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Abstract: An ample study of the comparative powers of a number of omnibus multivariate normality tests is main object in 

this paper. Since testing for multivariate normality tests is considerably more challenging process than for testing of univariate 

one and therefore, study of testing for multivariate normality tests has its increasing demand. Through this paper, we have 

explored several techniques for assessing multivariate normality (MVN) and as well as comparative analysis for their 

competence have also been demonstrated. The results of extensive Monte Carlo simulation study of the size corrected power of 

various tests of multivariate normality for drawn samples from contaminated normal distributions have been explored as well. 

Moreover, a novel algorithm has been proposed in order to evaluate the size corrected powers for testing multivariate normality. 

The algorithm proposed herein is a fast easily implementable algorithm and it can be applied for both types of univariate and 

multivariate normality tests. Using Different omnibus tests for sample size 50 and 200, graphs for empirical powers of 

multivariate normal data with lower and upper contamination have been presented. Finally, some significant conclusions of our 

present study have been drawn. 

Keywords: Multivariate Normality Tests, Goodness-of-Fit Tests, Correlation Coefficient, Skewness, Kurtosis,  

Monte Carlo Simulation Technique 

 

1. Introduction 

In statistics, multivariate normality tests are used for 

checking a given set of data for similarity to the multivariate 

normal distribution. Multivariate normality test is a 

fundamental predicament in statistics. The null hypothesis is 

that the data set is similar to the normal distribution; 

therefore a sufficiently small p-value indicates non-normal 

data. Though, the rigorous study of literature shows that 

since last six decades number of researchers contributed for 

various methods for assessing multivariate normality (MVN). 

Among these, here some noteworthy researchers Anscombe 

and Glynn [1], Bera [2], Bowman and Shenton [3], 

D'Agostino [7], Grianadesikan [11], Inhof [12], Kaziol [17], 

Ozturk and Romeu [37], Romeu and Ozturk [40], Roy [41], 

Shenton and Bowman [42] are worth mentioning. Moreover, 

some recent research works of Doornik and Hansen[8], 

Enomoto et al. [9], Nakagawa et al.[35], Rencher [39], and 

Thode[46] in this direction may also be referred here. Thus, 

there are various methods for assessing multivariate 

normality (MVN) yet in some cases, statisticians and 

researchers face challenging task for assessing multivariate 

normality. Multivariate normality tests include tests explored 

by Cox and Small [4], Smith and Jain [44] and Friedman-

Rafsky [10]. Despite availability of the large amount of 

methods, Rencher [39] commented in 2002 that checking for 

multivariate normality is conceptually not as simple as 

assessing univariate normality and consequently the state of 
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the art is not developed as well. Most of the multivariate 

normality test procedures are extensions of univariate 

normality tests. The accessible tests of multivariate normality 

can be categorically described as following: 

� Procedures based on graphical plots and correlation 

coefficients 

� Goodness-of-fit tests 

� Tests based on measures of skewness and kurtosis 

� Consistent procedures based on the empirical 

characteristic function. 

In this paper, our main objective is to develop an 

implementable algorithm to calculate size corrected powers 

of competitive MVN tests that can be used to compare the 

efficiency of various multivariate normality tests. The 

organization of the paper is as follows. Section 2 discusses 

our emphasized tests for assessing MVN. In section 3, we 

describe comparative study of various multivariate normality 

tests. Section 4 concerns with a novel algorithm for 

multivariate normality tests and its empirical results have 

been explored by using an extended Monte Carlo simulation. 

Moreover, purpose of present study and its future scope is 

highlighted in section 5. By the end of paper, some valuable 

conclusive remarks have been drawn in section 6.  

2. Literature Review 

Rigorous study of literature shows that there is no shortage 

of methods for assessing multivariate normality (MVN).  

Among abundant available tests for testing MVN, here we 

stress only those multivariate normality tests which are 

mainly based on skewness and kurtosis. Numerous omnibus 

tests based on skewness, kurtosis are proposed by D'Agostino 

& Pearson [5], Bowman and Shenton [3], Pearson et al. [38], 

D'Agostino et al. [6], Loony [18], and the coordinate-

dependent and invariant procedures described by Cox & 

Small [4] and Small [43] offers an overall test of multivariate 

normality that are quadratic forms involving multivariate 

normality tests explored by Mardia and Foster [20], Mardia 

[21,22] and Johnson’s (1949) 
uS  transformation on a vector 

of the marginal skewness or kurtosis statistics. Mardia [22] 

developed multivariate extensions of multivariate skewness 

and kurtosis. The measures derived by Mardia [22] are affine 

invariant. The sample statistic for multivariate skewness is 

given as following: 
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And the corresponding sample statistic for kurtosis is as 

following: 
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Here, we remark that skewness and kurtosis functions 

explored by Mardia [22] are functions of the squared 

Mahalanobis distances. This fact makes Mardia’s measures, 

particularly the multivariate kurtosis measure, useful in 

multivariate outlier detection. We further remark that Mardia 

[21,22] determined the asymptotic distributions of the 

multivariate skewness and kurtosis statistics. However, 

Mardia's kurtosis statistic is skewed and converges very 

slowly to the limiting normal distribution. For medium size 

samples, the parameters of the asymptotic distribution of the 

kurtosis statistic are modified. For small sample tests 

empirical critical values are used. Tables of critical values for 

both statistics are given by Rencher [39] for k = 2,3,4. It can 

be further examined that Mardia's [22] multivariate normality 

tests are affine invariant but not consistent. For example, the 

multivariate skewness test is not consistent against 

symmetric non-normal alternatives. 

If we consider 6,1 pnbA = , it can be shown that A is 

asymptotically distributed as a chi-square random variable 

with ( )( ) 621 ++ ppp degrees of freedom. Similarly, the 

statistic ( )[ ] ( ) nppppbB p 282,2 ++−= is asymptotically 

distributed as a standard normal random variable. The 

asymptotic distributions of functions of the multivariate 

skewness and kurtosis statistics were exploited by Mardia 

[20,21,22] to develop two tests for the multivariate normality.  

Moreover, some other tests of MVN based on W-statistic 

were proposed by Malkovich and Afifi [19] presented a test 

based on Roy’s [41] union-intersection principle that utilized 

generalized measures of skewness and kurtosis. Subsequently, 

Isogai [13] introduced another measure of multivariate 

skewness to test of MVN and Isogai [14] used influence 

functions to develop two test statistics for MVN that was 

mostly related to Mardia’s measure of multivariate skewness. 

Sample measures of multivariate skewness and kurtosis 

proposed by Srivastava [45] based on principal components 

have been discussed by number of previous researchers and 

using the measures of multivariate skewness and kurtosis 

calculated with the principal components method., they 

succeeded to find their research works in this direction which 

were very similar to Mardia [21,22]. Okamoto and Seo [36] 

derived the exact expectation and variance of Srivastava’s 

skewness and improved 2χ statistic defined by Srivastava [45] 

for assessing multivariate normality. Mardia and Foster [20] 

constructed six possible omnibus test statistics, three of 

which did consider the covariance between skewness and 

kurtosis. D’Agostino and Pearson [5] proposed an omnibus 

test based on the distributions of the standardized third and 

fourth moments, 2
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samples of n observations from a univariate normal 

population. Here for a sample having its n-sample points

nXXX ,,, 21 …
, we define as following: 

( )∑ =
= n

i iXnX
1

1  ( ) ( ) ,1
1

rn

i ir XXnm ∑ =
−=

.4,3,2=r  

Jarque and Bera’s [15] test statistics using Srivastava’s [45] 

sample skewness and kurtosis which are asymptotically 

distributed as 2χ -distribution were proposed by Koizumi et al. 

[16] as well as an improved tests of Jarque and Bera [15] 
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have been discussed by many authors. A popular test of 

normality based on D'Agostino-Pearson 2K statistic that 

combines these two statistics 
1b and 

2b discussed in 

D'Agostino, et al. [6]. Normalizing transformation for the 

skewness
1b into 1z is as in D’Agostino [7] and another 

transformation for the kurtosis 
2b into 2z based on the 

Wilson–Hilferty transformation as described in Doornik and 

Hansen [8]. The improved omnibus test was recently 

presented in Nakagawa et al. [35]. The above mentioned test 

statistics are all based on third and fourth sample moments. 

3. Compilation of Multivariate 

Normality Tests 

Numerous procedures have been proposed for assessing 

multivariate normality, some of them are discussed in the 

following paragraphs. 

3.1. The Multivariate Jarque-Bera Test 

In view of Enomoto et al. [9], let 
nXXX ,,, 21 …
be samples 

of size N from a univariate population. Now, if we consider 

that ∑ =
−= n

i iXnX
1

1 and ( )2

1

12 ∑ =
− −= n

i i XXnS be the 

sample mean and the sample covariance respectively.  Then 

the univariate sample skewness is given by following 

equations: 
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Then Jarque and Bera [15] proposed the test statistic using 

univariate sample skewness and kurtosis for normality test is 

given by 
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It holds that JB statistic is asymptotically distributed as 2

2χ   

distribution under normality. 

On the other hand, Koizumi et al.[16] proposed 

multivariate Jarque and Bera test statistics as follows: 
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respectively. ∗MJB statistic is improved so that  accuracy of 

upper percentile for approximate test statistic is better than 

that of MJB statistic for small N. Where for large N, the 

expectation of 2

,1 pb  and variance of
pb ,2

when the population is 

( )Σ,µpN are given by  
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3.2. Multivariate Extensions of Skewness and Kurtosis  

Multivariate extensions of skewness and Kurtosis based on 

coefficients 
1b and 

2b respectively are described here 

proposed by Small [43]. Small proposes a measure of 

multivariate skewness that is defined by  

,1

1

111 zUzQ −′=  

where 1z  is the 1×p vector of sample skewness coefficients 

after each has been normalized using Johnson's (1949) 
uS  

transformation and 
1U  is an estimate of the correlation 

matrix of the components of 1z . Small [43] suggests that one 

use ,1,3

1 pkjru jkjk ≤≤≤= where jkr  denotes the 

sample correlation between 
jX  and

kX , for the elements of 

1U .  

Similarly, Small [43] proposes a measure of multivariate 

kurtosis that is defined by following function: 

,2

1

222 zUzQ −′=  

where 2z  is the vector of uS normalized kurtosis coefficients 

and the elements of 1U  are given by 

pkjru jkjk ≤≤≤= 1,4

2 . Moreover, Small [43] 

recommended that a ( )p2χ approximation should be used for 

the null distributions of 1Q and 2Q , and also affirmed that 

this approximation is adequate for 82 ≤≤ p as long as

29≥n . Furthermore, Small [43] proposed that one may use

213 QQQ += for an omnibus test of the MVN assumption, 

and argued that a ( )p22χ  distribution can be used to 

approximate the null distribution of 3Q . 

3.3. The Multivariate Omnibus Test 

This method was proposed by Doornik and Hansen [8]. 

Let ( )
pxxX ,,1 …=′  be a p n× matrix of n observations 

on a p -dimensional vector with sample mean and 

covariance ∑ =
−= n

i iXnX
1

1 and

( )( )′−−= ∑ =
− XXXXnS i

n

i i1

1 .  

Create a matrix which has the variances on the diagonal: 
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( ),ˆ,,ˆ 22

1 pdiagV σσ …= and form the correlation matrix 

.2
1

2
1 −−= SVVC Define the p n× matrix ( )

pyyY ,,1 …=′  

of transformed observations: 
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2
1

xxVHHy ii −′Λ= −−
 

with ( )1
, , ,

n
diag λ λΛ = …

the matrix with the eigen values of 

C on the diagonal. The columns of H are the corresponding 

eigenvectors, such that 
P

H H I′ =  and .H CH′Λ =  

Consequently .1

pIYYn =′− Using the population values for 

C and V, a multivariate normal can thus be transformed into 

independent standard normal; using sample values this is 

only approximately so.  

We may now compute univariate skewness and kurtosis, 

defining ( )1 11 1
, , ,

p
B b b′ = … ( )2 21 2, , pB b b′ = …

and l as a 

p − vector of ones, the test statistic: 
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will again require large samples. 

3.4. Extension of Jarque–Bera Test 

An extension of Jarque and Bera’s [15] test was proposed 

by Nakagawa et al. [35], wherein they proposed a new test 

statistic based on the Jarque–Bera’s [15] test. Let 

nXXX ,,, 21 …
be a sample drawn from a normal population. 

Using 
1b and

2b , the test statistic is given by 

( )
246

2

2
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1 bb
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It is clearly indicated that T is invariant under origin and 

scale changes. We only consider the case of a sample from a 

standard normal population as a null hypothesis. 

3.5. Omnibus 2K Statistic Test 

This test was explored by D’Agostino et al. [6]. In this 

multivariate normality test, statistic )( 1bz  and )( 2bz  can 

be combined to produce an omnibus test of normality. By 

omnibus, we mean it is able to detect deviations from 

normality due to either skewness or kurtosis. The test 

statistics is given as following: 

)()( 2

2

1

22 bzbzK +=  

where )( 1bz  and )( 2bz  are the normal approximation to

1b and 
2b .  

3.6. Transformed Skewness and Kurtosis Test 

The transformed skewness and kurtosis test was proposed 

by Doornik and Hansen [8]. Another omnibus test of 

normality is presented combining statistic 1z  and 2z . Let 1z  

and 2z  denote the transformed skewness and kurtosis, 

respectively, where they are transformed in a way that makes 

their distribution as close to standard normal as possible. The 

test statistic is (‘���� ’denotes ‘approximately distributed as’): 

�� = ��
	 + �	

	      ����         �	
2� 

The transformation for the skewness is based on 

D’Agostino [7], who uses Johnson 
US to approximate the 

distribution of
1b . The kurtosis is transformed from a 

gamma distribution to a 2χ distribution with non-integer 

degrees of freedom, which is then translated into standard 

normal using the Wilson–Hilferty cubed root transformation.  

3.7. Modified Multivariate Jarque-Bera Test 

Multivariate Jarque-Bera test was modified by Koizumi et 

al. [16]. Let 
1,Mb  and 

2,Mb be the sample measures of 

multivariate skewness and kurtosis, respectively, on the basis 

of a random sample of size N drawn from ( ) .0,, >ΣΣµpN  

Then, it is fairly easy to get following expression: 

1,1,
6

MM b
N

z =  

is asymptotically distributed as 2χ  distribution with 

( )( ) 621 ++= pppf degrees of freedom, and 
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= ppb
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is asymptotically distributed as N(0, 1). 

By making reference to moments of 
1,Mb  and

2,Mb , 

Mardia [21] considered the following approximate test 

statistics as competitors of 1,Mz and 2,Mz : A modified is 

given by equation: 

*

2,

*
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*
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*

MMJB is distributed as 2

1+fχ distribution asymptotically. 
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( )( )( )
( )( ){ } ( )( )

2

6211,

*

1,
~

611

311

6
++−++

+++= pppMM a
pNN

NNp
b

N
z χ  

( )( ) ( ) ( )( ){ }
( )( )( )( ) ( )1,0~

11328

12153 2,*

2, Na
pNpNNpp

NppbNNN
z

M

M +−−−−+
−+−+++

=  

4. Proposed Algorithm and Key Features 

Here, we propose a fast easily implementable algorithm 

for determining size corrected power. Power calculation for 

MVN tests are considered by many authors and in most of 
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the cases their suggested approach was either based on the 

percentage of rejection or location and scale parameter 

contamination whether by increasing or decreasing the 

parameter value but in practice these types of contaminations 

cannot make data non-normal. That’s why we are considering 

the characteristics of normal distribution i.e. skewness and 

kurtosis. By contaminating the upper and lower percentages 

of data, say 10%, 20% or more, we are making them highly 

skewed or asymmetric by multiplying with a increasing 

constant c  where 
…,3,2,1=c when 1=c then it will 

calculate the power of null hypothesis as the value of c will 

increase it will go far from the null which expresses the 

departure from normality.  

4.1. Algorithm and Hypothesis Testing 

In power study, a common practise is to choose the one 

with the highest empirical power, when several testing 

procedures are considered. However, this usage is difficult in 

few cases, so a widely employed practice is to report what is 

called size corrected power that is computing the empirical 

power with simulated critical values. In this work, we are 

also paying attention in evaluating size corrected power. To 

calculate the size corrected power of multivariate normality 

tests, we propose the following algorithm: 

i Suppose 
nxxx ,,, 21 …

is a random sample from a  p-

variates multivariate normal population. 

ii Sort each variable ( ) ( ) ( )1 2 ,
, ,…

i i in
x x x where ( 1, 2,..., )=i p  

in ascending order of magnitude. 

iii Multiply the upper k % of data or lower k % of data; 

say 5%, 10% by a positive constant 1≥c . 

iv Calculate the power on the basis of the hypothesis. The 

hypothesis can be stated as  

1:0 =cH  (i.e., the distribution is normal) against 

1:1 >cH  (i.e., the distribution is non-normal). 

4.2. Simulation for the Proposed Algorithm 

Simulation on which this study based is enumerated below. 

The considered null hypothesis is as follows- 

ddistributenormallyarensObservatioH :0  

ddistributenormallynotarensObservatioH :1  
To evaluate whether size or level of test achieves 

advertisedα , generate data under normality assumption and
 

calculate proportion of rejections of
0H . To calculate power, 

we follow the 4 steps proposed above.  

4.3. Monte Carlo Simulation Assessing Power 

This section demonstrates powers of different omnibus 

multivariate normality tests using Monte Carlo simulation 

with contaminations. We remark here that simulation 

techniques pay a key role in exploring results in 

Mathematical and Computational Sciences. An extended 

Monte Carlo simulation with contaminations is one of the 

best techniques among different simulation techniques. Many 

more researchers including Maurya et al. [23-34] confined 

their attention to explore significant results using different 

simulation techniques.  For present purpose of using an 

extended Monte Carlo simulation here, we generate data for 

different sample sizes under the null hypothesis and carry out 

10,000 repetitions to calculate size corrected powers with 

upper and lower contamination of a certain percentage say 

10%, 20% or more and obtained powers are presented 

through power curves to emphasize on the comparative 

performances of the tests.  

Using different omnibus tests for sample size  

and the corresponding graphs of empirical powers 

of multivariate normal data with upper contamination are 

demonstrated in figures 1-2 respectively. Moreover, empirical 

powers of multivariate normal data with lower contamination 

are demonstrated in figures 3-4 respectively.  

 

Fig. 1. Graph showing empirical powers of multivariate normal data with 
upper contamination when sample size  

 

Fig. 2. Empirical powers of multivariate normal data with upper 

contamination when sample size  

 

Fig. 3. Empirical powers of multivariate normal data with lower 

contamination when sample size  
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Fig. 4. Empirical powers of multivariate normal data with lower 

contamination when sample size  

5. Purpose of Study and Future Scope 

The purpose of the study was to provide general indication 

of the comparative effectiveness of the different multivariate 

normality test procedures. The omnibus measured tests in 

this study have optimum asymptotic power properties and 

good finite sample performance. Due to their simplicity, all 

of the omnibus tests should prove to be useful tools in 

multivariate statistical analysis. However, some general 

conclusions can be gleaned from the results. We observed 

that above power curves of the different omnibus 

multivariate tests show good power properties and their 

powers varies for different sample sizes and for unlike 

contaminations. In all cases, the omnibus test of transformed 

skewness and kurtosis
PE shows utmost power. For the 

samples of lower contamination, though MMJB (modified 

multivariate Jarque and Bera) test have highest power but 

exhibits reverse power for upper contamination both for 

small and large samples. MJB (Multivariate Jarque and Bera) 

and IMJB (Improved multivariate Jarque and Bera) test have 

almost same power in most of the cases. Remaining omnibus 

multivariate tests have good and moderate powers for 

simulated samples. 

6. Conclusions 

Here, comparative powers of skewness and kurtosis based 

multivariate normality tests have been demonstrated and a 

novel implementable algorithm for MVN has been proposed. 

In addition to this, powers of different omnibus multivariate 

normality tests using Monte Carlo simulation with 

contaminations have also been successfully explored. 

Basically all the simulated results of this paper originated 

from empirical sampling studies and the information are 

intended to be broadly analytical. We propose an efficient 

algorithm for calculating size-corrected powers of 

multivariate normality tests and obtained powers of 

multivariate omnibus tests through the proposed algorithm 

are superior. In general, this algorithm is applicable to all 

tests of normality for the calculation of size-corrected power. 

Using different omnibus tests for sample size  and 

the corresponding graphs of empirical powers of 

multivariate normal data with lower and upper contamination 

are demonstrated. 
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