 / r1 ≈ 0,16 and for rails R65 it 

should be taken (r2 / r1 ≈ 0,17). When changing the diagram of 

sleepers, the ratio should also change in proportion to the 

change in the coefficient 2r . The results of the calculations 

showed that even minor inaccuracies in the choice of the 

initial ratio r2 / r1 ultimately lead to significant errors in 

determining the desired torsional characteristics βφ and 

accordingly: Uφ; 
( )fr

Uφ ; 
( )fr
φβ . 

It is easy to show that the original formula (66), which is the 

stiffness of the rail thread during torsion βφ and after 

transformations is reduced to the final form (70), will have a 

different final form, if we substitute other ratios of coefficients, 

which unequal to r2 / r1 = 0,15. 

Namely: for rails of the R65 type calculations give other 

relation (r2 / r1 = 0,17) and therefore the final formula for 

definition βφ will get the following look: 

( )2
1 2 1 22

2,34

QD h r r r r

U
C

C

φ

φ

β = ⋅ ⋅ ⋅ ⋅ + =

= ⋅ ⋅
       (72) 

Thus, the final formula (73), which expresses the 

relationship between the values Uφ and βφ for rails type R65 

will look like: 

2

5, 475
U

C

φ
φ

β
=

⋅
              (73) 

And for rails type UIC60 when (r2 / r1 = 0,16) the following 

expression will take place: 

( )2
1 2 1 22

2,32

QD h r r r r

U
C

C

φ

φ

β = ⋅ ⋅ ⋅ + =

= ⋅ ⋅
        (74) 

And final formula (75) for rails of the UIC60 type it will 

look like: 

2

5,382
U

C

φ
φ

β
=

⋅
              (75) 

The corrections given in formulas (73), (75), (72) and (74), 

taking into account the large order of values of characteristics 

C and D, significantly change the values of characteristics Uφ 

and βφ for rails of types R65 and UIC60 in comparison with 

known formula (71) which was given in the works of prof. 

Yershkov and which can be used only for rails R43 and R50. 

2) Also needs clarification of the physical content of the 

characteristics βφ in Uφ in connection with the relationships 

between them. 

The fact is that the characteristic of the stiffness of the 

rail thread βφ which is determined by formula (66), obtained 

from consideration only of the rail operating on horizontal 

bending under the influence of horizontal force H and 

simultaneously on the torsion of the rail under torque 

moment M
ex

tor from eccentrically applied horizontal force 

H and vertical force P. But in that case the vertical bending 

of the rail in this problem was not taken into account, and 

accordingly did not take into account the friction forces on 
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the sole between the rail and the rail base from the action of 

the vertical force. 

Thus, the characteristic βφ determined by formula (66) 

corresponds only to the stiffness of the rail thread, which not 

connected by fasteners to the base and which depends only on 

the shape of the rail and the stiffness of its cross-sectional 

elements. That is why the characteristic Uφ in the formulas 

(71), (73), (75) - does not correspond to the modulus of 

elasticity of the real actual subrail base, because of it obtained 

from solving the problem, which did not take into account the 

effect of resistance of the subrail base to vertical bending and 

did not take into account the friction forces on the sole of the 

rail and the resistance of the rail fasteners. Therefore, it is 

correct to call this characteristic Uφ – the modulus of elasticity 

in the torsion of a fictitious rail base. Our studies have shown 

that the values of the characteristics Uφ determined by formula 

(71) for rails R43 and R50 (or by formulas (73) and (75) for 

rails R65 and UIC60) can be correctly applied only in cases of 

absence vertical load on the rail (at P = 0), which is practically 

non-existent in real conditions of interaction between rolling 

stock and track. 

The actual real value of the stiffness of the rail thread when 

torsion φ
(rf)

β , taking into account its connections with the 

subrail base, should be determined from the other formulas of 

the form (76), (77), (78) after substitution in them instead of a 

fictitious modulus of elasticity during the torsion of the rail 

base Uφ, the values of the real actual modulus of elasticity of 

the rail base during the torsion of the rail thread 
( )rf

Uφ , which 

are determined by formula (61) and accordingly differ for 

different types of rails, namely: 

for rails type R50 and R43 by the formula: 

( ) ( )5,30rf rfC Uφ φβ = ⋅ ⋅          (76) 

for rails type R65 by the formula: 

( ) ( )5,475rf rfC Uφ φβ = ⋅ ⋅          (77) 

for rails type UIC60 according to the formula: 

( ) ( )5,382fr frC Uφ φβ = ⋅ ⋅          (78) 

The results of verification calculations [7, 15] showed that 

the real actual values of the modulus of elasticity in torsion 

(
( )rf

Uφ ) are significantly greater than the values of the 

modulus of elasticity of the fictitious basis (Uφ) and differ by 

about 2,0-3,5 times depending on the type of railway track 

structures - for real of ratios vertical and horizontal acting 

forces P/H. And the real values of stiffness of the rail thread 

during torsion 
( )fr
φβ  (taking into account its connections 

with the subrail base) differ in the direction of increase from 

the fictitious value of stiffness βφ – about 1,5-2,5 times for the 

actual operating ratios of vertical and horizontal forces (P/H) 

also depending on the type of railway track structures. 

3.4. Calculation of Stresses and Strains in Rail Threads 

Only after determining the spatial characteristics of 

elasticity and stiffness of the rail thread and subrail base 
( )fr
yU , 

( )fr
Uφ , 

( )fr
φβ , 

( )fr
yk ; rail

zEI , head
zEI , sol

zEI , D, 

rail
torI , C that are found from consideration of the operation 

of the rail thread under conditions of joint action of vertical 

and horizontal forces and torsion, taking into account the 

fact that the characteristics of elasticity and stiffness of the 

same rail thread and subrail base at vertical bending of the 

rail thread as a long beam on an elastic base; which are 

known in advance - only after that, it is possible to proceed 

to the calculation of stresses and strains of the considered 

rail thread design. 

Below we give the basic calculation formulas that 

determine the stresses, strains and transverse forces in the 

rails. 

1. The angle of turn of the vertical axis of the rail relative to 

the center of rotation (·) 0 is determined by the formula: 

( )
0 ( )

ex
fr tor

fr

M

φ
φ

β
=                 (79) 

2. Transverse horizontal displacement of the center (·) 0 

torsion of the rail (the same is the center of the bend on the rail 

thread) determined by the formula: 

0 ( ) 38( )
tor cent fr

y z rail

H
y y

k EI
= =

⋅
     (80) 

3. The transverse horizontal displacement of the top of the 

rail head is determined by the formula: 

( )
0 1 0

fr
heady y h φ′= + ⋅           (81) 

4. Transverse horizontal displacement of the bottom of the 

sole of the rail is determined by the formula: 

( )
0 2 0

fr
soly y h φ= − ⋅           (82) 

5. The summarized normal stresses in the rail head from the 

transverse bend in the horizontal plane and from the bending 

torsion of the head relative to the neck of the rail are 

determined by formulas: 

2
( )

2

2

1 2

2
( )

2

2

1 2

rail
head edge ex z

rail
head edge

head
z

Qhead
head edge

rail
head edge in z
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head edge
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head edge

I d y
Е

W dx

I d
Е h

W dx

I d y
Е

W dx

I d
Е h

W dx

σ

φ

σ

φ

Σ

Σ

 
= − ⋅ ⋅ −    


  − ⋅ ⋅ ⋅   
  





  = + ⋅ ⋅ +  
 

 
+ ⋅ ⋅ ⋅  

  







     (83) 
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6. The summarized normal stresses in the sole of the rail 

from the transverse bend in the horizontal plane and from the 

bending torsion of the sole relative to the neck of the rail are 

determined by the formulas: 

 




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



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7. Tangential stresses in the head and in the sole of the rail 

are determined by the formulas: 

max
max

max
max

0,5

0,5

ex head
head tor

rail
cr

ex sol
sol tor

rail
cr

М t

I

М t

I

τ

τ

⋅ ⋅
= 




⋅ ⋅ =



           (85) 

8. Transverse forces Q are determined by the formulas: 

3

1 3

1
1 2

3

2 3

1
2 2

0,5( )

0,5( )

head
head z Q

head
z Q

Q

sol
sol z Q

sol
z Q

Q

for rail head

d
Q ЕI h

dx

Н h P e
ЕI h

D h

for the sole of the rail

d
Q ЕI h
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Н h P e
ЕI h

D h

φ
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

= ⋅ ⋅ =

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⋅





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         (86) 

9. The second derivatives 
2 2

2 2
;

d y d

dx dx

φ   
      
   

 and the third 

derivative 
3

3

d

dx

φ 
  
 

 are determined by the formulas: 

2

2
4

fr rail
y z

d y H
y

dx k EI
′′= = −

⋅ ⋅
          (87) 

2

2
1

2

2
2

Q

head
z Q

Q
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z Q

for rail head

Q hd

dx EI h

for the sole of the rail

Q hd

dx EI h

φ φ

φ φ


⋅ ′′= = −
⋅




⋅

′′= = − 
⋅ 

          (88) 

After substitution Q it will be the same for the head and for 

the sole. 

2
1

2

0,5( )

Q

Н h P ed

D hdx

φ ′⋅ − ⋅
= −

⋅
          (89) 

The third derivatives 

3
1

3 2

0,5( )

Q

Н h P ed

dx D h

φ φ
′⋅ − ⋅′′′= =

⋅
        (90) 

4. Example of Calculation of the Stress - 

Strain State of the Rail Thread 

According to the New Method 

It is necessary to determine the stresses and strains in the 

rails with the combined action of vertical dynamic force (Pdyn) 

and horizontal lateral dynamic force (Hdyn) for a given track 

structures. 

In the calculations, the maximum values of stresses and 

strains are determined, which arise in the edges of the head 

and sole of the rail during joint vertical and lateral horizontal 

bending of the rail thread in conjunction with simultaneous 

torsion. 

Once again, we note that the calculation of stresses and 

strains in the rails of the railway track presented in this article 

applies only to the lateral transverse bending and torsion of the 

rail thread, which occurs under the action of lateral horizontal 

force Hdyn and torque moment ex
torM . To take into account 

stresses and strains in rail threads from vertical bending from 

the action of vertical dynamic forces Pdyn, it is necessary to add 

to the results of these calculations the results of calculations 

performed according to the current standard engineering 

calculation methods, for example "Rules of calculation of 

railway track strength" [4]. Separately it should be noted, that 

when calculating the stresses in the rails according to the 

method [4] it should be excluded taking into account so-called 

coefficient f, which is designed to take into account the action 

of horizontal forces, that is, it is necessary to calculate the 

maximum stresses from the force Pdyn only near the vertical 

axis of the rail z-z on the top of the head and on the bottom of 

the rail sole. 

The scheme for summing the maximum stresses in the head 

and sole of the rail from the acting forces Pdyn and Hdyn is 

adopted in accordance with Figure 6. 
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Figure 6. Scheme of distribution of stresses acting in the rail from the action 

Pdyn and Hdyn (on figure 6 are marked: stretching (+ σ), pressure (– σ)). 

The summation of normal stresses in the lateral edges of the 

head and sole of the rail from the lateral bending by the force 

Hdyn and vertical bending by the force Pdyn must be performed 

taking into account the signs of stresses (Figure 6). 

(Normal stresses from the action of longitudinal forces are 

determined separately; according to special methodic for 

calculating the railway track (look [4, 15])). 

4.1. Initial Data for Calculations 

Rail parameters are given in table 2. 

Railway track: 

1) rails R65 on concrete sleepers; in the curve R=800 m; 

sleepers diagram 1840 sl./km; fasteners KB, KPP-5; 

2) rails R50 on concrete sleepers and wooden sleepers, both 

constructions in the curve R=800 m; sleepers diagram for 

concrete sl. 1840 sl./km, for wooden sl. 2000 sl./km; fasteners: 

for concrete sl. KB, for wooden sl. D0. 

Rolling stock: freight 4-axle car; dynamic forces from one 

wheel Pdyn=16350 kg, Hdyn = 7000 kg; eccentricity for Pdyn is 

e1=0 cm; e2=-1 cm; eccentricity for Hdyn is h1’. 

Characteristics of the railway track: 

1) vertical modulus of elasticity (Uz)
1) 2)

: for concrete 

sleepers with fasteners KB Uz=677 kg/cm
2
; for concrete 

sleepers with fasteners KPP-5 Uz=692 kg/cm
2
; for wooden 

sleepers with fasteners D0 Uz=261 kg/cm
2
; 

Table 2. Parameters of rails. 

Rail parameters R65 R50 

1. Cross-sectional area F, cm2 82,649937 65,998257 

2. Distance from the center of gravity, cm: 
  

to the bottom of the sole 8,135 7,054 

to the top of the head 9,865 8,146 

3. Distance from the center of torsion, cm: 
  

to the bottom of the sole h2 4,066 4,017 

to the top of the head h1 13,934 11,183 

4. The moment of inertia about the vertical axis, cm4: 

all rail Iz
rail 567,640 374,921 

head rail Iz
head 111,501 91,140 

sole rail Iz
sol 444,370 277,960 

5. The moment of inertia about the horizontal axis Iy
rail, cm4 3543,796 2018,440 

6. Moment of resistance, cm3: 

rail about edge of the head Wrail
head edge 151,371 104,144 

rail about edge of the sole Wrail
sole edge 75,184 56,806 

head of rail about edge of the head Whead
head edge 29,734 25,316 

sole of rail about edge of the sole Wsole
sole edge 59,249 42,115 

7. The moment of inertia during rail torsion Irail
tor, сm4 287,486 200,799 

9. Rigidity of the cross section of the rail: 

during pure torsion C, kg·cm2/rad 232,20027·106 162,18388·106 

10. Geometric characteristics of rails 

h, см 18,000 15,200 

h1, см 13,934 11,183 

h2, см 4,066 4,017 

h1', см 12,364 9,643 

hQ, см 14,772 12,221 

h'', см (h''= h1'+ h2) 16,430 13,660 

hQ1, см 11,809 9,203 

hQ2, см 2,963 3,018 

 

2) horizontal (lateral) stiffness of the rail thread and 

horizontal (lateral) modulus of elasticity of the rail thread for 

R65, KB, concrete sleepers: Uy-0=255,812 kg/cm
2 1) 2)

, 

βhead=19200 kg/cm
1)

, βsol=44640 kg/cm
1)

; for R65, KPP-5, 

concrete sleepers: Uy-0=349,472 kg/cm
2 1) 2)

, βhead=18800 

kg/cm
1)

, βsol=72440 kg/cm
1)

; for R50, KB, concrete sleepers: 
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Uy-0=178,7 kg/cm
2 1) 2)

, βhead=13700 kg/cm
1)

, βsol=32500 

kg/cm
1)

; for R50, D0, wooden sleepers: Uy-0=155,51 kg/cm
2 1) 

2)
, βhead=13500 kg/cm

1)
, βsol=27000 kg/cm

1)
. 

1) obtained by experimental researches; 

2) obtained by theoretical calculations.  

The calculation is performed on the action of horizontal 

transverse force and torsion in accordance with the calculation 

scheme presented in Figure 2. 

4.2. Algorithm for Performing Calculations 

The initial data are set (see above), after which the 

calculation is performed in the following sequence. 

1. The modulus of shift elasticity is calculating according to 

the formula: 

( )2 1
EG µ= + ; E – elastic modulus of steel;  

µ – Poisson ratio of steel. 

It takes for rail steel E=2,1·10
6
 kg/cm

2
; µ=0,3. 

2. The rigidity of the rail during bending rotation head and 

sole of the rail relative to its neck is calculated according to 

formula prof. Timoshenko: 

( ) / ( )
head sol head sol
z z z zD E І І І І= ⋅ ⋅ + . 

3. The rigidity of the cross section of the rail during pure 

torsion by the formula (according to Saint-Venant): 

4 2/ (4 )рС F G Iπ= ⋅ ⋅ ⋅ ; 
rail rail

p z yI I І= + . 

4. The moment of inertia of the rail during its torsion 

calculated by the formula from «Resistance of materials»: 

rail
torI C G= . 

5. Stiffness of the rail thread during torsion βφ (fictitious 

value according to the formula (66)). 

6. Modulus of elasticity of a rail at torsion Uφ (fictitious 

value according to the formula (71)). 

7. External torque moment according to the formula (5): 

1
ex
torM H h P e′= ⋅ − ⋅ . 

8. The modulus of elasticity of the subrail base with 

horizontal bending of the rail thread Uy-0 (without taking into 

account the action of vertical forces and friction forces on the 

sole of the rail at Н≠0 та Р=0) according to experiments to 

determine the stiffness of the rail threads. 

8.1. Horizontal transverse displacement of the center of 

bending of the rail is calculated (using the ratios (16) and (21)) 

by the formula: 
/

0 1 2
0 /

1 2

( )sol
centr bend y h h

y
h h

δ+ ⋅
=

+
, 

where 0
sol

y – accepted from the experiment (at Н≠0, Р=0) 

when is known values βsol, βhead and δ. 

8.2. Relative stiffness coefficient ky0 (at Н≠0, Р=0) is 

calculated by the formula (31) (at a known value 0
centerbend

y ). 

8.3. The modulus of elasticity of the subrail base Uy-0 by the 

formula (29) (at Н≠0 and Р=0). 

9. Calculation of the coefficient «a» and the length xfr of the 

half-wave of the friction section on the sole of the rail under 

the combined action of vertical and horizontal forces. 

9.1. Coefficients of relative stiffness of the base and rail in 

the horizontal and vertical planes kz, ky are calculated by 

formulas: 4 / (4 )z z yk U EI= ; 4 / (4 )y y zk U EI= . 

9.2. According to the calculation scheme (Figure 2-a), a 

predetermined maximum half-wavelength of propagation 

along the x-x axis of elastic vertical deflections 
max

/z zx kπ= +  is taken. With a known abscissa max
zx , the 

minimum ordinate of the vertical deflections from the vertical 

force P =1 is also known and is max
0, 0432zη = − . Next, 

considering the relation (26) and substituting the known 

ordinate 0
zη  for any value P, we determine the unknown 

ordinates of the plot of transverse horizontal deflections ηy0 

(along the line of the centers of bending x-x) with the 

combined action of forces P and H for any ratio Pi / Hi. To 

determine the transverse displacements along the line of 

centers of the sole of the rail thread, you need to perform 

similar calculations by the formula (32). 

9.3. After that, you need to determine the value of xfr – the 

length of the elastic half-wave of the friction section on the 

sole of the rail at horizontal lateral bending of the rail from the 

joint action of H and P. xfr is determined by the formula 

3 / (4 )fr yx kπ= − ∆ , where ∆ is the shortening at half-wave 

of the horizontal lateral bending of the rail thread under the 

joint action of H≠0 and P≠0 in comparison with the lateral 

bending under the action of only H≠0 and the absence of P=0. 

9.4. After that, the coefficient "a" is determined by formula 

(44) for any given ratios of vertical and horizontal forces P/H. 

10. The modulus of horizontal elasticity of the track Uy-fr by 

the formula (48) (at different values Н≠0 and Р≠0). 

11. The coefficient of relative stiffness ky-fr of the base and 

rail in the horizontal plane, taking into account the joint action 

of P and H, by the formula 4 / (4 )fr fr
y y zk U EI= . 

12. Real modulus of elasticity of the rail thread during 

torsion Uφ-fr by the formula (61). 

13. Real value of the stiffness of the rail (z–z) thread at 

torsion 
fr

φβ  by formula (77) or (78) or (76). 

14. Angle of turn 
0
frφ  of the vertical axis of the rail (z–z) by 

the formula (79). 

15. After that are calculated elastic deflections of the head 

and sole of the rail. 

15.1. Horizontal displacement of the torsion center 
0
fr

y (at 

Н≠0 та Р≠0) by the formula (30). 

15.2. Horizontal displacements of the top of the head 
fr

heady  

and sole 
fr

soly  of the rail by the formulas: 

10 0
fr fr fr

heady y h φ′= + ⋅ ; 20 0
fr fr fr
soly y h φ= − ⋅ . 

16. Derivatives from displacements are calculated: 

16.1. The second derivative of horizontal displacement y'' 

by the formula (87). 

16.2. The second derivative of the angle of turn φ'' by the 
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formula (89). 

16.3. Third derivative of the angle of turn φ''' by the formula 

(90). 

17. Tangential stresses in the head and sole of the rail by 

formulas (85). 

18. Transverse forces are calculated by formulas (86). 

19. Summarized normal stresses in the head and sole of the 

rail from bending in the horizontal plane and bending torsion 

are determined by the formulas (83) and (84). 

4.3. Results of Calculations 

Using the algorithm described above, the calculations 

were performed by computer and the results were obtained 

below in table 3 (For eccentricity of the force (P) e=0 and 

e=-1 cm). 

The calculation of stresses and strains in the rails described 

in this example applies only to the lateral transverse bending 

and torsion of the rail thread. To determine the summarized 

normal stresses in the rail thread, taking into account the 

action of vertical dynamic forces Pdyn, it is necessary to add to 

the results of these calculations the calculated stresses 

determined by the method, thread described in standard 

methodics [4, 15]. 

Table 3. The results of calculations the lateral transverse bending and torsion of the rail thread. 

R-65, KB, Diagram 1840, е=0 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.3, δ=2.325 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

677 0.0122 255.8 0.01521 623.389 0.01901 6964421.1 12706696 38152.5 127004.2 86548 0.006811 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.8414 95.0634 0.10676 0.190974 0.0790655 630.702 340.188 2063.315 -2063.315 493.661 -493.661 2928.139 

R-65, KPP-5, Diagram 1840, е=0 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.32, е=0 сm, δ=3.85 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

692 0.0123478 349.472 0.0164538 877.925 0.0207146 6964421.126 10281756.05 38152.512 83154.8689 86548 0.0084176 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.80534 87.5008 0.082582 0.186658 0.0483559 630.702 340.188 2013.466 -2013.466 393.299 -393.299 2928.139 

R-50, KB, Diagram 1840, е=0 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.3, δ=2.372 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

677 0.0141359 178.7 0.0154339 510.395 0.0200642 4856680.891 7724470.46 27440.714 69415.0592 67501 0.0087386 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.927452 101.453 0.13759 0.221856 0.102487 638.708 336.162 2170.74 -2170.74 734.238 -734.238 2762.275 

R-50, D0, Diagram 1840, е=0 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.15, δ=2.0 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

261 0.0111387 155.51 0.0149068 195.139 0.0157772 4856680.891 5594542.85 27440.714 36412.0788 67501 0.0120655 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.57964 60.8747 0.28298 0.399328 0.234513 638.708 336.162 2398.297 -2398.297 1151.426 -1151.426 2762.275 

For e = -1 cm 

R-65, KB, Diagram 1840, е=-1 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.3, δ=2.325 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

677 0.0122803 255.812 0.0152192 623.389 0.0190152 6964421.126 12761550.49 38152.512 128103.2 102898 0.0080631 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.841489 95.0634 0.10676 0.206452 0.0739753 749.85 404.454 2338.579 -2338.579 355.525 -355.525 3483.904 

R-65, KPP-5, Diagram 1840, е=-1 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.32δ=3.85 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

692 0.0123478 349.472 0.0164538 877.925 0.0207146 6964421.126 10281756.05 38152.512 83154.8689 102898 0.0099648 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.80534 87.5008 0.082582 0.205787 0.0420651 749.85 404.454 2288.73 -2288.73 255.163 -255.163 3483.904 

R-50, KB, Diagram 1840, е=-1 сm, P=16350 kg, Н=7000 kg, P/H=2.336, f=0.3, δ=2.372 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

677 0.0141359 178.7 0.0154339 510.395 0.0200642 4856680.891 7772665.72 27440.714 70283.9637 83851 0.0107879 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.927452 101.453 0.13759 0.241618 0.0942549 793.415 417.587 2493.575 -2493.575 540.149 -540.149 3431.704 

R-50, D0, Diagram 1840, е=-1 сm, P=16350 kg Н=7000 kg, P/H=2.336, f=0.15, δ=2.0 

Uz kz Uy0 ky0 Uy(fr) ky(fr) βφ βφ(fr) Uφ Uφ(fr) Мex
tor φ0(fr) 

261 0.0111387 155.51 0.0149068 195.139 0.0157772 4856680.891 5629448.85 27440.714 36867.8677 83851 0.0148951 

a Хfr y0 Уhead Уsol τhead τsol σhead
edge(ex) σhead

edge(in) σsol
edge(ex) σsol

edge(in) Q 

0.57964 60.8747 0.28298 0.426613 0.223147 793.415 417.587 2721.132 -2721.132 957.336 -957.336 3431.704 

*units of measurement of values which are resulted in the table: Хfr, y0, Уhead, Уsol - [cm]; φ0(fr) - [rad]; Uz, Uy0, Uy(fr) - [kg/cm2]; Uφ, Uφ(fr) - [kg/rad]; 

kz, ky0, ky(fr) - [1/cm]; βφ, βφ(fr) - [kg·cm/rad]; Мex
tor - [kg·cm]; τi, σi - [kg/cm2]; Q - [kg]. 

4.4. Additions to the Example of Calculations 

To determine the summarized normal stresses in the rail 

thread, taking into account the action of vertical dynamic 

forces Pdyn, it is necessary to add to the stresses in the head and 

sole of the rail that obtained by new method to add the results 

of calculations the stresses which determined by the method 

described in standard methodics [4, 15]. 

For example, calculations for strength according to the 

standard method «Rules of calculations for strength…» [4] 
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that we made at KIZT DUIT give the following results of 

stresses in rails for the design of track structures with rails R65 

on reinforced sleepers with KB type fasteners under the action 

of 4-axle freight car CNII-HZ-0 with static load on the wheel 

Pst=11620 kg when moving in a curve R=800 m with speed 

V=90 km/h and under the action of dynamic vertical force 

from the wheel Pst=16350 kg: 

σhead axial =-1030 kg/cm
2
; σsol axial =+790 kg/cm

2
; 

σhead edge =-1138 kg/cm
2
; σsol edge =+1010 kg/cm

2
. 

Calculations by the new method (look the table 3) are given 

the following results of stresses in the rails: 

For the same design railway track with rails R65 on 

reinforced concrete sleepers under the same lateral horizontal 

forse Hdyn = 7000 kg (and when the same vertical force 

Pdyn=16350 kg takes into account only for bending torsion): 

at eccentricity e=0 cm: 

( ) 22063
edge in
head kg cmσ = − ; 

( ) 22063
edge ex
head kg cmσ = + ; 

( ) 2493
edge in
sole kg cmσ = − ; 

( ) 2493
edge ex
sole kg cmσ = + ; 

at eccentricity e=-1 cm: 

( ) 22338
edge in
head kg cmσ = − ; 

( ) 22338
edge ex
head kg cmσ = + ; 

( ) 2356
edge in
sole kg cmσ = − ; 

( ) 2356
edge ex
sole kg cmσ = + . 

The summation of normal stresses in the lateral edges of the 

head and sole of the rail from the lateral bending (calculated 

by the new method table 3), and from vertical bending by the 

force Pdyn (calculated by standard methods (for example [4]), 

in this case it is necessary to take only axial stresses in the 

head and in the sole of the rail) give the following final results: 

at eccentricity e=0 cm: 

( ) 22063 1030 3093
edge in
head kg cmσ = − − = − ; 

( ) 22063 1030 1033
edge ex
head kg cmσ = + − = + ; 

( ) 2493 790 297
edge in
sole kg cmσ = − + = + ; 

( ) 2493 790 1283
edge ex
sole kg cmσ = + + = + ; 

at eccentricity e=-1 cm: 

( ) 22338 1030 3368
edge in
head kg cmσ = − − = − ; 

( ) 22338 1030 1308
edge ex
head kg cmσ = + − = + ; 

( ) 2356 790 434
edge in
sole kg cmσ = − + = + ; 

( ) 2356 790 1146
edge ex
sole kg cmσ = + + = + . 

Another example for track structure with P50 rails with D0 

type fasteners on wooden sleepers under the action of the same 

4-axle freight car CNII-HZ-0 with the same static and 

dynamic load on the wheel Pst=11620 kg and Pdyn=16350 kg, 

when moving in a curve R=600 m with speed V=80 km/h give 

the following results of stresses in the rails: 

According to the standard method of «Rules of calculations 

for strength…» [4], (calculations were made by prof. M. P. 

Smirnov (PGUPS, Russia) [3]: 

σhead axial =-1614 kg/cm
2
; σsol axial =+1302 kg/cm

2
; 

σhead edge =-1844 kg/cm
2
; σsol edge =+1732 kg/cm

2
. 

Calculations by the new method (look the table 3) for the 

same track structures design with R50 rails on wooden sleepers 

under the action of the same freight car at the same value of 

vertical dynamic force Pdyn=16350 kg (here vertical force takes 

into account only for bending torsion) and under the action of 

lateral dynamic force Hdyn = 7000 kg, are given the following 

results of stresses in the rails (at eccentricity е=0): 

( ) 22398
edge in
head kg cmσ = − ; 

( ) 22398
edge ex
head kg cmσ = + ; 

( ) 21151
edge in
sole kg cmσ = − ; 

( ) 21151
edge ex
sole kg cmσ = + . 

The summation of normal stresses in the lateral edges of the 

head and sole of the rail from the lateral bending (calculated 

by the new method in table 3), and from vertical bending by 

the force Pdyn (calculated by standard methods (for example 

[4]), in this case it is necessary to take only axial stresses in the 

head and in the sole of the rail) give the following final results: 

( ) 22398 1614 4012
edge in
head kg cmσ = − − = − ; 

( ) 22398 1614 784
edge ex
head kg cmσ = + − = + ; 

( ) 21151 1302 151
edge in
sole kg cmσ = − + = + ; 

( ) 21151 1302 2453
edge ex
sole kg cmσ = + + = + . 

5. Conclusion 

The results of the researches performed and comparative 

computer calculations to determine the maximum stresses and 

strains from vertical and lateral bending and torsion in rail 

threads with rails of different types R65, R50, 60Е1 (UIC60) 

with different designs of rail supports (reinforced concrete or 

wooden sleepers) and various designs of rail fasteners showed 

the following: 

1) The proposed new calculation method (in which the 

influence of lateral horizontal forces Hdin and torque moment 
ex
torМ  from the forces Pdin and Hdin is taken into account 

directly by the calculation) gives significantly more correct 

results on stresses and deformations in rails under conditions 

of dynamic interaction of the track and rolling stock, and 

especially in the curves sections; 

2) Strength calculations using standard methods of the "Rules 



79 Eduard Danilenko and Vitalii Molchanov:  A New Method for Solving the Problem of Determining the Characteristics of  

Spatial Stiffness and Elasticity of the Rail Threads and Stresses and Strains in Rails 

of design..." [2, 3, 4] (in this case, the action of horizontal forces 

is taken into account by means of the so-called "influence 

coefficients" f ") give significant errors in the values of 

maximum stresses in the edges of rail head and sole: 

a) Accordingly, for R65 rails on reinforced concrete sleepers: 

for the external edge of the head 1.9-2.15 times 

for the internal edge of the head 2.7-2.9 times 

for the external edge of the sole by 1.27-1.3 times 

for the internal edge of the sole 3.4-2.3 times 

b) Accordingly, for R50 rails on wooden sleepers: 

for the external edge of the head 3.35 times 

for the internal edge of the head 2.17 times 

for the external edge of the sole by 1.4 times 

for the internal edge of the sole by 11.5 times 

3) It is obvious that strength calculations of rail threads 

using standard methods [2, 3, 4] (in which vertical rail 

bending is considered as a beam on an elastic foundation) give 

correct results only for determining axial normal stresses in 

the rail head and sole. The use of the so-called influence 

factors "f" (in their current form) cannot be recommended for 

determining the stresses in the edges of the rail head and sole, 

because they require correction. 

Besides, calculations using standard methods [2, 3, 4] (except 

of experimental research methods [5, 20, 21, 22]) generally do 

not provide the possibility of obtaining the results of transverse 

horizontal deformations of rail threads and torsional 

deformations of their cross sections under the combined action 

of forces Pdin, Hdin and torque moment ex
torМ .. 
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