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Abstract: This study evaluates the performance of a group of GARCH models under three different distributions in terms of 
their ability to estimate and forecasting the volatility of Egyptian Stock Exchange General Index (EGX30) in some horizon of 
forecasting using daily data for the period from January 2, 2000 to April 30, 2019, and tries to determine the best model 
according to some criteria. The primary purpose of the study is to investigate whether the two-regime MSW-GARCH model 
outperforms the uni-regime GARCH models in a very volatile time period during the global financial crisis. Hence, evaluating 
the predictive accuracy of the MSW-GARCH, and whether the MSW-GARCH assessed on the EGX30 would be successful. 
We explore and compare different possible sources of forecasts improvements: asymmetry in the conditional variance, fat-
tailed distributions and regime-switching methodology. The results show that; there is an evidence that the EGX30 index has 
been affected by the crisis, and the TGARCH models are superior in predictive ability on EGX30 compared to the other tested 
models. Consequently, uni-regime GARCH models has priority in MSW-GARCH models in their forecasting performance. 
These models yield significantly better out-of-sample volatility forecasts. 

Keywords: Volatility, Structural Changes, Uni-regime GARCH Models, Two-regime MSW-GARCH Models,  
and Egyptian Stock Market 

 

1. Introduction 

Many important economic variables exhibit nonlinear 
behavior. The difficulty is to properly capture the form of the 
nonlinearity. Once the linear framework is abandoned, the 
specification problem must to be addressed. The use of an 
incorrect nonlinear specification may be worse than ignoring 
the nonlinearity. Moreover, a linear model can always be 
viewed as a local approximation of a nonlinear process [26]. 

One of the most prominent stylized facts of returns on 
financial assets is that their volatility changes over time. In 
particular, periods of large movements in prices alternate 
with periods during which prices hardly change. This 
characteristic feature commonly is referred to as volatility 
clustering [9]. This pattern may be reflected in big changes in 
returns of a day or few days followed by an opposite change 

in the following days. Because these groups of volatilities, 
the variance of financial time series changes over time and so 
the forecast periods of series levels also change over time, 
and the assumption of homoscedasticity is inappropriate and 
becomes obligatory for us to predict the conditional variance 
of the series. The general indicator data is a clear example of 
the time series with a time-dependent mean and an obviously 
appearance of heteroskedasticity. 

In this study, we use (extensions of) the class of 
(Generalized) Autoregressive Conditional Heteroscedasticity 
((G) ARCH) models, introduced by Engle and Bollerslev [6, 
2]. 

When dealing with observations of time-dependent mean 
variables, GARCH models can be used. These also can 
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describe some volatilities in conditional variance. 
GARCH models are capable of describing not only the 

feature of volatility clustering, but also certain other 
characteristics of financial time series, such as their 
pronounced excess kurtosis or fat-tailedness. Most of 
nonlinear variants of the basic GARCH model designed to 
capture such aspects as the asymmetric effect of positive and 
negative shocks on volatility, and possible correlation 
between the return and volatility [9]. Given the widespread 
evidence of asymmetry in equity returns, positive and 
negative interest rate innovations may have markedly 
different impacts on the mean and/or variance of equity 
returns [15]. 

Unfortunately, GARCH models often do not hilly capture 
the thick tails property of high frequency financial times 
series. This has naturally led to the use of non-normal 
distributions to better model this excess kurtosis [22]. Adding 
non-normal densities is a promising area, as long as used 
with clearly non-normal series. Taking in consideration the 
excess kurtosis in high-frequency data, Student’s t and 
Generalized Error Distribution (GED) have become 
alternatives to the Normal distribution. Furthermore, a t-
distribution instead of a normal one for the error term helps 
make the regimes more stable. 

Another class of nonlinear models widely used in 
econometrics is the Markov Switching model (MSM) which 
was advocated by Hamilton [14]. A natural approach to 
modelling economic time series with nonlinear models seems 
to be to define different states of regimes, and to allow for the 
possibility that the dynamic behaviour of economic variables 
depends on the regime that occurs at any given point in time 
[23]. By ‘state-dependent dynamic behaviour’ of a time 
series it is meant that certain properties of the time series, 
such as its mean, variance and/or autocorrelation, are 
different in different regimes. 

MSM is used in studies that require measuring the 
probabilities of moving (transformation) from one state to 
another, and the current state depends only on the previous 
state (according to Markov's theory). Thus, switching in the 
MSM is based on transition probabilities. In some sense, the 
switching is “stochastic” because it is governed by a 
probability law [27]. Hence, predictions using MSM tend to 
have higher uncertainty. Failure to account for regime 
switching may lead to invalid inference, biased forecasts and 
volatility estimates may be biased. 

The two-regime MSW-GARCH model describes the two 
regimes of financial market returns situation as following two 
different distributions with a Full and complete identification 
of random operations and transition probabilities between 
these two distributions, which determine the possibility of 
estimating the required return. 

There are several important features of using MSM can be 
summarized as follows [15, 26, 27]. First, it enables users to 
estimate both filtered and smoothed state probabilities. 
Second, the overall degree of persistence depends on the 
autoregressive parameters and the transition probabilities. 
Third, it allows for switching between regimes and time 

variation and asymmetry in the conditional variance within 
regime. Forth, it also allows for regime dependence in the 
impact, persistence and asymmetric response to shocks to 
equity volatility. Finally, it is flexible and can be useful in 
many applications. 

However, since the transition probabilities are unknown, 
they need to be estimated along with the coefficients of the 
two autoregressive processes. If one of the regimes rarely 
occurs, the coefficients for that regime will be poorly 
estimated [26]. Furthermore, Since the state is not directly 
observable, it is a latent variable. Thus, MSM belongs to the 
statistical family of latent variables as such it requires heavier 
computation in estimation [27]. 

When financial returns exhibit sudden jumps that are due 
to structural breaks the GARCH models show high volatility 
persistence, i.e. integrated behaviour of the conditional 
variance. In such situations models in which the parameters 
are allowed to change over time are more appropriate. 

We develop a Markov-switching GARCH model (MSW-
GARCH) wherein the conditional mean and variance switch 
in time from one GARCH process to another. This model 
enables to estimate complex functional GARCH 
specifications within each regime and features time-varying 
transition probabilities. It outperforms uni-regime GARCH 
models in forecasting volatility when sudden switching 
occurs in response to financial crisis [1]. 

MSW-GARCH model can remove the high persistence of 
GARCH model and separately in each regime of volatility 
[19]. The estimation of the MSW-GARCH accurately 
describes the two regimes based on the different pattern of 
adjustment of the stock returns volatility; and captures all the 
events that are responsible for the presence of nonlinear 
features in stock returns [19]. Moreover, MSW-GARCH 
model improves on existing variants, by making multi-
period-ahead volatility forecasting a convenient recursive 
procedure [18]. Finally, this model makes better use of the 
conditioning information to integrate out the unobserved 
regimes, which translates into a better fit. 

This study generalizes the GARCH model by 
distinguishing two regimes with different volatility levels; 
GARCH effects are allowed within each regime. It focusses 
on situations in which the regime process is stochastic. The 
study compares different GARCH models in terms of their 
ability to describe structural changes in returns caused by The 
global financial crisis 2008. 

We consider six competing symmetric and asymmetric 
models to conduct forecasting of the stock returns volatility. 
These models are the estimated uni-regime GARCH models 
and MSW-GARCH model which enables to estimate 
functional GARCH specifications (GARCH, TGARCH and 
EGARCH specifically) within two regimes. By obtaining the 
30-step 90-step, 180-step and 365-step ahead forecast for 
stock returns volatility for the out-of-sample period, we 
compare the out-of-sample performance of the competing 
models on the basis of forecasting accuracy. 

The econometric estimations of uni-regime GARCH 
models (GARCH, CGARCH, EGARCH, TGARCH and 
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PGARCH) are performed with EVIEWS. The remaining 
models (MSW-GARCH models) are estimated with R 
program. 

2. Aim of Study 

This study emphasizes the importance of volatility in this 
kind of data not only as a variable has an important mean but 
also as a necessary explanatory variable in understanding the 
behaviour of many variables in finance. 

The study aims to explore the best models that help in 
studying and analyzing non-stationary time series and sudden 
changes in stock returns, and to identify the properties of 
these models. Moreover, it evaluates the accuracy of 
volatility forecast from a set of uni-regime GARCH models 
and the two-regime MSW-GARCH during the financial crisis 
of 2008. Finally, how to use these models to obtain forecasts 
of stock market indicators is more accurate considering the 
problem of non-stationarity of the time series mean and 
variance. 

We investigate the volatility characteristics of EGX30 
measured by fat tail, volatility clustering, and leverage 
effects, in order to explore a parsimonious model for it and 
predict its future performance. 

3. Scope and Limitations of the Study 

This study will be limited to the study of the stocks only as 
a tool of the capital market. The study will also provide a 
method of statistical analysis to study past movement of 
stock to predict future values. 

The data set used in the study consists of returns of the 
EGX30 index daily closing prices obtained from Egyptian 
Stock Exchange, during the period from January 2, 2000 to 
April 30, 2019. 

The data were divided into two sample periods: previous 
and subsequent to the global financial crisis on September 
15, 2008 (Lehman Brothers bankruptcy declaration) 1. This 
date was assumed as the turning point, where the impact of 
the global financial crisis on the Egyptian stock exchange is 
examined. 

The study on the applied side adopted three sets of data, 
that is the entire daily data of the Egyptian Stock Exchange 
General Index (EGX30) and the previous and subsequent 
index data to the global financial crisis. 

The daily data consists of the number of 4703, 2490 and 
2578, for three samples respectively, which include 4338, 
2125, 2213 in sample observations covering periods from 
January 2, 2000 to October 31, 2017, from January 2, 2000 to 
September 14, 2008 and from September 15, 2008 to October 
31, 2017 respectively for estimating. 

This is in addition to the number of 30, 90, 180 and 365 
(working days) out of sample observations of daily data 
covering period from September 15, 2008 to March 10, 2010 

                                                             
(1) https://en.wikipedia.org/wiki/Financial_crisis_of_2007-08. 

for previous index data to the global financial crisis and from 
November 1, 2017 to April 30, 2019 for the other two 
samples to ensure the quality of the proposed models for 
describing data and forecasting. 

4. Model Identification 

4.1. Linear GARCH Models 

Linear GARCH models [9, 10] cannot capture asymmetric 
effects of positive and negative shocks. As the conditional 
variance depends only on the square of the shock, positive 
and negative shocks of the same magnitude have the same 
effect on the conditional volatility-that is, the sign of the 
shock is not important. 

4.1.1. Generalized ARCH (GARCH) Model 

To reduce the computational problems when estimating the 
parameters of the ARCH model, Bollerslev [2] suggested 
adding lagged conditional variances to it. the GARCH model 
of order (1,1) is given by 

                   (1) 

To guarantee nonnegativeness of the conditional variance 

th which mean 1 0h ≥ , the parameters in this model should 

satisfy 10, 0ω α> >  and 1 0β ≥ . The general GARCH (p, q) 

model is given by 

2

1 1

q p

t i t i i t i

i i

h hω α ε β− −
= =

= + +∑ ∑  
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t tL L hω α ε β= + +                          (2) 
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pL L Lβ β β= + + , ( ) 1 ..... q
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0, 0p q> ≥  
2 2

1t tLε ε −= , 2 2q
t t qL ε ε −=  and L back shift operator 

Assuming that all the roots of ( )1 0Lβ− =  are outside the 

unit circle, the model can be rewritten as an infinite-order 
ARCH model 
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For nonnegativeness of the conditional variance it is 
required that all iδ  are nonnegative. 

4.1.2. Component GARCH Model (CGARCH) 

Ding and Granger [4] argue that the sample autocorrelation 
functions of squared returns initially decrease faster than 
exponentially, and that only at higher lags does the decrease 
become (much) slower. This pattern suggests that volatility 
may consist of several components, some of which have a 
strong effect on volatility in the short run but die out quite 
rapidly, while others may have a small but persistent effect. 

11
2

11 −− ++= ttt hh βεαω
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To formalize this notion, Ding and Granger [4] put forward 
the component GARCH model 

( )1, 2,1 ,t t th h hγ γ= + −  

( )2
1, 1 1 1 1, 11 ,t t th hα ε α− −= + −  

2
2, 2 1 2 2, 1t t th hω α ε β− −= + +                           (4) 

In this model, the conditional variance is seen to be a 
weighted sum of two components, one specified as an 
IGARCH model and the other as a GARCH model [9]. 

4.2. Nonlinear GARCH Models 

Positive and negative shocks may have an asymmetric 
impact on the conditional volatility of subsequent 
observations. That is, the effect of signs can have the greatest 
impact on market returns. 

In this section we review some of nonlinear GARCH 
models [9, 10]. Most nonlinear GARCH models are 
motivated by the desire to capture the different effects of 
positive and negative shocks on conditional volatility or other 
types of asymmetry. 

With respect to the specification of nonlinear GARCH 
models, it seems reasonable to start with specifying and 
estimating a linear GARCH model. We may then move on to 
a nonlinear GARCH model only if certain misspecification 
tests suggest that symmetry of the conditional variance 
function is an untenable assumption [10]. 

A convenient way to compare different GARCH models is 
by means of the so-called news impact curve (NIC), 
introduced by Pagan & Schwert [21] and popularized by 
Engle and Ng [7]. The NIC shows the relationship between 
the current shock or news tε  and conditional volatility 1 

period ahead , holding constant all other past and 

current information. Thus, the NIC for the GARCH (1,1) 
model is defined as 

 (5) 

where 1A hω β= + . Hence, the NIC is a quadratic function 

centred on 0tε = . 

4.2.1. GJR_GARCH (TGARCH) 

A weakness of the GARCH models is that they do not 
distinguish past negative returns from the positive ones. On 
the other hand, large past negative returns tend to have a 
greater impact on the volatility than their positive 
counterparts. This is known as the leverage effect in finance. 
To overcome this weakness, the threshold GARCH 
(TGARCH) or GJR models have been proposed. The 
parameter �	 is referred to as the leverage effect and it is 
expected to be positive. The estimated leverage effect is 
statistically significant at the 5% level [27]. 

This model introduced by Glosten et al. [11] offers a 
method to allow for asymmetric effects of positive and 

negative shocks on volatility. The model is obtained from the 
GARCH (1,1), Equation (1), by assuming that the parameter 
of  depends on the sign of the shock, that is, 

 (6) 

where as usual [ ].I  is an indicator function. The conditions 

for nonnegativeness of the conditional variance are 
( )1 10, / 2 0ω α γ> + ≥  and 1 0β > . The condition for 

covariance-stationarity is ( )1 1 1/ 2 1α γ β+ + < . If this 

condition is satisfied, the unconditional variance of tε  is

( )( )2
1 1 1/ 1 / 2σ ω α γ β= − + − . 

The NIC for the GJR-GARCH model follows directly 
from Equation (6) and is equal to 

( )2|t tNIC h Aε σ= = + 2
1 tα ε  if 0tε <  

2
1 tγ ε  if                                  (7) 

where 2
1A ω β σ= + . The NIC of the TGARCH model is a 

quadratic function centred on , similar to the NIC of 
the basic GARCH model. However, the slopes of the 
TGARCH NIC are allowed to be different for positive and 
negative shocks. 

4.2.2. Exponential GARCH (EGARCH) 

Another commonly used volatility model with leverage 
effect is the exponential GARCH (or EGARCH) model of 
Nelson [20, 27]. The EGARCH (1,1) model is given by 

  (8) 

where t
t

t

Z
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=  

From Equation (8), we see that the coefficients of 1tZ −  are 

( )1 1α γ+  and ( )1 1α γ− , respectively, for positive and 

negative 1tZ − . Taking into consideration the sign of 1tZ − , 1α  

draws the difference between positive and negative 1tZ − . 

Therefore, 1α  of Equation (8) is called the leverage 

parameter [27]. 
As the EGARCH, Equation (8), describes the relation 

between past shocks and the logarithm of the conditional 
variance, no restrictions on the parameters 1 1,α γ  and 1β  

have to be imposed to ensure that th  is nonnegative. The 

NIC for the EGARCH (1,1), Equation (8), is given by 
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with ( )12
1exp 2A

βσ ω γ π= −  

The EGARCH model captures asymmetric effects in the 
data. It also provides the best description and a parsimonious 
representation in stock return modeling. 

In the case of leverage effect is statistically significant, the 
decrease in the share price will have a greater impact on the 
subsequent volatility than the rise in the share price of the 
same size. Hence, we can expect that negative shocks have a 
larger effect on the conditional variance than positive shocks. 

4.2.3. Power GARCH Model (PGARCH) 

Taylor [25] and Schwert [24] introduced the standard 
deviation GARCH model, where the standard deviation is 
modeled rather than the variance. This model, along with 
several other models, is generalized in Ding et al. [5] with the 
Power ARCH specification. In the Power ARCH model, the 
power parameter δ  of the standard deviation can be 
estimated rather than imposed, and the optional γ  parameters 

are added to capture asymmetry of up to order r : 

( )
1 1

q p

t j t j i t i i t i

j i

ϑϑ ϑσ ω β σ α ε γ ε− − −
= =

= + + −∑ ∑            (10) 

where i i>0, >0, 0, 0ω ϑ α β≥ ≥ , i 1γ ≤  for i 1,...,p= , 0iγ =  

for all >ri , and r p≤ . 

4.2.4. Markov-Switching GARCH 

In the previous specifications, the parameters in the model 
change according to the sign and/or the size of the lagged 

shock . Therefore, these models can be interpreted as 

regime-switching models where the regime is determined by 
an observable variable, similar in spirit to the SETAR and 
STAR models for the conditional mean. 

An obvious alternative is to assume that the regime is 
determined by an unobservable Markov-process ts , as in the 

Markov-Switching model. A general Markov-Switching 
GARCH [MSW-GARCH] model is given by 

2 2
1 1 1 1 1 1 1 11 2t t t t t t th h I s h I sω α ε β ζ γ ε δ− − − −   = + + = + + + =              (11) 

where ts  is a two-state Markov chain with transition 

probabilities. The general form in Equation (11) is considered 
by Klaassen [17]. 

5. Applied Study 

This study will be conducted on the daily data of the 
Egyptian Stock Exchange General Index EGX30 and the 
previous and subsequent index data to the global financial 
crisis. 

We compare the forecasting performance of several 
GARCH-type models under three different distributional 
assumptions, namely the normal, student’s t and the GED-

distribution 2. 

5.1. GARCH Models 

5.1.1. Model Description
 
 

A quick study of descriptive statistics for index EGX30 
according to Table 1, the most important can be seen below: 

Table 1. Descriptive Statistics. 

 
EGX30 

Mean 5377.715 
Median 5620.355 
Maximum 14342.38 
Minimum 445.53 
Std. Dev. 3492.094 
Skewness 0.229673 
Kurtosis 2.449604 
Jarque-Bera 92.89359 
Probability 0.0000 
Observations 4338 

There are abnormal or extreme values but small percentage 
(not significant). By testing the presence of outliers, and 
noting the Box–plot shown in Figure 1, it appears that the 
time series has no outliers. 

The distribution is positive skew indicates that the tail is 
on the right (the curve is bent to the right). 

The curve has also a flat top means that the variables have 
a platykurtic (Excess kurtosis) distribution. Thus, the use of 
Student's t distribution is more appropriate to capture the fat 
tail in the time series and better estimate the data. 

Given the Jarque-Bera statistic [16], we reject the null 
hypothesis that series data follow normal distribution. 

 

Figure. 2. Time series after deleting the general trend. 

It is clear from examination of the linear graph for daily 
time series at Figure 1, a general trend apparent in series 
which indicates the arithmetic mean instability. As can be 
seen when we examine the autocorrelation function ACF and 
partial autocorrelation function PACF in the graph of 
"Correlogram", which need to take successive differences in 

                                                             
(2) Software has been used Excel, Minitab, E-views, and R programs in dealing 
with the data. 

1−tε
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trying to get stationary in mean.  

 

Figure 1. Box–Plot and Linear Graph for daily time series. 

As the value of the Augmented Dickey-Fuller test (ADF) 
[3] is 0.073 also the value of P-value is 0.9637 which greater 
than 5%. Thus, accept the null hypothesis that unit root test 
confirms the need to take successive differences to get 
stationary in series. Also the instability of variations over the 
series that show from different fluctuations which appears 
clearly after deleting the general trend by taking the first 
difference of the series as shown in Figure 2. 

Therefore, we find that it has to make the analysis of daily 
data series to so-called returns series for stable time series. A 
return series takes the following form: 

( )1 1ln ln lnt t t t tr p p p p+ += = −  

where tp  and 1tp +  denote the successive observations of the 

general index at time t  and time 1t + , respectively. 
The following Figure 3 show the linear graph of the return 

series. Contrast of Figure 2, we find that the conversion of 
the general index to returns produced stationary time series. 

When we examine the ACF and PACF of the returns 
series, the coefficients of autocorrelation and partial 
autocorrelation absent after the first time gap that mean they 
are significant at only the first gap. 

As P-value of the statistic test Dickey-fuller equal to 
0.000. Therefore, reject the null hypothesis that the unit root 
test confirms the returns series appear stable. This is strong 
evidence supports that ARIMA (0,1,0) suitable for time series 
and we can begin to estimate the parameters of the model AR 
(p) and MA (q). 

We repeat the same procedures and Previous tests on the 
previous and subsequent index data to the global financial 
crisis (Before & After). 

 

Figure 3. Linear Graph of the return series. 

5.1.2. Estimation of ARIMA Model Parameters 
We make several attempts to estimate a suitable ARIMA 

model-after excluding models that contain insignificant 
parameters, and note that these models are covered up to AR 
(3) and MA (3) for both model parameters. 

The best model for the three periods was chosen based on 
the following selection criteria; information criterion AIC, S. E. 
of regression (SEE), Adjusted R-squared and Log likelihood. 
Correlogram-Q-statistics should show that there is no 
significant pattern left in the ACFs and PACFs of the residuals, 
it means the residuals of the selected model are white noise. 

According to statistical results, models ARIMA (2,1,3), 
ARIMA (3,1,3) and ARIMA (2,1,1) have the four previous 
terms as shown in Table 2. 

Table 2. The best ARIMA models. 

 
ARIMA Models Akaike Adjusted R-squared S. E. of regression Log likelihood 

EGX30 ARIMA (2,1,3) -5.102557 0.010331 0.018856 11065.79 
Before ARIMA (3,1,3) -4.964508 0.010684 0.020185 5271.861 
After ARIMA (2,1,1) -5.301409 0.047722 0.017068 5862.057 

 
Appendix, Table A1 contains the results of the previous 

estimated models for return series. 

5.1.3. Diagnostic Tests of Proposed Models 
By reference to Appendix, Table A1, note that the 

parameters of all models at the level of 1% significance. As 
can be seen from the Figure 4 that the roots of parameters in 
case of characterize ARIMA models approaching the unit 
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circle 3. 
First: Serial Correlation tests [3]: 
Representation Correlogram square residual or 

Correlogram-Q-statistics: 
We note that all the autocorrelation coefficients and partial 

autocorrelation coefficients of the residuals fall within the 
confidence limits. We also note that most of the values of P-
value less than 5%. Therefore, we reject the null hypothesis 
and accept the alternative hypothesis that these models have 
serial correlation. 

Breusch-Godfrey Serial Correlation LM Test: 
By running this test, we note that P-value < 0.05. 

Therefore, we reject the null hypothesis that there is no serial 
correlation in residuals which mean the estimated models 
have serial correlation. 

Second: ARCH test (Heteroskedasticity Test: ARCH) [3]: 
Before estimating a GARCH models, it is important also to 

run the Engle [6] test for the ARCH effect to make sure that 
this model is appropriate for the data. 

By running this test, we note that P-value = 0.000, which 
means significant effect of remaining ARCH behaviour for 
the estimated models. 

Third: Test of Normality: 
By running this test and noting Jarque-Bera statistic as 

well as the value of P-value, we can reject the null hypothesis 
and accept the alternative hypothesis that the residuals do not 
follow the normal distribution. 

Thus, according to these tests, the decision is reject the 
null hypothesis that the stability of variations is 
homoscedastic normal process and accept the alternative 
hypothesis that there is conditional variance 
heteroskedasticity. So we need to complete the analysis by 
estimating GARCH model of conditional variance. 

 

EGX30 

                                                             
(3) Note that: The graph view plots the roots in the complex plane where the 
horizontal axis is the real part and the vertical axis is the imaginary part of each 
root. If the estimated ARMA process is stationary, then all AR roots should lie 
inside the unit circle. If the estimated ARMA process is invertible, then all MA 
roots should lie inside the unit circle [8]. 

 

Before 

 

After 

Figure 4. Graphs for the roots of parameters of ARIMA models. 

5.1.4. Study of the Variations of Estimating Models and 

Estimate Different forms of GARCH Models 

This study investigates the performance of six GARCH-
type models to predict the volatility. They are; GARCH and 
CGARCH representing symmetric models, PGARCH, 
EGARCH, TGARCH and MSW-GARCH models 
representing asymmetric models, under three different 
distributional assumptions, namely the normal, student’s t 
and the GED-distribution. Noting that these models are 
covered up to the third order for both model parameters 
except for the MSW-GARCH models, which are covered 
with only the first order. 

Estimate the suitable model orders by using information 

criterions: 
To select the optimal GARCH model's orders, AIC criteria 

were used. GARCH model's orders should be chosen which 
minimum AIC value. 

To reach appropriate GARCH models which follow the 
three distributions (normal, Student's t and GED), we 
analyzed results of estimating GARCH models based on 
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ARIMA models description of conditional mean for daily 
data. Note that, these models must not violate non-negativity 
restriction on coefficients and all parameters must be 
significant. 

5.1.5. Diagnostic Tests of Estimated Models 
We conduct some diagnostic tests to ensure the integrity of 

the characterization of estimated models of daily returns 
which consists of: Correlogram square residual or 
Correlogram-Q-statistics and ARCH LM test. 

Appendix, Table A2 Shows the final results of estimating 
GARCH models according to different distributions. 

5.1.6. Assess Forecast Models 

This section cares assess the performance of GARCH 
models that we estimated previously to predict volatility, to 
access the best one in terms of quality in the characterization 
and forecasting data. We will use four of the evaluation metrics 
to estimate the prediction accuracy [3] for observations out of 
sample to reach the finest model of their appropriate. These 
metrics are: Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Mean Absolute Percentage Error (MAPE) and 
Theil's Inequality Coefficient (U). 

Table 3 includes the best models for forecasting as a result 
of the predictions evaluation of volatility out-of-sample of 
the GARCH models which follows one of each distribution 

(Normal, Student's t or GED) in some horizon of forecasting. 
Notes on Table 3: 
For the entire EGX30 index data, the model ARIMA 

(2,1,3)-TGARCH (1,1) GED demonstrated preference in 
short and long term (four periods ahead). 

For the pre-crisis period, we note that the preference in 
forecasting has shifted from the model ARIMA (3,1,3)-
EGARCH (1,1) GED-which proved to be efficient in the 
short-term forecast up to 180 working days, to the model 
ARIMA (3, 1,3)-TGARCH (1,1) N-which has proven to be 
effective in the long-term forecast 365 working days. It is 
also worth noting that the ARIMA (3,1,3)-TGARCH (1,1) N 
is superior to the ARIMA (3,1,3)-EGARCH (1,1) GED only 
in relation to the MAE over prediction periods. The two 
models will be considered when applying the Markov 
Switching GARCH model. 

For the post-crisis period, the model ARIMA (2,1,1)-
TGARCH (1,1) N has proven to be efficient in terms of its 
ability to describe structural changes in returns caused by The 
global financial crisis, as it demonstrated its preference in 
forecasting over a period of more than 30 working days. 

As the kurtosis factor for data is close to the kurtosis factor 
for normal distribution, models which follow normal 
distribution can be chosen. 

Table 3. The best GARCH models for forecasting. 

Range Period Model MAE RMSE MAPE U 

30-step ahead 

the entire daily data ARIMA (2,1,3)-TGARCH (1,1) GED 0.0068079 0.008365 117.21354 0.8475055 

before 
ARIMA (3,1,3)-EGARCH (1,1) GED 0.0389029 0.0519864 105.04435 0.7634604 
ARIMA (3,1,3)-TGARCH (1,1) N 0.0383618 0.0523441 162.43325 0.7687131 

after ARIMA (2,1,1)-GARCH (1,1) N 0.0066709 0.0082397 129.28977 0.8348096 

90-step ahead 

the entire daily data ARIMA (2,1,3)-TGARCH (1,1) GED 0.003997 0.0062327 91.298786 0.8454707 

before 
ARIMA (3,1,3)-EGARCH (1,1) GED 0.0215264 0.0352633 66.613275 0.7809804 
ARIMA (3,1,3)-TGARCH (1,1) N 0.0211387 0.035355 88.867876 0.7830108 

after ARIMA (2,1,1)-TGARCH (1,1) N 0.0039354 0.0061937 91.062653 0.8401917 

180-step 
ahead 

the entire daily data ARIMA (2,1,3)-TGARCH (1,1) GED 0.0019984 0.0044076 45.555742 0.8455549 

before 
ARIMA (3,1,3)-EGARCH (1,1) GED 0.0107218 0.0248775 33.626632 0.7791823 
ARIMA (3,1,3)-TGARCH (1,1) N 0.0105806 0.0249439 43.306194 0.7812621 

after ARIMA (2,1,1)-TGARCH (1,1) N 0.0019674 0.004384 44.479202 0.8410373 

365-step 
ahead 

the entire daily data ARIMA (2,1,3)-TGARCH (1,1) GED 0.0009837 0.0030927 22.373992 0.8448673 

before 
ARIMA (3,1,3)-TGARCH (1,1) N 0.0052302 0.0175224 21.594864 0.7815131 
ARIMA (3,1,3)-EGARCH (1,1) GED 0.0052862 0.0175577 15.574084 0.7830887 

after ARIMA (2,1,1)-TGARCH (1,1) N 0.0009687 0.0030768 21.966097 0.8405176 
 

5.1.7. Chow Test 

A Chow test [12] was performed to determine whether the 
estimated model in the pre-crisis period could be applied on 
the post-crisis period. 

The null hypothesis is H0: there is no structural change 
(parameters are same for both subsamples), and the 
alternative hypothesis H1: there is a structural change. The 
null hypothesis is rejected at F*> Fc. 

We applied this test to the following models; The entire 
series model ARIMA (2,1,3)-TGARCH (1,1) GED, the pre-
crisis model ARIMA (3,1,3)-EGARCH (1,1) GED, and the 
post-crisis model ARIMA (2,1,1)-TGARCH (1,1) N. 

Conclusion: F* = 5.4592 > Fc = 1.83 ==> reject H0. 
Meaning that there is a structural change in the sample (i.e. 
considering the specific date of the crisis in the study as a 
turning point). Consequently, the post-crisis model is the best 
to predict in the future, that is, ARIMA (2,1,1)-TGARCH 
(1,1) N. 

Figure 5 shows linear graphs of the estimated values for 
ARIMA (3,1,3)-EGARCH (1,1) GED, and ARIMA (2,1,1)-
TGARCH (1,1) N, and a turning point (Structural change): 

Note that: 
By comparing the accuracy of the models over the 

prediction periods based on the evaluation metrics (MAE, 
RMSE and MAPE), the two models; ARIMA (2,1,3)-
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TGARCH (1,1) GED and ARIMA (2,1,1)-TGARCH (1,1) N 
are the best for forecasting. 

By comparing the accuracy of the predicted model for the 
entire series with the another for the post-crisis series over 
the forecasting periods Table 3, we note that the post-crisis 
model is the best. 

According to Chow Test, it is possible to confirm the 
validity of what we have mentioned, Item No. 2 at notes on 
Table 3, that the preference in forecasting has shifted to the 
model ARIMA (3,1,3)-TGARCH (1,1) N-which proved to be 
efficient in predicting over 365 working days. 

The following Figure 6 shows predictive values with real 
values in some horizon of forecasting (Out of sample). 

 

 

 

Figure 5. Linear Graphs for the two pre-and post-crisis periods and a 

turning point. 

 

 

30-step ahead. 

 

 

90-step ahead. 

 

 

180-step ahead. 
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365-step ahead. 

Figure 6. Predictive values with Real values in some horizon of forecasting. 

Experimental Results 
It proved the advantage of the normal and GED 

distribution, as it also proved that the EGX30 was affected by 
the crisis. 

According to the Table 3 and Figure 6 we can conclude 
that the models ARIMA (2,1,3)-TGARCH (1,1) and ARIMA 
(3,1,3)-EGARCH (1,1) which follow GED distribution and 
ARIMA (2,1,1)-TGARCH (1,1) which follows normal 
distribution are the best models which can provide more 
accurate predictions and descriptions of data. 

By comparing the prediction accuracy of the two estimated 
models for both the entire and post-crisis series as well as 
according to the Chow test, we can conclude that the model 
ARIMA (2,1,1)-TGARCH (1,1) which follows normal 
distribution best describes the volatility of daily returns. 

Dependency of model estimates to normal distribution can 
be consistent as a result, due to the distribution of series data 
close to the kurtosis coefficient of normal distribution. 

5.2. Markov Switching GARCH 

In this section, we develop Markov-switching GARCH 
model which enables us to model GARCH equations for 
different functional forms (GARCH, TGARCH and 
EGARCH Specifically) within two Markov-regimes. 

Markov Switching GARCH models were estimated using 
Maximum-likelihood [13]. According to the results above, 
the preference of Markov Switching GARCH models will be 
tested in some horizon of forecasting with these assumptions: 

The model TGARCH (1,1) GED in both regimes, based on 
its preference to predict taking into account the entire series 
data. 

Two models; EGARCH (1,1) GED in the first regime and 
TGARCH (1,1) N in the second, based on the preference of 
the first for predicting the pre-crisis period and the second for 
predicting the post-crisis period. 

The model TGARCH (1,1) N in both regimes, based on 
what the study concluded after proving The presence of 
structural change and transformation (turning) after the date 

of the crisis. 
Our findings indicated the validity of the estimated 

Markov Switching model with the second assumption to 
describe the data and forecast only at P-value > 0.079 for the 
parameter 22α , and the invalidity of the other two 

assumptions due to insignificance some of their parameters. 
Appendix, Table A3 shows the estimates results for the 

Markov Switching model assuming EGARCH (1,1) GED in 
the first regime and TGARCH (1,1) N in the second. 

Note that the parameter 22α  is only significant at P-

value > 0.079, and we suggest completing the study. 
Figure 7 shows the volatility curve for the estimated 

model: 

 

Figure 7. Conditional volatility for the estimated model. 

The following Table 4 shows the prediction accuracy for 
the model over different periods ahead: 

Table 4. The prediction accuracy for MSW-GARCH model. 

Range MAE RMSE MAPE 

30-step ahead 0.01682692 0.01866172 97.90138 
90-step ahead 0.0171199 0.0189789 92.13989 
180-step ahead 0.01895995 0.02114778 98.85186 
365-step ahead 0.01952385 0.02200297 100.2956 

From Table 4 we can notice that the estimated model 
demonstrated an ability to produce relatively accurate short-
term forecasts of EGX30’s volatility. 

By comparing the prediction accuracy of this model with 
the model ARIMA (2,1,1)-TGARCH (1,1) N in Tables 3 and 
4, Consequently, Markov Switching model, assuming 
EGARCH (1,1) GED in the first regime and TGARCH (1,1) 
N in the second did not gain an advantage over the estimated 
uni-regime GARCH models. Thus, uni-regime GARCH 
yields significantly better volatility forecasts than regime-
switching GARCH. 

6. Conclusion 

This study evaluates the forecast accuracy of some specific 
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GARCH-models; GARCH, CGARCH, EGARCH, 
TGARCH, PGARCH and MSW-GARCH. The forecast 
horizon was 30, 90, 180 and 365 working days ahead. All 
models were estimated under three distributional 
assumptions, i.e., normal-, t-and GED-distribution. The study 
was performed on the entire data in addition to the two 
divided sample periods (previous and subsequent to the 
global financial crisis on September 15, 2008). 

Our results suggest that improvements of the overall 
estimation are achieved when asymmetric GARCH are used 
and when fat-tailed densities are taken into account in the 
conditional variance. Moreover, it is found that TGARCH 
and EGARCH give better forecasts than symmetric GARCH. 

With respect to the asymmetric reaction of the predicted 
volatility to good and bad news, our results also suggest that; 
for the two entire and post-crisis period, we find there is an 
adverse asymmetric reaction with good news increasing the 
volatility more than bad news but for the pre-crisis period, it 
confirm the absence of leverage effect. 

According to the empirical application, Non-normal 
distributions provide better in-sample results than the Normal 
distribution. Out-of-sample results show however less 
evidence of superior forecasting ability. 

Given Chow test, there is a structural change. 

Consequently, the EGX30 was affected by the crisis. 
Finally, the result shows that the uni-regime GARCH 

models are superior in predictive ability on EGX30 compared 
to the regime-switching GARCH models. And based on the 
forecast horizon in the sample outside the study, the post-
crisis model ARIMA (2,1,1)-TGARCH (1,1) N is chosen as 
the best prediction model. 

A natural line of future research could be the extension of 
our framework to more than two Markov-regimes. Other 
estimation procedures than ML approach may be implemented, 
for example Bayesian Markov Chain Monte Carlo (MCMC) 
algorithms which have the potential to provide an alternative 
way of circumventing the problem of path dependence. More 
research can also be done about identifying transition 
probabilities as a function of previous information. 
Furthermore, comparing the MSW-GARCH models with 
others and arranging their performance in terms of suitability 
and predicting the out-of-sample volatility to test their fit. 

Moreover, several directions (not included in this study) 
could be explored to improve the forecasts of the volatility of 
financial time series. for example, “true volatility” could be 
better estimated by selecting shorter time intervals. Hence, 
this study promises to study volatility persistence in more 
detail to improve volatility forecasts even further. 

Appendix 

Table A1. The results of models ARIMA (2, 1, 3), ARIMA (3, 1, 3) and ARIMA (2, 1, 1) for the three periods, respectively. 

( ) ( )2 3ln t tL p L εΦ ∆ = Θ
 

( )( ) ( )2 2 3
2 2 31 1 ln 1t tL L L p L L Lϕ ϕ θ θ θ ε− − − = + + +

 
EGX30 

Parameter Coefficient Std. Error t-Statistic P-Value 

Mean Equation     
C  0.00057 0.00032 1.781851 0.0748 

1ϕ
 1.465447 0.032934 44.49642 0.0000 

2ϕ
 -0.913984 0.030158 -30.30623 0.0000 

1θ
 -1.391852 0.036207 -38.44195 0.0000 

2θ
 0.829612 0.034326 24.16893 0.0000 

3θ
 0.062865 1.64E-02 3.824089 0.0001 

Akaike info criterion -5.102557    
Log likelihood 11065.79    
R-squared 0.011473    
Adjusted R-squared 0.010331    
S. E. of regression 0.018856    

( ) ( )3 3ln t tL p L εΦ ∆ = Θ  

( )( ) ( )2 3 2 3
2 3 2 31 1 ln 1t tL L L L p L L Lϕ ϕ ϕ θ θ θ ε− − − − = + + +  

Before 

Parameter Coefficient Std. Error t-Statistic P-Value 

Mean Equation     
C  0.001614 0.001018 1.585259 0.1131 

1ϕ  0.490746 0.005069 96.81734 0.0000 

2ϕ  -0.489025 0.005599 -87.33686 0.0000 

3ϕ  
0.991266 0.005054 196.1502 0.0000 
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Parameter Coefficient Std. Error t-Statistic P-Value 

Mean Equation     

1θ  -0.49435 0.007793 -63.43672 0.0000 

2θ  0.487147 0.008433 57.76597 0.0000 

3θ  -0.979877 7.80E-03 -125.6206 0.0000 

Akaike info criterion -4.964508    
Log likelihood 5271.861    
R-squared 0.013484    
Adjusted R-squared 0.010684    
S. E. of regression 0.020185    

( ) ( )2 1ln t tL p L εΦ ∆ = Θ  

( )( ) ( )2
21 1 ln 1t tL L L p Lϕ ϕ θ ε− − − = +  

After 

Parameter Coefficient Std. Error t-Statistic P-Value 

Mean Equation     
C  0.000308 0.000449 0.686022 0.4928 

1ϕ
 

-0.576555 0.078361 -7.357662 0.0000 

2ϕ
 

0.134988 0.026512 5.091655 0.0000 

1θ
 

0.783694 7.56E-02 10.3699 0.0000 

Akaike info criterion -5.301409    
Log likelihood 5862.057    
R-squared 0.049015    
Adjusted R-squared 0.047722    
S. E. of regression 0.017068    

Table A2. The final results of estimating GARCH models according to different distributions. 

EGX30 

Mean Equation ( ) ( )2 3ln t tL p L εΦ ∆ = Θ  

ARIMA (2,1,3) ( )( ) ( )2 2 3
2 2 31 1 ln 1t tL L L p L L Lϕ ϕ θ θ θ ε− − − = + + +  

Variance Equations  

GARCH (1,1) 
Student's t 

GARCH = C(7) + C(8)*RESID(-1)^2 + C(9)*GARCH(-1) 
GED 

  

2
1 1 1 1t t th hω α ε β− −= + +  

Where 2
t th σ=  

EGARCH (1,1) 
Student's t LOG(GARCH) = C(7) + C(8)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(9) *RESID(-1)/@SQRT(GARCH(-

1)) + C(10)*LOG(GARCH(-1)) GED 

  

( ) ( ) ( )1 1 1 1 1 1ln | | lnt t t th z z hω α γ β− − −= + + +  

Where 1
1

1

t
t

t

z
ε
σ

−
−

−
=  

TGARCH (1,1) 
Student's t 

GARCH = C(7) + C(8)*RESID(-1)^2 + C(9)*RESID(-1)^2*(RESID(-1)<0) + C(10)*GARCH(-1) 
GED 

  
{ }1

2 2
1 1 1 1 1 10t

t t t th I hεω α ε γ ε β
−− − −〈= + + +  

Where { }0 1
t

I ε 〈 =  if , and 0  otherwise 

 

 

GARCH EGARCH TGARCH 

Distributions Distributions Distributions 

Student's t GED Student's t GED Student's t GED 

Mean Equation 

C  0.001106 0.000966 0.000843 0.000834 0.000912 0.000859 
P-Value 0.00000 0.00000 0.00020 0.00010 0.00010 0.00010 

1ϕ  1.26145 0.277041 -0.438553 -0.421623 1.256228 0.272408 
P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

2ϕ  -0.880473 -0.96562 -0.775267 -0.758614 -0.85622 -0.957798 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1θ  -1.082579 -0.09373 0.618713 0.603607 -1.075696 -0.088071 
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GARCH EGARCH TGARCH 

Distributions Distributions Distributions 

Student's t GED Student's t GED Student's t GED 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00010 

2θ
 0.660611 0.915823 0.840817 0.823933 0.637724 0.908410 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

3θ
 0.172337 0.18559 0.134265 0.133475 0.17076 0.186447 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
Variance Equation 
ω  0.000016 0.000014 -0.743927 -0.699777 0.000018 0.000015 
P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1α
 0.197982 0.190382 0.317343 0.315979 0.143175 0.155070 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
γ    -0.058742 -0.045232 0.114251 0.076547 
P-Value   0.00000 0.00100 0.00010 0.00800 

1β
 0.765715 0.782085 0.93931 0.944085 0.754053 0.774307 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
α β+  0.963697 0.972467 1.256653 1.260064 0.897228 0.929377 

Log Likelihood 12095.14 12047.59 12124.99 12069.45 12103.74 12051.57 
Akaike info criterion -5.575612 -5.553676 -5.588923 -5.563300 -5.57912 -5.555051 
Schwarz criterion -5.560908 -5.538971 -5.572748 -5.547125 -5.562945 -5.538876 
Hannan-Quinn criter. -5.570421 -5.548484 -5.583213 -5.557589 -5.573409 -5.549341 
Adjusted R-squared -0.003041 -0.004890 -0.004414 -0.004788 -0.002638 -0.005010 

Before 

Mean Equation ( ) ( )3 3ln t tL p L εΦ ∆ = Θ  

ARIMA (3,1,3) ( )( ) ( )2 3 2 3
2 3 2 31 1 ln 1t tL L L L p L L Lϕ ϕ ϕ θ θ θ ε− − − − = + + +  

Variance Equations  
GARCH (1,1) Normal GARCH = C(8) + C(9)*RESID(-1)^2 + C(10)*GARCH(-1) 

  

2
1 1 1 1t t th hω α ε β− −= + +  

Where 2
t th σ=  

EGARCH (1,1) GED 
LOG(GARCH) = C(8) + C(9)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(10)*RESID(-
1)/@SQRT(GARCH(-1)) + C(11)*LOG(GARCH(-1)) 

  

( ) ( ) ( )1 1 1 1 1 1ln | | lnt t t th z z hω α γ β− − −= + + +  

Where 1
1

1

t
t

t

z
ε
σ

−
−

−
=  

TGARCH (1,1) Normal GARCH = C(8) + C(9)*RESID(-1)^2 + C(10)*RESID(-1)^2*(RESID(-1)<0) + C(11)*GARCH(-1) 

  
{ }1

2 2
1 1 1 1 1 10t

t t t th I hεω α ε γ ε β
−− − −〈= + + +  

Where { }0 1
t

I ε 〈 =  if , and 0  otherwise 

 

 

GARCH EGARCH TGARCH 

Distribution Distributions Distributions 

Normal GED Normal 

Mean Equation 

C  0.000781 0.001791 0.000983 
P-Value 0.0342 0.02470 0.05850 

1ϕ  -0.141939 0.431413 0.952157 

P-Value 0.0309 0.00000 0.00000 

2ϕ  -0.765784 0.469095 0.295255 

P-Value 0.00000 0.00000 0.00010 

3ϕ  -0.479022 0.095440 -0.250073 

P-Value 0.00180 0.00000 0.00030 

1θ  0.352876 -0.282127 -0.700292 

P-Value 0.00000 0.00000 0.00000 

2θ  0.724906 -0.551987 -0.508393 

P-Value 0.00000 0.00000 0.00000 

3θ  0.684393 -0.158541 0.210295 
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GARCH EGARCH TGARCH 

Distribution Distributions Distributions 

Normal GED Normal 

P-Value 0.00130 0.00000 0.00090 
Variance Equation 
ω  0.000010 -0.620410 0.000004 
P-Value 0.00000 0.00000 0.00000 

1α  0.230589 0.295677 0.148970 

P-Value 0.00000 0.00000 0.00000 
γ   -0.007863 -0.114199 
P-Value  0.70190 0.00000 

1β  0.787741 0.951185 0.905532 

P-Value 0.00000 0.00000 0.00000 
α β+  1.018330 1.246862 1.054502 

Log Likelihood 5654.658 5850.578 5624.754 
Akaike info criterion -5.322638 -5.505496 -5.293497 
Schwarz criterion -5.295954 -5.473475 -5.264145 
Hannan-Quinn criter. -5.312869 -5.493773 -5.282752 
Adjusted R-squared -0.090811 -0.025679 -0.077398 

After 

Mean Equation ( ) ( )2 1ln t tL p L εΦ ∆ = Θ  

ARIMA (2,1,1) ( )( ) ( )2
21 1 ln 1t tL L L p Lϕ ϕ θ ε− − − = +  

Variance Equations  

GARCH (1,1) 
Normal 

GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*GARCH(-1) 
Student's t 

 

2
1 1 1 1t t th hω α ε β− −= + +  

Where 2
t th σ=  

EGARCH (2,2) Normal 
LOG(GARCH) = C(5) + C(6)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(7)*ABS(RESID(-2)/@SQRT(GARCH(-
2))) + C(8)*RESID(-1)/@SQRT(GARCH(-1)) + C(9)*LOG(GARCH(-1)) + C(10)*LOG(GARCH(-2)) 

 ( ) ( ) ( ) ( )1 1 2 2 1 1 1 1 2 2ln | | | | ln lnt t t t t th z z z h hω α α γ β β− − − − −= + + + + +  

EGARCH (1,1) 
Student's t LOG(GARCH) = C(5) + C(6)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(7)*RESID(-1)/@SQRT(GARCH(-1)) + 

C(8)*LOG(GARCH(-1)) GED 

  

( ) ( ) ( )1 1 1 1 1 1ln | | lnt t t th z z hω α γ β− − −= + + +  

Where 1
1

1

t
t

t

z
ε
σ

−
−

−
=  

TGARCH (1,1) 
Normal 

GARCH = C(5) + C(6)*RESID(-1)^2 + C(7)*RESID(-1)^2*(RESID(-1)<0) + C(8)*GARCH(-1) 
Student's t 

  
{ }1

2 2
1 1 1 1 1 10t

t t t th I hεω α ε γ ε β
−− − −〈= + + +  

Where { }0 1
t

I ε 〈 =  if , and 0  otherwise 

 

 

GARCH EGARCH TGARCH 

Distributions Distributions Distributions 

Normal Student's t Normal Student's t GED Normal Student's t 

Mean Equation 
C  0.000930 0.001142 0.000379 0.000682 0.000726 0.000438 0.000816 
P-Value 0.01430 0.00040 0.32170 0.03450 0.02240 0.25360 0.01200 

1ϕ  -0.788299 -0.463981 -0.693387 -0.455991 -0.802141 -0.775475 -0.451793 

P-Value 0.00000 0.00020 0.00000 0.00010 0.00000 0.00000 0.00010 

2ϕ  0.206103 0.088740 0.189313 0.088108 0.190106 0.215350 0.090525 

P-Value 0.00000 0.00880 0.00000 0.00690 0.00000 0.00000 0.00650 

1θ  0.997803 0.654608 0.916511 0.657139 0.996321 0.996284 0.652009 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 
Variance Equation 
ω  0.000011 0.000015 -0.966273 -0.692438 -0.613285 0.000011 0.000016 
P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

1α  0.161166 0.166711 0.247325 0.264860 0.253255 0.077957 0.080218 

P-Value 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00010 



 American Journal of Theoretical and Applied Statistics 2020; 9(5): 185-200 199 
 

 

GARCH EGARCH TGARCH 

Distributions Distributions Distributions 

Normal Student's t Normal Student's t GED Normal Student's t 
γ    0.185809 -0.098585 -0.090552 0.144228 0.158034 
P-Value   0.00000 0.00000 0.00000 0.00000 0.00000 

2α    -0.152839     

P-Value   0.00000     

1β  0.806889 0.786401 0.303079 0.941654 0.950232 0.812447 0.781615 

P-Value 0.00000 0.00000 0.00080 0.00000 0.00000 0.00000 0.00000 

2β    0.620964     

P-Value   0.00000     
α β+  0.968055 0.953112 1.357177 1.206514 1.203487 0.890404 0.861833 

Log Likelihood 6148.169 6231.994 6165.723 6243.65 6228.228 6166.737 6243.638 
Akaike info criterion -5.557619 -5.632574 -5.570790 -5.642217 -5.628261 -5.573518 -5.642207 
Schwarz criterion -5.539562 -5.611937 -5.544995 -5.619001 -5.605045 -5.552882 -5.618991 
Hannan-Quinn criter. -5.551022 -5.625035 -5.561367 -5.633736 -5.619779 -5.565979 -5.633725 
Adjusted R-squared 0.035381 0.044397 0.042731 0.045620 0.036158 0.035890 0.045444 

Table A3. The estimate results for the Markov Switching model assuming EGARC (1,1) GED in the first regime and TGARCH (1,1) N in the second. 

Parameter Estimate Std. Error Pr(>|t|) 

Mean Equation    
01α  -0.4685 0.0802 0.000000 

11α  0.2519 0.0263 0.000000 

21α  -0.0602 0.0111 0.000000 

1β  0.9452 0.0095 0.000000 

1γ  1.5200 0.0558 0.000000 

02α  0.0736 0.0131 0.000000 

12α  0.5724 0.4051 0.000000 

22α  0.0002 0.0000 0.078830 

2β  0.0006 0.0000 0.000000 

11p  0.9931 0.0868 0.000000 

22p
 0.5749 0.0034 0.000000 

Transition matrix:    
 t+1|k=1 t+1|k=2  
t|k=1 0.9931 0.0069  
t|k=2 0.5749 0.4251  
Stable probabilities:    
 State 1 State 2  
 0.9882 0.0118  
AIC -24081.8432   
LL 12051.9216   
BIC -24011.7188   
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