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Abstract: Calibration is a well-known technique for weight adjustment using various sets of constraints. This paper considers 

exponential ratio-type calibrated estimators for finite population mean using first three moments about the origin of the auxiliary 

variable in the calibration constraint under stratified random sampling. The exponential mean-type estimators for the second and 

third order moments are also suggested for the mentioned sampling scheme. When first three moments of the auxiliary variable 

are not known, then we use stratified double sampling scheme to estimate these moments. Thus, the result has been extended in 

the case of stratified double sampling and exponential mean-type and exponential ratio-type estimators have been developed 

using first three moments about the origin in the calibration constraints. The expression for mean squared error for the suggested 

estimators have been derived using the Taylor linearization method. For judging the performance of the proposed estimators, a 

simulation study has been carried out on two real datasets of MU284 population using R-software and their percentage root mean 

squared error (%RRMSE) and relative efficiency have been computed. The suggested estimators have been compared with the 

existing estimators given in the same setup and the new developed estimators are found to be more efficient than these estimators 

for the considered datasets. 

Keywords: Auxiliary Information, Calibration Estimation, Stratified Random Sampling, Mean, Moments,  

Exponential Type Estimator 

 

1. Introduction 

The auxiliary information to improve estimates of the 

population parameters of the study variable is a common 

practice in sample surveys, specifically when there is a strong 

linear relationship between the study and auxiliary variables. 

Numerous authors have contributed in this aspect, including 

Cochran [4]. Singh and Vishwakarma [20] proposed modified 

exponential ratio and product estimators for finite population 

mean in double sampling. Onyeka [16] suggested a class of 

product-type exponential estimators of the population mean in 

simple random sampling scheme. They studied exponential 

estimators of population mean in post-stratified sampling 

using known value of some population parameters. Rashid et 

al. [17] proposed exponential estimators for population mean 

using transformed auxiliary variables. Kadilar [10] gave an 

exponential type estimator for the population mean in simple 

random sampling. Bhushan et al. [2] worked on the class of 

double sampling exponential ratio type estimators using 

auxiliary information on an attribute. Tailor et al. [23] 

recommended improved ratio and product-type exponential 

estimators for population mean in case of post-stratification. 

The calibration estimation is a method of adjusting weights 

to estimate the population parameters of finite population with 

the help of auxiliary information, defined by Deville and 

Sarndal [5], following this, many researchers have contributed 

in development of calibration estimators using different 

calibration constraints for different population parameters 

under various sampling schemes (see Singh [19], Kim et al. 

[11], Singh and Arnab [21], Koyuncu and Kadilar [12, 13], 

Mouhamed et al. [15], Clement and Enang [3], Garg and 

Pachori [6-9], etc.). 
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The purpose of the current study is to suggest new calibration 

estimators for population mean under stratified random sampling 

and stratified double sampling by making use of first three 

moments about origin in the calibration constraints. Section 2 

contains the already existing estimators. Three exponential-type 

estimators using first three moments about origin in the 

calibration constraint and two mean-type estimators using second 

and third moment about origin in the calibration constraint and 

defined in Section 3. These estimators have been compared with 

the existing estimators of Singh [22] that have first-order moment 

about origin in the constraint and Tracy et al. [24]. These 

suggested estimators have been extended under the stratified 

double sampling in Section 4. While Section 5 includes the 

simulation study on two real datasets of the MU284 population in 

which the %RRMSE and %RE are computed. The conclusion of 

the study is given in Section 6. 

2. Notations in Calibration Estimator Under Stratified Sampling 

Suppose a heterogeneous finite population U of size N is divided into L homogeneous strata of sizes N1, N2, …, NL such that 

1

.

L

h

h

N N

=

=∑  A sample of size nh is drawn using simple random sampling without replacement (SRSWOR) from the hth stratum 

such that 

1

L

h

h

n n

=

=∑ , where n is the required sample size. Let us consider a study variable (Y) and an auxiliary variable (X) 

which are positively correlated with each other. Suppose yhi and xhi are the ith units of Y and X, respectively, in the hth stratum for 

i= 1, 2,..., nh and h = 1, 2, …, L. h
h

N
W

N
=  and h

h

n
f

N
= are the hth stratum weight and sample fraction, respectively. 

To estimate a population parameter, say mean 

1

,

L

h h

h

Y W Y
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=∑  population mean 

1

L

h h

h

X W X

=

=∑ of the auxiliary variable is 

presumed to be known. The calibration estimator for population means Y  under stratified random sampling given by Singh [22] 

is: 
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Similarly, the calibration estimator of the population means Y  under the stratified random sampling defined by Tracy et al. 

[24] is given as: 
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3. Proposed Calibration Estimator Under Stratified Sampling 

Bahl and Tuteja [1] suggested an exponential ratio-type estimator of a finite population mean given as: 
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expbt

X x
y y

X x

 −=  + 
                                      (3) 

The traditional stratified estimator of population mean in stratified random sampling is given as: 

1

L

st h h

h

y W y

=

=∑                                         (4) 

Following Bahl and Tuteja [1], the exponential ratio-type estimator in stratified random sampling defined by Malik et al. [14] 

is given as: 

.
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L
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This paper puts forward new exponential ratio-type calibration estimators of a population mean in stratified random sampling 

using first three moments about origin along with their mean-type estimators. In general, r
th

 population moment about origin (or, 

r
th

 raw moment) in the h
th

 stratum is given as: 

1

1
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h
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r
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′ = =∑                                  (6) 

The r
th

 sample moment about origin in the h
th

 stratum is given as: 
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1
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We propose three exponential ratio-type calibrated estimators under stratified random sampling given as follows: 

3.1. Calibration Estimator Using First Moment About Origin 

Using first moment about origin, we propose first exponential type calibrated estimator as: 

.1 1

1
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L
h h

ce h h

h hh
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∑                                  (8) 

where the calibration weights 1hΩ ; (h = 1, 2, …, L) are selected in order to minimize the Chi-square type distance function 

defined as: 
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where 1λ  and 2λ are the Lagrange’s multipliers. To determine the optimum value of 1hΩ , we differentiate the Lagrange 

function given in equations (12) with respect to 1hΩ and equate it to zero. Thus, the calibration weights can be obtained as: 

1 1 2 1( )h h h h hW W Q mλ λ ′Ω = + +                                    (13) 

On substituting this value from equation (13) to (10) and (11), we get the calibrated weights given as: 
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After substituting the optimum calibrated weights in equation (14), we obtain the proposed estimator: 
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3.2. Calibration Estimator Using Second Moment About Origin 

The exponential type calibrated estimator with second moment about origin is given as: 
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where 2hΩ  are the calibrated weights chosen in such a way in order to minimize the Chi-square type distance function defined 

as: 

2
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The Lagrange function for the same is: 
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where 1λ  and 2λ are the Lagrange’s multipliers. Thus, the calibration weight is attained as: 

2 1 2 2( )h h h h hW W Q mλ λ ′Ω = + +                                  (21) 
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On substituting the value from equation (21) to calibration constraints given in equations (18) and (19), the calibrated weight is 

given as follows: 
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On substituting the optimum calibrated weight value from equation (22), the proposed estimator is given as: 
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Similarly, the mean-type calibrated estimator under stratified sampling using second moment about origin is defined as: 
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where 2hΩ are the calibrated weights obtained by minimizing the Chi-square type distance measure 
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Minimization of Chi-square type distance measure subject to second-order moment calibration constraints, the calibrated 

estimator is given as: 
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3.3. Calibration Estimator Using Third Moment About Origin 

On using third order moment about origin, the exponential ratio-type calibrated estimator becomes: 
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minimizing Chi-square type distance function defined as: 

2
3

1

( )
L

h h

h hh

W

W Q=

Ω −
∑                                       (29) 

subject to the following calibration constraints: 

3

1 1

L L

h h

h h

W

= =

Ω =∑ ∑                                       (30) 

3 3 3

1 1

L L

h h h h

h h

m W µ
= =

′ ′Ω =∑ ∑                                    (31) 

The Lagrange function is given as: 

2
3

3 1 3 2 3 3 3

1 1 1 1 1

( )
2 ( ) 2 ( )

L L L L L
h h

h h h h h h
h hh h h h h

W
L W m W

Q W
λ λ µ

= = = = =

Ω − ′ ′= − Ω − − Ω −∑ ∑ ∑ ∑ ∑              (32) 

where 1λ  and 2λ are the Lagrange’s multipliers. Therefore, the calibration weights are given as follows: 
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After substituting the value of 3hΩ from equation (33) to equations (30) and (31), the calibrated weights are obtained as: 
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After replacing value of the optimum calibrated weight in equation (34), the proposed estimator becomes: 
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Also, the mean-type calibrated estimator using third moment about origin under stratified sampling is suggested as: 
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where 3hΩ are the calibrated weights obtained by minimizing the Chi-square type distance measure 
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Minimization of Chi-square type distance measure subject to second-order moment calibration constraints, the calibrated 

estimator is given as: 
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3.4. Expressions for Mean Squared Error (MSE) 

The mean-type calibration estimators defined in equations (27) and (39) for k = 2 and 3 can be rewritten by first order Taylor 

expansion as: 
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The mean squared errors of the estimators k = 2 and 3 up to second order of approximation are given as: 
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The exponential-type calibration estimators defined in equations (15), (23) and (35) for k = 1, 2 and 3 can be rewritten by first 

order Taylor expansion as: 
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The mean squared errors of the estimators for k = 1, 2 and 3 up to second order of approximation are given as: 
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For different values of hQ , we can obtain different forms of the suggested calibration estimators. 

4. Proposed Calibration Estimator in Stratified Double Sampling 

The resulting outcome for stratified sampling is extended in case of stratified double sampling, for which a preliminary 

sample of size hm units as a first phase sample is drawn by using SRSWOR, and a subsample of hn units is drawn from the 

preliminary sample of size hm units by SRSWOR. Let 

1

1 hm

h hi
h i

x x
m

∗

=

= ∑ be the first phase sample mean and 

1

1 hn

h hi
h i

x x
n =

= ∑ , 

the second phase sample mean of auxiliary variable and study variable, respectively. 

4.1. Calibration Estimator Using First Moment About Origin 

For first-order moment about origin, the exponential-type calibrated estimator under stratified double sampling is given as: 

*
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4.2. Calibration Estimator Using Second Moment About Origin 

The exponential type calibrated estimator considering second-order moment about origin becomes: 
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Likewise, after minimization of Chi-square type distance measure depending on the second-order moment calibration 

constraints, the mean-type calibration estimator under stratified double sampling is specified as: 

2
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4.3. Calibration Estimator Using Third Moment About Origin 

The exponential ratio-type calibrated estimator using third order moment about origin becomes: 
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Correspondingly, by using third-order moment about origin, the mean-type calibrated estimator for stratified double sampling 

is defined as: 
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4.4. Expressions for Mean Squared Error (MSE) 

The mean squared errors of the estimators defined in equations (42) and (44) for k = 2 and 3 up to second order of 

approximation for mean-type calibration estimators are given as: 
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The mean squared errors for the exponential-type calibration estimators defined in equations (40), (41) and (43) for k = 1, 2 

and 3 up to second order of approximation are given as: 
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5. Simulation Study 

To study performance of the proposed calibrated estimators, 

two combinations of a real population MU284 given in 

Appendix B of Sarndal et al. [18] are considered. It comprises 

284 units, divided into eight strata of varying sizes. The 

description of both datasets used here are as follows: 

Real Data I: 

X: SS82, Number of Social-Democratic seats in the 

municipal council; 

Y: REV84, Real state value according to 1984 assessment 

(in millions). 

Table 1. Descriptive Statistics for Real Data I. 

X Y 

Min. 8.00 Min. 347 

1st Quartile 17.00 1st Quartile 1146 

Median 21.00 Median 1854 

Mean 22.19 Mean 3078 

3rd Quartile 27.00 3rd Quartile 3345 

Max. 46.00 Max. 59877 

Real Data II: 

X: S82, Total number of seats in the municipal council. 

Y: REV84, Real state value according to 1984 assessment 

(in millions). 

Table 2. Descriptive Statistics for Real Data II. 

X Y 

Min. 31.00 Min. 347 

1st Quartile 41.00 1st Quartile 1146 

Median 49.00 Median 1854 

Mean 47.64 Mean 3078 

3rd Quartile 51.00 3rd Quartile 3345 

Max. 101.00 Max. 59877 

The random samples of varying sizes are drawn by 

proportional allocation using simple random sampling without 

replacement (SRSWOR) from each stratum. A simulated 

study is done by generating 25,000 samples in R-software. 

The performance of the estimators is measured in terms of 

percentage relative root mean square error (%RRMSE) and 

Percentage Relative Efficiency (%RE) defined as: 
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(ii) In the case of Stratified Double Sampling 

225000
.

.

1

( )1
% ( ) 100 ;

25000

i d
d

i

y Y
RRMSE y

Y

α
α

=

 −
= × 

 
∑  

. . , . 1, . 2, . 3, . 1, . 2, . 3d tr d m d m d m d ce d ce d ce dα =  

.
.

.

% ( ) 100; . . 1, . 2, . 3, .1, .2, .3tr d
d

d

y
RE y d m d m d m d ce ce ce

y
α

α
α

 
= × = 
 

 

The results so obtained are given in Table 3, Table 4, Table 5 and Table 6. 

Table 3. Percentage Relative Root Mean Square Error (%RRMSE) under Stratified Random Sampling. 

Real Data I 

hQ
 

Sample Size (n) tr
y  

m1
y  

ce.1
y  

m 2
y  

ce.2
y  

m 3
y  

ce.3
y  

1 

30 24.99 23.25 21.53 22.71 21.11 22.56 20.96 

35 23.30 22.18 20.50 21.61 20.04 21.32 19.76 
40 20.53 20.38 19.04 19.93 18.70 19.86 18.65 

h

1

x
 

30 24.47 23.18 21.53 22.57 21.06 22.41 20.91 
35 22.86 22.17 20.53 21.51 20.01 21.18 19.70 

40 20.29 20.38 19.08 19.84 18.67 19.72 18.58 

Real Data II 

1 

30 18.83 18.46 17.38 16.52 15.86 15.37 15.01 

35 16.82 17.41 16.36 15.44 14.82 14.25 13.94 

40 15.62 16.20 15.40 14.54 14.05 13.42 13.17 

h

1

x
 

30 18.60 18.30 17.21 16.39 15.73 15.20 14.85 

35 16.59 17.32 16.25 15.36 14.72 14.11 13.81 

40 15.43 16.10 15.28 14.46 13.96 13.31 13.06 
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Table 4. Percentage Relative Efficiency (%RE) under Stratified Random Sampling. 

Real Data I 

hQ
 

Sample Size (n) tr
y  

m1
y  

ce.1
y  

m 2
y  

ce.2
y  

m 3
y  

ce.3
y  

1 

30 100.00 107.48 116.07 110.04 118.38 110.77 119.23 

35 100.00 105.05 113.66 107.82 116.27 109.29 117.91 
40 100.00 100.74 107.83 103.01 109.79 103.37 110.08 

h

1

x
 

30 100.00 105.57 113.66 108.42 116.19 109.19 117.03 

35 100.00 103.11 111.35 106.28 114.24 107.93 116.04 

40 100.00 99.56 106.34 102.27 108.68 102.89 109.20 

Real Data II 

1 

30 100.00 102.00 108.34 113.98 118.73 122.51 125.45 
35 100.00 96.61 102.81 108.94 113.50 118.04 120.66 

40 100.00 96.42 101.43 107.43 111.17 116.39 118.60 

h

1

x
 

30 100.00 101.64 108.08 113.48 118.25 122.37 125.25 
35 100.00 95.79 102.09 108.01 112.70 117.58 120.13 

40 100.00 95.84 100.98 106.71 110.53 115.93 118.15 

Table 5. Percentage Relative Root Mean Square Error (%RRMSE) under Stratified Double Sampling. 

Real Data I 

hQ
 

Sample Size (m; n) tr .d
y  

m.d1
y  

ce.d1
y  

m.d2
y  

ce.d2
y  

m.d3
y  

ce.d3
y  

1 

90; 30 25.95 24.33 22.97 23.90 22.62 23.87 22.59 

100; 30 24.51 23.80 22.45 23.49 22.22 23.47 22.19 
90; 35 25.11 22.80 21.53 22.48 21.28 22.43 21.23 

100; 35 23.55 22.43 21.14 22.02 20.81 21.93 20.74 

h

1

x
 

90; 30 25.51 24.29 22.95 23.78 22.55 23.73 22.50 
100; 30 24.03 23.74 22.43 23.36 22.14 23.31 22.10 

90; 35 24.66 22.79 21.53 22.40 21.23 22.32 21.16 

100; 35 23.14 22.45 21.17 21.97 20.79 21.84 20.68 
Real Data II 

1 

90; 30 20.45 20.52 19.57 18.95 18.25 17.88 17.35 

100; 30 20.09 20.10 19.17 18.50 17.83 17.43 16.95 
90; 35 18.68 19.18 18.33 17.78 17.14 16.84 16.37 

100; 35 18.33 19.05 18.14 17.51 16.86 16.47 16.01 

h

1

x
 

90; 30 20.36 20.47 19.50 18.96 18.23 17.87 17.33 
100; 30 19.96 20.03 19.08 18.49 17.80 17.41 16.92 

90; 35 18.63 19.18 18.29 17.81 17.15 16.85 16.36 

100; 35 18.25 19.03 18.09 17.53 16.85 16.47 15.99 

Table 6. Percentage Relative Efficiency (%RE) under Stratified Double Sampling. 

Real Data I 

hQ
 

Sample Size (m; n) tr .d
y  

m.d1
y  

ce.d1
y  

m.d2
y  

ce.d2
y  

m.d3
y  

ce.d3
y  

1 

90; 30 100.00 106.66 112.97 108.58 114.72 108.71 114.87 
100; 30 100.00 102.98 109.18 104.34 110.31 104.43 110.46 

90; 35 100.00 110.13 116.63 111.70 118.00 111.95 118.28 

100; 35 100.00 104.99 111.40 106.95 113.17 107.39 113.55 

h

1

x
 

90; 30 100.00 105.02 111.15 107.28 113.13 107.50 113.38 

100; 30 100.00 101.22 107.13 102.87 108.54 103.09 108.73 

90; 35 100.00 108.21 114.54 110.09 116.16 110.48 116.54 
100; 35 100.00 103.07 109.31 105.33 111.30 105.95 111.90 

Real Data II 

1 

90; 30 100.00 99.66 104.50 107.92 112.05 114.37 117.87 
100; 30 100.00 99.95 104.80 108.59 112.68 115.26 118.53 

90; 35 100.00 97.39 101.91 105.06 108.98 110.93 114.11 

100; 35 100.00 96.22 101.05 104.68 108.72 111.29 114.49 

h

1

x
 

90; 30 100.00 99.46 104.41 107.38 111.68 113.93 117.48 

100; 30 100.00 99.65 104.61 107.95 112.13 114.65 117.97 

90; 35 100.00 97.13 101.86 104.60 108.63 110.56 113.88 
100; 35 100.00 95.90 100.88 104.11 108.31 110.81 114.13 

 

6. Conclusion 

Three exponential-type ratio calibration estimators using 

first three moments about the origin of the auxiliary variable as 

well as two mean-type estimators using second and third 

moment about the origin have been suggested in this study 

under stratified random sampling and stratified double 

sampling. Tables 1 and Table 3 depict the percentage relative 

root mean squared error (%RRMSE) while Table 2 and Table 

4 comprise the percentage relative efficiency (%RE) of the 

estimators given by Singh [22], Tracy et al. [24], and three 

suggested exponential-type estimators and two mean-type 

estimators for different values of sample size and Qh. Table 1 
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and Table 3 shows the %RRMSE of the existing and the 

proposed estimators which depict that as the values of sample 

size increases, the values of %RRMSE decrease and hence the 

percentage relative efficiency (%RE) of the suggested 

estimators increases, specified in Table 2 and Table 4. 

From the results given in Tables 1 to 4, it can be inferred 

that the efficiency of the suggested calibration estimators is 

higher than the estimators given by Singh [22] and Tracy et al. 

[24]. Hence, it can be concluded that the proposed calibration 

estimators are more efficient than the other estimators for 

estimating the population means based on a simulation study 

conducted on two real datasets under both sampling schemes. 

Appendix 

Beside comparing the proposed estimators with the existing 

estimators, the comparative study has also been done among the 

mean-type and the exponential-type estimators by calculating 

the percentage relative gain (%RG) of exponential-type 

estimators with respect to their mean-type estimators, as: 

Table A1. Percentage Relative Gain (%RG) of Exponential-type Estimators with respect to their Mean Estimators for Stratified Sampling 

( ) ( ).% ( ) ; , ,.
( )

 −
= × =  
 

RRMSE y RRMSE ym ceRG y 100 1 2 3ce
RRMSE ym

α α αα
α

. 

 Real Data I Real Data II 

hQ  Sample Size (n) %RG ( 1y ) %RG ( 2y ) %RG ( 3y ) %RG ( 1y ) %RG ( 2y ) %RG ( 3y ) 

1 

30 7.40 7.05 7.09 5.85 4.00 2.34 

35 7.57 7.27 7.32 6.03 4.02 2.18 
40 6.58 6.17 6.09 4.94 3.37 1.86 

h

1

x
 

30 7.12 6.69 6.69 5.96 4.03 2.30 

35 7.40 6.97 6.99 6.18 4.17 2.13 
40 6.38 5.90 5.78 5.09 3.46 1.88 

Table A2. Percentage Relative Gain (%RG) of Exponential-type Estimators with respect to their Mean Estimators under Stratified Double Sampling 

( ) ( ). .% ( ) ; , ,.
( ).

 −
= × =  
 

RRMSE y RRMSE ym d ce dRG y 100 1 2 3ce d
RRMSE ym d

α α αα
α

.. 

 Real Data I Real Data II 

hQ  Sample Size (m; n) %RG ( .d 1y ) %RG ( .d 2y ) %RG ( .d 3y ) %RG ( .d 1y ) %RG ( .d 2y ) %RG ( .d 3y ) 

1 

90; 30 5.59 5.36 5.36 4.63 3.69 2.96 
100; 30 5.67 5.41 5.45 4.63 3.62 2.75 

90; 35 5.57 5.34 5.35 4.43 3.60 2.79 

100; 35 5.75 5.50 5.43 4.78 3.71 2.79 

h

1

x
 

90; 30 5.52 5.17 5.18 4.74 3.85 3.02 

100; 30 5.52 5.22 5.19 4.74 3.73 2.81 
90; 35 5.53 5.22 5.20 4.64 3.71 2.91 

100; 35 5.70 5.37 5.31 4.94 3.88 2.91 
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