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Abstract: A generalized linear mixed model (GLMM) is an extension to the generalized linear mixed (GLM) in which the 

linear predictor contains random effects in addition to the usual fixed effects. They also inherit from GLMs the idea of 

extending linear mixed models to non-normal data. There are several applications of various types of generalized linear mixed 

models (GLMMs) to various fields, especially in the areas of health and biological sciences. In this our study Poisson logistic 

mixed regression model (a class of GLMM) was adopted to investigate the performance of the above mentioned method on 

some psychiatric patients’ data. A clinical trial of ninety (90) mentally disordered patients was examined in this work. Patients 

suffering from some level of psychiatric disorder were randomized to receive either Amitryphylline or Benzhexol in addition to 

other therapy. This work is motivated by Thall and Vail, which investigated the performance of the Poisson logistic mixed 

model on some epileptics’ data. The two types of therapy have little effect on the patients, but the interaction (between 

treatments and visits) has a substantial impact on the patients. The number of seizures is reduced by visits, and a combination 

of visits and medicines decreases the number of seizures. The fact that the treatments are insignificant suggests that mental 

disorders are mostly treatable with currently available medications. These drugs only ‘manage' them for a short period of time. 
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1. Introduction 

Many mixed models for continuous normal outcomes have 

been extensively developed since the paper of Laird and 

Waire [11] but Agresti [1], described a variety of its 

applications in categorical data analysis. Also some important 

sources such as Fahrmeir and Tutz [6] as well as McCulloch 

and Searle [13], provide a great wealth of statistical materials 

on GLMMs. Because they are natural outgrowth of both 

linear mixed models and generalized linear models, they are 

of wide applicability and practical importance (Breslow and 

Clayton [4]). 

Clayton [5], described its applicability to biostatistics and 

highlighted the importance of binary outcome to health, 

social and behavioral sciences. 

A random intercept model was proposed to a clustered 

binary data (of cardiac abnormalities in children born to 

HIV-infected parents) set by Wang and Louis [18], The 

marginal model was said to have a logistic form and the only 

acknowledged limitation was that it allows only a single 

random effect that varies from cluster to cluster. This model 

was modified to allow flexible correlation structure among 

the random intercepts. This modified model, was used to 

analyze data from a longitudinal design to monitor cardiac 

abnormalities in children born to HIV-infected women. This 

highlight the important application of GLMMs in medicine. 

Venables and Dichmont [17], provided an overview of the 

modeling process using generalized linear models (GLMs), 

generalized additive models (GAMs) and generalized linear 

mixed models (GLMMs), especially as they are applied 

within fisheries research. The essential aspect of model 

interpretation and construction were discussed so as to 

achieve its correct application. They started with the simplest 

models and showed the progression from GLMs to either 

GAMs or GLMMs as topics relevant to fisheries science such 

as transformation options, link functions, adding model 
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flexibility through splines, and using random and fixed 

effects were emphasized. Various aspects of these models, 

their variants, and their relative benefits to fisheries research 

were presented in this source. 

Although, the use of generalized linear models (GLMs) in 

actuarial statistics received a lot of attention over the last 

decade, starting from the actuarial illustrations in the 

standard text by McCullagh and Nelder [12]. Traditional 

GLMs however, model a sample of independent random 

variables but since actuaries very often have repeated 

measurements or longitudinal data (i.e. repeated 

measurements over time), the GLMs become inappropriate 

for fitting such data. However, Antonio et al [2], considered 

statistical techniques to model such data within the 

framework of GLMs and made use of generalized linear 

mixed models (which model a transformation of the mean as 

a linear function of both fixed and random effects). The 

likelihood and Bayesian approaches to GLMMs were 

explained and the models were illustrated by considering 

classical credibility models and more general regression 

models for non-life ratemaking in the context of GLMMs 

with details on computation and implementation carried out 

in SAS and WinBugs. 

Moreover, Klinker [10], also applied generalized linear 

mixed models to ratemaking in actuarial science, by 

introducing credibility-like shrinkage towards the mean in a 

GLM setting. 

The application of GLMMs to insurance was also seen in 

Garrido and Zhou [7]. Although, GLMs are gaining 

popularity as a statistical analytic method for insurance data 

but was extended to study the limited fluctuation credibility 

of GLMMs estimators and it was established that credibility 

depends on sample size, the distribution of covariates and the 

link function. This article also provided a mechanism to 

obtain confidence intervals for the GLM and GLMM 

estimators. 

The explosions of research on GLMMs in the last decade 

has generated considerable uncertainty for practitioners in 

ecology and evolution. Despite the availability of accurate 

techniques for estimating GLMM parameters in simple cases, 

complex GLMMs are challenging to fit and statistical 

inference such as hypothesis testing remains difficult since 

most of the data sets in ecology and evolution often fall 

outside the scope of the methods taught in introductory 

statistics and as such, Bolker et al [3], gave a review of 

application of GLMMs in ecology and evolution, estimation, 

inference and best data analysis procedure. 

Utilization of Generalized Linear Mixed Models (GLMM) 

in invasion biology has increased exponentially during the 

last 5-10 years. As stated earlier, GLMMs are useful tools 

that can handle data with various distributions as well as 

spatial or temporal dependence which are involved in many 

study designs. 

Thiele and Markussen [16], gave a review of the current 

state-of-the-art of GLMM with special focus on applications 

in invasion biology and addressed the frequently encountered 

practical problems, such as failure of convergence, and put 

some emphasis on validation of model assumptions. They 

also pointed towards possibilities of analysing zero-heavy 

data using combined GLMM through the use of certain 

examples and pointed out that modelers should be conscious 

of the estimation of random-effects rather than random 

variation in accounting for non-independence of observations 

due to study designs especially in studies relating to genetic 

variation of invasive species. 

In general, a feature of random effect logistic regression 

models (a class of GLMMs) for longitudinal binary data is 

that the marginal functional form when integrated over the 

distribution of the random effects, is no longer of logistic 

form. 

The performance of the binary logistic mixed model has 

been investigated in the popular Salamander Mating data 

(published in McCullagh and Nelder [12]) in various sources 

such as Karim and Zeger [9], Breslow and Clayton [4], Shun 

[14], as well as Halid and Adeleke [12, 9, 4, 14, 8] to mention 

a few, through the development of different estimation 

techniques. 

This work is motivated by Thall and Vail [15], which 

investigated the performance of the Poisson logistic mixed 

model on some epileptics data. 

2. Materials and Methods 

A clinical trial of 90 mentally disordered patients was 

examined in this work. Patients suffering from some level of 

psychiatric disorder were randomized to receive either 

Amitryphylline or Benzhexol in addition to other therapy. At 

each of the four successive clinic visits, the number of 

psychiatric ‘breakdown’ rate occurring over the previous two 

weeks was reported. Each patient was subsequently crossed 

over to the other treatment but only the four precrossover 

responses were considered in an eight-week baseline period, 

segmented into four two-week treatment periods in which 

patients received either Amitryphylline or Benzhexol. The 

covariates in the model are psychiatric baseline ‘breakdown’ 

rate, logarithm of patients’ ages (in years), the binary 

indicator treatment for the drugs administered 

(Amitryphylline or Benzhexol) and the clinic visits. The 

cross design and count nature of the data give rise to the 

Poisson logistic mixed model. 

The Poisson logistic mixed model, a class of GLMM was 

therefore fitted to the data of mentally disordered patients. 

This data was collected from the records Department of 

Neuro-Psychiatric Hospital Aro, Abeokuta, Ogun State, 

Nigeria. The data is therefore similar to that in Thall and Vail 

[15], which involves some epileptics. 

The execution was carried out using GLIMMIX 

PROCEDURE of SAS 9.4. With successive weekly count of 

90 mentally disordered patients. 

3. The Generalized Linear Mixed Model 

The basic formulation of a single-level GLMM is that the 

response iy  vector for a given group ,i  conditional on 
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random effects ,iα  is distributed as independent random 

variables with distribution in the exponential family. That is, 

the conditional distribution of the data iy , given the random 

effects ,iα  is a member of the exponential family of 

distribution such as binary, binomial, Poisson, gamma, beta 

or chi-square distribution. 

The most important cases of practical interest are the 

Binomial and Poisson distributions. 

The GLMMs are specified through the following ways: 

1. Formulate the linear predictor, including fixed and 

random effects 

2. Choose a link function 

3. Choose the distribution of the response, conditional on 

the random effects, from the exponential family 

Given iα  the conditional density of iy  in canonical form 

is 

1

( ) exp{( ( )) / ( ) ( , )}
in

i i ij ij ij ij

j

f y y d a c yα φ φ
=

| = θ − θ +∏  

exp{( ( ) 1) / ( ) ( , ) 1}i i i iy d a c yφ φ= ′θ − θ ′ + ′           (1) 

For appropriate functions (.)a , (.)d  and (.)c  

The random effects are assumed to be independently 

distributed on (0, ( ))N G α . 

The model is further determined through the specification 

of an invertible link function (.)g  relating the conditional 

expectation of iy  given α , non-linearly 

( )i iE yµ α= |                                  (2) 

to a set of covariates and the fixed and random effects (linear 

predictor). 

That is, 

( )i i i i i ig X Zµ β α η= + =  

and  

1( ) ( )i i i i i ih g X Zµ η β α−= = +                    (3) 

where β  denotes the vector of fixed effects and α  the 

vector of random effects, iX  and iZ  are (known) fixed and 

random effects regression matrices and 
1h g−=  

is the inverse link function. 

We will assume the canonical link function for the 

exponential family, 

in which case i iηθ = . 

It then follows that the joint density of ( , )i iy α is given by 

( , ) exp{[ ( ) ( ) 1] / ( )i i i i i i i i if y y X Z d X Z aα ′ β α β α ′ φ= + − +  

1
1 2 2( , ) 1 ( ) / 2} / [(2 ) ( ) ]

q

i i ic y b G Gφ ′ α α α−+ − π | |       (4) 

where q denotes the number of random effects (the length of 

iα ). 

As with any mixed-effects models, because the random 

effects are non-observable quantities, likelihood estimation 

must rely on the marginal density of ,iy  which is obtained 

by integrating the joint likelihood function with respect to 

iα . For the GLMM, this integral does not have a closed form 

expression and approximations are required for 

computationally feasible estimation. 

Recall that the extension of GLMs with random effects is 

called GLMM (McCulloch and Searle [13]). The conditional 

independence assumption of the response variable, given the 

random effects, plays an important role in the formulation of 

GLMM. 

3.1. The Particular Case of the Poisson Logistic Mixed 

Model 

The Poisson distribution is often used to model responses 

that are counts. Suppose that, given the random effects iα  

the counts 1,..., ny y are conditionally independent such that 

iy Poissonα| ∼ ( )iλ  

where, 

log( )i i i i iX Zλ β α= +                          (5) 

and ,i iX Z are as in definition of GLMM. 

Again it is a special case of GLMM, in which the 

(conditional) exponential family is Poisson and the link 

function is 

( ) log( )g µ µ=                           (6) 

The dispersion parameter φ  in the case is again equal to 1. 

3.2. Modeling the Data of Psychiatrics with the Poisson 

Logistic Mixed Model 

From the Poisson Logistic Mixed Model, the model can be 

written below: 

log( ) ( )ij i j ijP µ α β αβ= + + +  i = 1,...,4, j = 1,2       (7) 

( ) 0,?  Amitryphylline treatment

( ) 1,  Benzhexol treatment

ij

ij
ij

P Y for
P

P Y for

==  =
 

µ=grandmean 

αi=visits 

βj=treatmenteffect 

αβ(ij)= is the effects of interaction between visits and 

treatment. 

(7) can also be written as 

logit(Pij)=µ+xi+trt+xi*trt                      (8) 
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Table 1. Data Of Some Psychiatric Patients. 

ID TREATMENT X1 X2 X3 X4 
BASE 

LINE 
AGE 

271 0 1 1 2 3 180 60 

270 0 1 2 3 3 120 38 

265 0 3 1 4 1 400 32 

410 0 3 2 8 4 420 65 

234 0 3 1 1 4 132 22 

302 0 1 3 1 1 300 46 

602 0 1 1 1 2 420 71 

650 0 1 1 1 2 100 24 

759 0 1 1 2 1 100 36 

827 0 1 1 1 2 121 20 

930 0 1 1 1 2 122 45 

650 0 1 1 1 1 200 33 

200 0 3 2 1 3 400 20 

241 0 3 1 1 1 222 26 

127 0 1 2 2 1 120 32 

195 0 2 1 2 3 120 70 

141 0 3 1 1 3 200 27 

158 0 1 1 3 1 123 46 

493 0 2 1 2 1 111 37 

496 0 7 1 2 3 120 44 

541 0 1 1 1 1 100 52 

166 0 1 1 1 2 213 30 

373 0 3 2 1 2 480 35 

113 0 1 1 1 2 113 28 

650 0 1 1 1 2 240 70 

308 0 1 1 1 1 100 32 

488 0 3 2 1 3 240 50 

510 0 3 1 1 1 100 35 

725 0 1 2 2 1 100 29 

938 0 2 1 2 3 240 28 

960 0 3 1 1 3 321 60 

511 0 1 1 3 1 100 31 

525 0 2 1 2 1 100 37 

475 0 7 1 2 3 124 30 

804 0 1 1 1 1 100 56 

259 0 1 1 1 2 480 45 

221 0 1 1 1 2 360 39 

409 0 3 2 1 2 240 64 

598 0 1 1 1 1 480 35 

963 0 2 1 2 3 120 60 

979 0 2 1 2 3 200 31 

932 0 2 1 2 3 240 36 

886 0 1 1 2 1 180 43 

500 1 1 8 3 2 300 25 

388 1 1 2 1 1 120 29 

346 1 3 3 1 1 144 60 

376 1 2 1 2 1 120 28 

579 1 1 1 1 3 221 48 

708 1 1 3 3 1 300 20 

863 1 1 2 1 1 213 33 

492 1 1 3 3 1 120 26 

401 1 1 4 1 2 121 40 

402 1 1 1 2 1 333 35 

969 1 3 1 1 1 121 17 

952 1 2 1 1 1 500 71 

181 1 2 1 1 1 212 50 

284 1 2 3 1 2 101 28 

248 1 1 1 2 1 333 52 

366 1 1 1 1 2 168 60 

800 1 2 2 1 1 211 48 

792 1 1 1 2 1 300 20 

826 1 1 3 1 1 100 41 

997 1 1 1 1 2 240 32 

847 1 1 1 2 2 360 44 

622 1 1 1 2 1 121 40 

ID TREATMENT X1 X2 X3 X4 
BASE 

LINE 
AGE 

748 1 1 2 2 4 421 30 

754 1 1 4 2 3 120 25 

580 1 2 1 2 2 200 40 

186 1 1 1 1 1 360 51 

386 1 1 1 2 1 240 26 

566 1 1 1 1 2 120 36 

383 1 4 1 3 1 200 22 

558 1 1 1 1 3 360 26 

551 1 1 1 1 2 240 12 

292 1 1 1 1 1 121 30 

923 1 1 1 1 1 240 11 

545 1 2 1 1 3 200 14 

419 1 1 1 1 2 110 27 

245 1 1 6 1 2 480 23 

824 1 1 1 1 2 121 21 

250 1 3 1 1 2 222 16 

533 1 2 3 8 1 101 18 

127 1 1 2 1 3 382 33 

254 1 1 2 1 1 123 17 

298 1 2 3 8 1 123 14 

470 1 1 2 1 3 331 39 

744 1 1 2 1 1 481 21 

742 1 1 2 1 1 111 14 

830 1 1 2 1 2 144 23 

290 1 1 2 1 2 390 30 

Let Yij be the number of mental disordered count for 

subject i in interval j, where tj is the length of interval j = 

1,2,...,4. Here ti = 8 and the other tj = 2. A reasonable 

model for this data would be to assume that the responses 

Yij have marginal Poisson distributions, but that the 

responses within an individual are correlated over time. 

An important aspect of this problem is that the observation 

length is 8 weeks for period 1 and 2 weeks for the next 4 

periods. The standard way to incorporate the different 

length periods is to write the mean of the Poisson 

distribution in the form E(Yij) = µ*ij = µijti where µij is the 

mean response per unit time (a week). This mean per unit 

time is directly comparable across different periods, so µij 

is modeled as a function of predictor variables. With a log 

link log(µ*ij) = log(µij) + log(ti), so a log-linear model for 

the mean response per unit time will lead to a log-linear 

model for the µ*ij with an offset term - the log(ti). The 

original data set (therapy) is in regression format with 1 

record for each post-baseline count. The response is 

labeled y. The baseline count is included in each post-

baseline record, in column baseline. Other columns in the 

data set are individual id, visit number (1-4), treatment 

(treatment with levels 0 for Amitryphylline and 1 for 

Benzhexol), and age at baseline. 

After creating the data set to be analyzed, the means 

procedure was used to compute the mean number of mental 

retardation per observation period by treatment. The interval 

length was standardized and the raw and standardized means 

were printed with the standardized mean being log-

transformed. The log of the sample mean per unit time 

provides information about how log(µij) = log(µ*ij) − log(ti) 

might depend on time and treatment. 
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4. Analysis and Discussion of Results 

Table 2. Outline of Baseline treatment and Visits. 

Treatment Visit log (µij) 

Amitryphylline Baseline β0 

Amitryphylline 1-4 β0 + β1 

Benzhexol Baseline β0 + β2 

Benzhexol 1-4 β0 + β1 + β2 + β3 

Thus, β0 is the mean (on log scale) at baseline for the 

baseline treatment; β2 is the difference in means at baseline 

between the treatment; β1 is the change over time from 

baseline in treatment group, this is the main effect for time; 

β3 is the effect of interaction between time and treatment. If 

β3=0 then the difference between baseline and post-baseline 

is the same, and the difference between Amitryphylline and 

Benzhexol is independent of time. 

Alternatively, if β3 < 0 then the change from baseline in the 

treatment group is greater than the change from baseline in 

the group with reverse implication if β3>0. Thus, a value of 

β3<0 indicates a reduction in the expected change in the 

count from baseline associated with the treatment. 

Table 3. The raw correlation between the four visits. 

 visit 1 visit 2 visit 3 visit4 

Visit 1 1    

Visit2 -0.1215801 1   

Visit 3 0.14807979 0.2095822 1  

Visit4 0.2703079 0.0001258 -0.02689774 1 

The working correlation matrix shows that there is a 

perfect correlation between corresponding row ri and column 

ci only. 

Table 4. Table of empirical standard error estimates. 

Parameter Estimates Analysis 

Empirical Standard Error Estimates 

Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept 3.2656 0.0881 3.0930 3.4382 37.08 <.0001 

x1 -3.4313 0.0920 -3.612 -3.251 -37.29 <.0001 

Trt 0.0935 0.1153 -0.133 0.3195 0.81 0.4174 

x1*trt -0.0902 0.1320 -0.349 0.1686 -0.68 0.0001 

 

The empirical standard error estimate table above, contains 

the parameter, standard error, confidence interval, and the Z 

score estimates. 

It is clear from Table 4. that the visits have significant 

effect on the patients under study. It is also clear that the 

treatment does not have significant effect on the patients. 

The interaction (between treatment and visits) have 

significant effect on the patients. 

Table 5. Table of model based standard error estimate. 

Parameter Estimates Analysis 

Model-Based Standard Error Estimates 

Parameter Estimate Standard Error 95% Confidence Limits Z Pr > |Z| 

Intercept 3.2656 0.0105 3.2449 3.2863 309.68 <.0001 

x1 -3.4313 0.0475 -3.5243 -3.3382 -72.26 <.0001 

Trt 0.0935 0.0142 0.0657 0.1213 6.59 0.4221 

x1*trt -0.0902 0.0652 -0.2179 0.0375 -1.38 0.0001 

Scale 1.0000 . . . . . 

 

The model-based standard error estimates in the table 

above contains the parameter, standard errors, confidence 

intervals, and the Z score estimates. 

It is obvious that the visits have significant effect on the 

patients. It is also clear that the treatment does not have 

significant effect on the patients while interaction 

(between treatment and visits) have significant effect on 

the patients. 

Table 6. Summary Statistics for the two-week ‘breakdown’ counts. 

visit  

Amitriphylline Benzhexol 

y  y  

2
s  correlations 2

s  Correlations 

1 1.95     1.38      

 1.99 1    0.49 1     
2 1.23     1.91      

 0.23 0.016 1   1.95 -0.1188 1    

3 1.70     1.68      
 1.50 0.143 0.163 1  2.17 0.2005 0.255 1   

4 1.20     1.64      

 0.91 0.443 0.052 0.225 1 0.61 -0.21261 0.0885 -0.2104 1  
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The summary statistics for the visits within each group, the 

mean and variance at each visit is recorded, followed by the 

correlation for the first group (Amitryphylline) and the 

second group (Benzhexol). 

From the above, it follows that the degree of association 

between the treatment and visits is higher in the first group 

than that of the second group. 

5. Conclusion 

The Poisson logistic mixed regression model (a class of 

GLMM) considered in this work adequately fitted the data of 

90 psychiatric patients having put into consideration the 

patients’ visits, treatments (drugs) and interaction between 

visits and treatments as the variates. 

The patients’ visits to the hospital was helpful for both 

groups of patients since the visits have significant effect on 

the patients. The two classes of treatment do not have 

significant effect on the patients whereas the interaction 

(between the treatments and visits) have significant effect on 

the patients. 

The visits reduces the ‘seizure’ rate and a combination of 

visits and treatments also reduces the number of seizures. 

The fact that the treatments are insignificant further tells us 

that mental disorders are mostly incurable by existing drugs. 

They are only ‘managed’ for some period of time by these 

drugs. 
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