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Abstract: Spatial modeling is increasingly prominent in many fields of science as statisticians attempt to characterize 

variability of the processes that are spatially indexed. This paper shows that the Gaussian random field framework is 

useful for characterizing spatial statistics for soil properties. A sample of soil properties in 94 spatial locations are taken 

from a field (186.35m×211.44m) wide in northern Ethiopia, Karsa-Malima. We use observations of organic carbon (OC) 

from the site in our study. Box-Cox transformation is used because of OC follows non-Gaussian distributions. We 

develop ordinary kriging which is universal kriging with unknown trend models which enables us to predict any point 

within the field even outside the field up to the “Range” of the model. In this thesis work we predict 100×100 grids 

(10000 points) using kriging interpolation models. More over in each of these 10000 locations 1000 conditional 

simulations are made. Interestingly prediction using universal kriging and mean of conditional simulations agree in 

expectation and kriging variance. For covariance and/or variogram modeling and for parameter estimation we used least 

square principle and maximum likelihood estimation method. The classical geostatistical approach known as kriging is 

used as a spatial model for spatial prediction with associated spatial variances. Moreover, conditional simulation is 

performed. From ordinary kriging model results, predictions are accurate when predictions are close to observation 

locations. Prediction variance in the observed locations is close to the nugget effect. 
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1. Introduction 

The concern of spatial variability in geostatistics is very 

important. Geostatisticians are mainly concerned with 

solving practical problems arise in the analysis of spatially 

correlated variables [1]. Observations indexed spatially have 

some pattern of correlation. Although not universally true 

objects in close proximity are more alike [2]. Knowledge of 

spatial variation of soil property is important in precision 

farming and environmental modeling [3]. 

The aim of this paper is to perform optimal prediction of soil 

property using kriging and Gaussian random field simulation. 

Soil property is the degree to which soil physical and/or 

chemical characteristics within a certain land use [4]. There is 

growing interest in modeling environmental effects of the 

agricultural sector [4]. Kriging and its derivatives constitute the 

most common class of spatial models used in diverse disciplines 

such as crop and soil science, geology, atmospheric science, and 

more recently in ecology and the biological sciences [2]. Spatial 

variability is expressed by using variogram. Estimation of 

variogram parameters of soil properties using ordinary kriging is 

the general procedure to prepare soil maps [3]. 

The simulation employed in this paper is conditional 

simulation. The simulation is conditional on parameters of 

variogram and covariance models. An important part of spatial 

modeling is related to the speciation of the variogram/covariance 

structures; hence a discussion of this topic is included as well. 

Moreover, fitting variogram and/or covariance model of 

different families by comparing different methods is the other 

objective of this paper. This study focuses on modeling and 

predicting spatial soil properties using kriging based on 

Gaussian random field setup. The procedure for predicting the 

process is using interpolation of un-sampled locations. 

Geostatistics builds model to recognize the process by its 

spatial distribution. Applied kriging combined with linear 

regression commonly used in spatial prediction. kriging combined 
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with regression methods may improve prediction performance in 

comparison to regression or kriging done separately. 

Modelling a process spatially indexed is useful for many 

purposes. One of the primary aim of spatial statistics is to 

infer spatially continuous surface over region of interest. This 

paper has provided a tool for how to analyze spatial process. 

It gives how to fit variogram model, how to perform kriging 

and simulation, how to predict spatially interpolated points in 

Gaussian random field. Since spatial statistics is relatively a 

new discipline this paper is a theoretical frame work and it 

gives how to model geostatistical process. 

2. Methodology 

We consider all observed values are outcomes of random 

variable observed at a given location. Let the random 

variable at a point in two-dimensional plane is 

}{ 2( ) :r s s D R∈ ⊆  in our case D is two dimensional

( , )D x y= . The process of interest ( )i ir s r=  is observed at n 

locations 1 2, ,... ns s s  

The aim is to predict the process 0 0( )r s r=  in unobserved 

location 0 0 0( , )s x y= . To predict the process in unobserved 

locations we require covariance and variogram and certain 

assumptions related to the process 

For two random variables ( )r s  and ( ')r s  the covariance 

function as defined in [5] is 

( ( ), ( ')) [( ( ) ( ))( ( ') ( '))]Cov r s r s E r s s r s sµ µ= − −      (1) 

The estimation of covariance function requires replication of 

observations. The standard method of obtaining replications is 

assumption of second order Stationarity (SOS). Observations 

cannot be made exactly at a point, but have to be average of 

volumes centered at each of these points [1]. Thus, we made 

SOS assumptions requiring three conditions [6]. 

i. ( ( ))E r s µ= . 

ii. 2( ( ))Var r s σ=   

iii. ( ( ), ( ')) ( )Cov r s r s τ= Γ  

Where 's sτ = −  

These conditions are constant mean and constant variance 

and the covariance between two variables is shift invariant 

and depends only on the spatial lag between them. 's sτ = −  

The variogram function is defined as semi-variance. 

( ( ) ( ')) 2 ( )Var r s r s γ τ− =                        (2) 

and ( )γ τ  is called semi-variogram 

For second order Stationarity ( ) (0) ( )γ τ τ= Γ − Γ  where 

(0)Γ =covariance at zero spatial lag 

If SOS is not hold we require another assumption. We need 

more general assumption requires to obtain replications. This 

assumption is called Intrinsic Stationarity (IS) [7]. This 

assumption requires two conditions: 

i. ( ( ) ( ')) 0E r s r s− =   

ii. ( ( ) ( ')) 2 ( )Var r s r s γ τ− =  

That is the mean is constant and the variogram is depend 

only on τ  and it is shift invariant 

The advantages of IS over SOS are (1) to estimate 

variogram no estimation of µ is required (2) estimation of 

variogram is easier than covariance due to the sample 

estimator is unbiased (3) the variogram adapts more easily to 

more variability. (4) IS is more general assumption than SOS 

because, if SOS holds then IS also holds. 

An assumption of constant mean may not achieve. 

Because sometimes variations occur in micro environments 

such as soil fertility and slope and etc. In this case the 

assumption of constant mean is naive because the 

neighboring observations tends to differ in property. In this 

case different trend of mean functions are taken 

0 1 2( )s x yµ β β β= + +                            (3) 

When the mean is linear on locations 

2 2
0 1 2 3 4 5( )s x y x y xyµ β β β β β β= + + + + +      (4) 

When the mean is quadratic of locations 

It is possible to denote in matrix form as Sµ β= . Where S 

is a matrix of 1 in the first column and coordinate of locations 

or quadratic of coordinates in other column depending on the 

type of trend used and β  is vector of regression parameters. 

Variogram and Covariance Models 

By assuming IS or SOS to estimate these functions every 

pair of points separated by spatial lag τ  gives an observed 

estimates (replications). The moment estimator of the sample 

variogram ( )γ τ  and sample covariance ( )τΓ , of 

observations separated by lag τ  are 

2

( , ')

1
ˆ( ) ( ( ) ( '))

2
s s N

r s r s
n

ττ
γ τ

∈

= −∑               (5) 

and 

( , ')

1ˆ ( ) ([ ( ) )][ ( ') ])

s s N

r s r r s r
n

ττ
τ

∈

Γ = − −∑       (6) 

Where 

1{( , ') :   | ' | }           and    

n

i

i

r

N s s s s r
n

τ τ == − = =
∑  

The moment estimator of the variogram is intuitive and 

unbiased. Still, there are two principal inadequacies of this 

estimator. The first stem is the variance must be positive. 

Consider any set of constants ;   1,...,ia i n=  and spatial 

variable ( );   1,...,ir s i n=  it must hold that 

1 1 1

( ) ( ), ( ) 0

n n n

i i i j i j

i i j

Var a r s a a Cov r s r s

= = =

 
 = ≥   

  
∑ ∑∑   (7) 
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or analogously we require that 

1 1

( ) 0

n n

i j i j

i j

a a s sγ
= =

− ≤∑∑                     (8) 

The moment estimator does not satisfy the nonnegative 

definite property of the covariance function and the non 

positive definite property of the variogram function. The 

second reason, that the moment estimator inadequacy is that it 

gives estimates of correlation (covariance) only on observed 

spatial lags not for arbitrary lags. The common solutions to 

these difficulties are to fit valid parametric model. 

Observations far away from each other do not have 

significant correlations. The correlation decays exponentially 

at the rate of decay parameter ϕ . i.e. the correlation vanishes 

beyond lag distance R called range. For Rτ ≥ , 
2( ) (0)γ τ σ= Γ =  it is called sill. Then the correlation 

parameters are the sill and decay parameter 2( , )θ σ ϕ=  

For SOS model if the covariance function is given then it 

is easy to express variogram function. This is not true for IS 

model, thus we need to express the variogram function. For 

now assuming isotropy i.e the correlation between 

observations at two locations depends only on the distance 

between them and not on the direction, or orientation, 

between them. And it must be positive definite. 

( , )    
[ ( ), ( ')]

(| |, )    

anisotropic
corr R s R s

isotropic

ρ τ θ
ρ τ θ


= 


         (9) 

The most common parametric families are 

Exponential model 

2 || ||
( ; ) 1 exp

τγ τ θ σ
ϕ

  
= − −  

  
                    (10) 

Gaussian model 

2
2

( ; ) 1 exp
τγ τ θ σ
ϕ

   = − −  
    

                     (11) 

Spherical model 

3

3

2

3 || || || ||
2      for || | |

2( ; ) 2

      else where 

τ τσ τ ϕ
ϕγ τ θ ϕ

σ

  
− ≤  =    




    (12) 

For SOS model we consider 
2

0
lim ( )
τ

τ σ
→

Γ =  [8] while

0
lim ( ) 0
τ

γ τ
→

= . There are many cases these assumptions may 

not hold. Consider the following model 

( ) ( ) ( ) ( )R s s W s sµ ε= + +                      (13) 

Where ( )sµ  is the mean function, ( )W s  is spatial random 

perturbation and ( )sε  is noise term with 2( ( )) nVar sε σ=  

called nugget effect. Its alternative definition is 
2

0
lim ( ) nτ

γ τ σ
→

=  and ( ( ), ( ')) 0,Cov s sε ε =  for 's s≠  then for 

this model the sill becomes 

2 2 2
r nσ σ σ= +                           (14) 

Where 2σ  is called partial sill 

Now the variogram (correlation) parameters are the partial 

sill the nugget effect and the decay parameter i.e 
2 2( , , )nθ σ ϕ σ=  Then the covariance function is 

1 2( , ) ( , ) ( , )τ θ τ θ τ θΓ = Γ + Γ                        (15) 

Where 

1( , ) ( ( ), ( '))Cov W s W sτ θΓ =  

and 

2 ( , ) ( ( ), ( ))Cov s sτ θ ε ε τΓ = +  

Parameter estimation for variogram models 

We must estimate appropriate model parameters for estimated 

variograms to find good kriging model. Let 1{  ,...  }mτ τ τ=  

denote a set of m spatial lags where the variogram value were 

obtained and let 1
ˆ ˆ ˆ{  ,...  }mγ γ γ=  denote obtained non-

parametric estimated variogram via moment, robust or kernel. 

Then we seek a parametric variogram function ( ; )γ τ θ  which is 

closest to non-parametric estimate. The ordinary least square 

(OLS) estimate is choosing θ  to minimize ( )Q θ  equation 16 

2

1

ˆ( ) ( ( ; ))

m

i

i

Q θ γ γ τ θ
=

= −∑                   (16) 

And the weighted least square (WLS) is to choosing θ  to 

minimize ( )Q θ  in equation 17 

2 2

1

ˆ( ) ( ( ; ))

m

i i

i

Q wθ γ γ τ θ
=

= −∑              (17) 

Where 2
iw  is the diagonal elements of matrix W such that 

1ˆ{ ( ( ; ))}W Var γ γ τ θ −= − . 

Gaussian Random field 

For estimation of parameters and simulation of the process we 

consider spatial Gaussian random field { }2( );R s s D R∈ ⊆  all 

finite dimensional 1( )...... ( )nr r s r s=     is multi-Gaussian 

distributed with mean vector rµ , variance covariance matrix rΣ  

and isotropic correlation. Its density function is 

( ) ( )1

/2 1/2

1 1
( / , ) exp

2(2 ) | |
r r r r rn

f r r r
r

µ µ µ
π

− Σ = − − Σ − 
Σ  

                                         (18) 
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Here ( , )r sµ µ β= is used for notation purpose is 

regression equation of the mean function as given in equation 

(3) or (4) and rΣ  is the variance- covariance matrix of the sill 

has correlation parameters θ  and 2( )r n Iθ σΣ = Σ +  where 

Σ matrix of the partial sill and 2
nσ is the nugget effect and I 

is n dimensional identity matrix 

Parameter estimation 

The maximum likelihood of estimation method is 

employed for this study. Given observations 

1( )...... ( )nr r s r s=     the log likelihood is: 

11 1
( ; , ) log(2 ) log | | ( ) ( )

2 2 2

T
r r r r

n
l r r rθ β π µ µ−−= − Σ − − Σ −                                          (19) 

Where rµ  the mean function as given in equation (3) or 

(4). Then the maximum likelihood estimators are values that 

maximize the log likelihood function 

( ) ,
ˆ, arg max ( ; , )l rβ θβ θ β θ=

⌢

                  (20) 

It is helpful to start by showing the optimization with 

respect to β  treating θ  as fixed. For fixed θ  

( ) ( )1
1 1ˆ T T

r rS S S rβ
−− −= Σ Σ                      (21) 

This estimator extends the OLS estimator to account the 

spatial correlation. 

Similarly the numerical optimization of Newton Raphson 

iteration is used for θ  by treating β  as fixed 

1
2

1 12
( ) ( 1) j j

d d
j j l l

dd
θ θ

θθ

−

− −
 

= − −  
  

             (22) 

Where ( )jθ θ= is the maximum likelihood estimator of θ
for fixed β . The fisher scoring algorithm for optimum of 

log-likelihood with respect to β  and θ is 

( )( 1)r jθΣ = Σ − , ( ) ( )1
1 1ˆ( ) T T

r rj S S S rβ
−− −= Σ Σ  

and 

1
2

2
( ) ( 1)

d d
j j E l l

dd
θ θ

θθ

−
 

= − −  
  

 

Spatial prediction and simulation 

The aim of this study is to perform spatial prediction using 

kriging and Gaussian simulation. Once the parameter of 

regression coefficients and correlation are estimated then to 

perform prediction is using covariance and semi-variogram 

models. 

Let r is a vector of observed variables and we seek to 

predict the process 0r  at unobserved location 0s . The joint 

distribution is 

00 02 0

0

~ 1 ,
r

r

r
Nn

r rr

µ σ
µ

 Γ    
+       Γ Σ     

            (23) 

Sometimes the estimates are based on weights being 

associated to each observation. Consider a simple kriging 

model i.e the µ  is known then the prediction at arbitrary 

location 0 0 0( , )s x y= is 

( )0 0

1

ˆ( )

n

i i

i

r s rµ α µ
=

= + −∑                     (24) 

the prediction weights 1( ,... )nα α α=  are determined by 

minimizing kriging variance 

{ }0 0
ˆ ˆarg min ( )Var r rαα = −                    (25) 

Hence 

2 2 2
02 0i i i j ij

i

d

d
σ α σ ρ α α σ ρ

α
 

− + = 
 
 

∑ ∑∑      (26) 

Solving for 1
1 0

ˆ ( ,..., )n r rα α α −= = Σ Γ  

Good estimation kriging weights using covariance function 

can be obtained when the trend parameters are known. If the 

trend parameters are unknown kriging weights in ordinary or 

universal kriging are obtained using variogram functions. 

Since knowledge of trend parameters is not required for 

variogram estimation. The aim is to minimize 

2

0

1

n

i i

i

E r rα
=

  
 − 
    
∑  Subjected to 

1

1

n

i

i

α
=

=∑  

By simplifying the term in the expectation and it is a 

function of α  

 

),...,(),(),(2 1

1 1 1

2

1

0 nji

n

i

n

i

n

j

jijii

n

i

ii FssssrrE ααγααγαα =−=


















 − ∑ ∑∑∑
= = ==

                 (27) 
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Subjected to 1

1

( ,... ) 1 0

n

n i

i

G α α α
=

= − =∑  

To solve this problem let m denote the Lagrange multiplier 

and set 

( )H F mGα = −  

��
��� = 2�(	
, 	�) − 2����(	� , 	�) − �

�

���
 

and 

1

1

n

i

i

dH

dm
α

=

= −∑  

Setting all n+1 derivative equal to 0 gives n+ 1 equation 

with n+ 1 unknown. So iα ’s and m can be obtained by 

solving the above equation. 1α γ−= Γ  where � = �(	� , 	�) 
for all i and j and � = �(	
, 	�) for all i 

3. Result 

The purpose of this study was to do spatial prediction by 

interpolation of unobserved locations using kriging and 

Gaussian simulation. Common type of spatial variogram 

models employed to estimate correlation parameters. We 

used the sample to predict the organic carbon (OC) content of 

a soil. The data was obtained at the office of National Soil 

Testing Center Addis Ababa, Ethiopia. The study area is 

located in northern Ethiopia, eastern Gojam. The area is 

186.35 211.44m m× . The data is a list of OC contents of soil 

in 94 locations of the field taken at depth 0-25 cm called top 

soil. Easting is referred to as “X-coordinate” and northing is 

“Y-coordinate”. “geoR” package in R-statistical software is 

employed for kriging, variogram fitting and spatial prediction 

[9, 14]. 

The spatial location and the density of OC is presented in 

Figure 1. 

We start our data analysis by checking normality 

assumption. Figure 1 below describes the spatial location of 

the data and its distribution. 

 

Figure 1. The sample data: (a) 94 spatial locations of the data, (b) The density of the OC. 

The distribution in Figure 1 (b) shows the data is right skewed. Normality assumption was checked using Shapiro 

Wilks test at 0.05 level of significance. The p-value of the test is very small, 82.58 10−× . Therefore, normality 

assumption is failed and we need Box –Cox transformation to normality. Box cox transformed variable 'r  is 

1
    for 0

'

log     for 0

r

r

r

λ
λ

λ
λ

 − ≠= 
 =

 

We estimate Box-Cox transformation variable 0.65λ = . Box-Cox transformed OC is plotted in Figure 2. Shapiro Wilks test 

is applied on transformed OC and the p-value is 0.35. Thus, we apply on transformed OC. 

 

Figure 2. Normality test of transformed data: (a) quantile plot, (b) density of transformed OC. 
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Figure 2 (a) shows the equality of the sample quantile and 

theoretical quantile and in (b) the transformed data is 

approximately normal. The p-value of the Shapiro Wilks test 

was 0.35. 

Stationarity Diagnosis 

The fundamental assumption in variogram estimation is 

intrinsic stationarity (IS) and second order stationarity (SOS). 

One of the assumptions of second order stationarity can be 

checked from the estimated residuals from the model that 

best fits the trend function. The assumption of an SOS is 

appropriate when the trend function is smooth, since in 

kriging only relatively short spatial lags are used in 

prediction. Three models for the trend were evaluated; 

constant, linear and quadratic trends. The result of regression 

parameters along with model selection criteria was reported 

in Table 1. Estimation for coefficients of the trend with p-

values, residual standard error (RSE), AIC and R
2
 are 

presented in the table. 

Table 1. Parameter estimation for the trend in regression. 

Trend Coefficients p-value RSE AIC R2 

Cont. 0.55 162 10−×  0.24 1.025 -- 

Lin. -4 30.76   1.83 10    1.5 10−× − ×  
77.25 10−×  0.21 -19.4 22.9 

Quad. 5 6 50.68    0.005   0.002    4 10    6 10    2 10− − −− − × × ×  
51.3 10−×  0.21 -19.4 24.39 

 

In Table 1 the estimates of the coefficients in the linear and 

quadratic polynomial trends are very close to zero. The R
2
 is 

almost identical for all trend models. Moreover, the linear and 

quadratic trends add two and five additional parameters, but 

increases the log likelihood to only 10.21 and 12.21 

respectively. This is not a significant improvement to the 

overall trend fit. Therefore, we conclude that the trend in the 

field considered was constant. 

The second assumption of SOS can be checked from 

variogram. For second order stationary (SOS) field the 

semivariogram is bounded by the sill value as τ → ∞ (Bereke, 

1999). In Table 1 we calculate RSE 0.24 and then the variance 

is 0.057, this is the sill. In Figure 3 (b) we compute 

semivariogram estimates with lag interval 4.7τ = m. 

Variogram appears as bounded which shows they are SOS 

fields. In Figure 3 (b) the maximum variogram is 0.059 at 

maximum distance which is very close to the sill. This shows 

the second assumption for SOS is achieved. 

For the data sets an assumption of weak Stationarity was 

achieved, next we need to asses isotropy and intrinsic 

stationarity (IS) of the data. Both of the assumptions can be 

assessed by graphical methods. Intrinsic isotropic stationarity 

will be checked using simulation of the data in a Gaussian 

random field. Variogram envelopes are computed assuming an 

intrinsic isotropic stationary Gaussian random field model. 

Simulated values were generated at the data locations, given 

the model parameters. The empirical variogram was computed 

for each simulation using the same lags as for the original 

variogram of the data. The envelopes are computed by taking, 

at each lag, the maximum and minimum values of the 

variograms for the simulated data. 

In our case, by taking 1000 stationary isotropic geo-data 

simulations, the envelop variogram was computed. Figure 3 (b) 

displays the semivariogram estimates in all bins are between 

the maximum and minimum semivariogram envelops. This 

shows the observed data were intrinsic stationary processes. 

Kriging weights and variances are affected by anisotropy in 

the random field. Kriging weights become direction dependent 

as the degrees of anisotropy increase. Thus, we should evaluate 

whether the model satisfies the assumption of isotropy. The 

isotropic assumption of the spatial data can be checked by 

inspecting semivariogram function in different directions. In our 

case we select four directions (
3

0,   ,  ,   
4 2 4

π π π ) to fit the 

semivariogram. Figure 3 (a) displays the moment method 

estimated variogram of the transformed data. Variogram values 

were computed in four direction for lag parameter 4.7τ = m. 

The maximum distance taken was 100m to estimate the 

variogram, which corresponds to about half the distance of 

the maximum distance between two points in the field. 
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Figure 3. Variogram for the data: (a) directional variogram (b) variogram envelope. 

 

Estimation and fitting Variogram function 

The variogram function is the main tool in the analysis of 

spatial data. The variogram function of the residuals deviated 

from one observation to the other was estimated. Two ways 

of estimating the variogram function was used in this study: 

the moment method with least square fit and the maximum 

likelihood estimation. To estimate the variogram we first 

divide the data into different lag bins based on their location. 

The computation of the empirical variograms were under the 

assumption of second order stationarity (SOS). The 

parameters of the variogram models are estimated by both 

ordinary least square (OLS) and weighted least square 

(WLS). 

The trend was assumed to be constant, hence unbiased 

estimates of variogram estimates were obtained. Table 2 shows 

parameter estimates of three variogram models estimated from 

residuals of the trend. The estimates were based on minimizing 

sum of squares errors (MSS) for OLS and minimizing weighted 

sum of squared error (WSS) for WLS. 

Table 2. OLS estimates of variogram parameters. 

Cov. model 
OLS WLS 

��  φ ���  R MSS ��  φ ���  R WSS 

exponential 0.0508 7.7 0 23.27 7.3×10-4 0.041 6 0.009 14.3 42.6 

Gaussian 0.05 8.18 0.002 14.16 7.3×10-4 0.041 8.29 0.01 14.34 43.59 

spherical 0.0455 21 0.0019 21 6.5×10-4 0.046 21 0.009 21.42 46.94 

 
From Table 2 and Figure 4 (a) we observe that in all empirical 

variogram models the OLS and WLS estimates have good 

agreement in terms of the sill value (i.e 2 2
nσ σ+ ). We observe 

that the nugget effect is equal to zero for the OLS estimate. For 

the WLS estimate it seems appropriate to allow a small nugget 

effect for transformed OC. Since the number of observations 

vary from lag to lag, we trust the WLS estimates more than the 

OLS estimates. The exponential model has small rate of decay 

( ϕ ) and hence it has large range (R) which enables us to 

perform Krigink more distance away from the observed 

locations than other models. The exponential variogram was 

preferable because of that it has the least weighted sum of 

residual squares (WSS) for transformed OC hence it is used in 

the rest of the study. 

Using variogram parameter estimates in least square 

principle we fitted the variogram functions. In Figure 4 (a) 

the moment method variogram estimates of the data with 

OLS and WLS fitted variogram functions are displayed and 

Figure 4 (b) shows restricted maximum likelihood fit for 

moment estimate of variogram. 

 

Figure 4. Estimated variogram and fitted model: (a) OLS estimate, (b) RMLE estimate. 

The variogram function is also estimated using maximum 

likelihood. The Transformed OC observations are found to be 

compatible with normality. Thus, it is reasonable to assume 

that the data come from jointly normal distributions. By 

using maximum likelihood estimation the trend and three 

types of variogram model parameters are estimated. We are 

actually using restricted maximum likelihood estimation 

(REML) to estimate the parameters (in Table 3) and the fitted 

model were shown in the above Figure 4 (b). 

In Table 3 the parameter estimates of the constant trend, 

the exponential, Gaussian and spherical variogram models 

are presented with model selection criteria AIC and BIC. 

Also the efficient range (R) of the variogram function is 

given. 

Table 3. REML estimates of trend and variogram parameters. 

Cov. model β ��  φ ���  R AIC BIC 

Exponential 0.535 0.0458 11.37 0.013 34.05 -9.98 0.2 

Gaussian 0.537 0.04 11.03 0.017 19.09 -7.99 2.27 
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Spherical 0.5435 0.045 24.7 0.012 24.7 -8.05 1.54 

 
 

In REML fits, unlike OLS and WLS fits, the nugget effect 

is appeared for all variogram models. 

The moment estimates in Table 2 and the REML estimates 

in Table 3 are in a little beat agreed. It seems appropriate to 

allow a small nugget effect. Due to the increase in the nugget 

values the range of the correlation function obtained in 

REML are increase compared to the ranges computed in OLS 

and WLS fits. Exponential model is found to be smaller in 

AIC and BIC values, therefore, we used exponential model 

for kriging. 

Kriging and Simulation 

By using the assumption of spatial isotropic stationary 

random field and using the estimated variogram models we 

can predict the transformed OC surfaces and compute the 

associated variance of predictions. Ordinary kriging, which 

corresponds to universal kriging with an unknown constant 

trend, was used to predict and to compute kriging variance. 

In Figure 5 ordinary kriging predictions on a regular 

100×100 grid over [0, 200]×[0, 200] covering the area 

conditional on the 94 sample data for transform OC are 

displayed. 

  

Figure 5. Kriging interpolation: (a) predicted transformed OC (b) kriging variance. 

Predictions near to the observed location are very similar 

to the observed values. And There is a correlation between 

predicted values near each other. As the distance far away, 

the correlation vanishes exponentially. 

In figure 5 (b) the kriging variance shows the kriging 

variance is zero for predictions in observed locations. And 

the variance increases as predictions for distance far from 

observed locations. The kriging variance is small in the range 

(R) and grows to the sill (nugget plus partial sill) beyond R. 

Simulation provides realizations of the Gaussian random 

field conditioned on the 94 sample data. Based on the 

observed data estimated model parameters we take 1000 

simulations of for each of ten thousand locations the surface 

for OCb. Figure 6 display two conditional simulations. Note 

that the observations are reproduced to the observed 

precession and that the variability is according to the 

estimated variogram models in Gaussian random field. Hence 

the conditional simulations in Figure 6 are more variable than 

the kriging predictions in Figure 5. 

  

Figure 6. Two simulations 100X100 grid over prediction is done. 

Figure 7 displays the average of 1000 conditional 

simulations and the variance of 1000 conditional simulations 

is displayed. We observe that it is almost identical to the 

kriging predictions in Figure 5 which reproduces the 
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observations, and is similar to the trend values far away from 

the observation locations. In Figure 6 (right) it reproduces the 

kriging variance in Figure 5. Note that the variance in the 

observation locations is close to zero, while it is close to the 

sill value far from observation locations. 

 

  

Figure 7. Average of 1000 simulations (left), Empirical variance of 1000 simulations (right). 

Crossvalidation 

The kriging predictor is an exact interpolator in the sense 

that the observed values are reproduced if no observation 

errors are present. Crossvalidation is done by leaving one 

observation out and predict the value in the associated 

location using the remaining observations. The 

crossvalidation error is the observation minus the prediction. 

In Figure 8 the cross validation errors are displayed. 

The crossvalidation error is approximately normally 

distributed with mean zero. The observed vs the predicted 

values lie approximately in the straight line that they show 

correlation 0.58. Using Pukelsheim theorem all predicted 

values are approximately within 96.66% confidence interval 

i.e. the p-values of the model is 0.034. 

 

Figure 8. Histogram of cross validation errors in 94 observations. 

4. Discussion 

The main aim of geo statistics is to model a continuous 

spatial variation [13]. Recently there has been an increasing 

interest in modelling spatial data [18, 20]. In this paper 

modelling includes making prediction and finding unbiased 

estimate of regionalized variable. The regionalized variable 

regarded as the most widely used realization Gaussian 

random field [10-12]. In this paper we predict unsampled 

location by interpolation [22, 23]. The prediction requires 

assumption of isotropic stationary Gaussian process, that is 

achieved after transformation. One way of finding optimal 

prediction of regionalized variable at unsampled location is 

through kriging [13, 15-17, 19]. Kriging is a technique of 

making optimal, unbiased estimate of regionalized variable at 

unsampled location using theoretical semivariogram [13, 24]. 

Variogram that gives minimum squared error is chosen for 

prediction and kriging variance. The main idea of kriging is 

that near sample points should get more weight in prediction. 

Kriging variance are close to the nugget effect near to 

observed data location and it grow to the sill as prediction 

location far apart from observed data location [21]. The 

kriging variance of the prediction is smaller than the 

observed sample variance. This is due to prediction is done in 

Gaussian random field. 

5. Conclusions 

Spatial prediction of soil property of organic carbon (OC) 

at Karsa-Malima in the northern Ethiopia is the focus of this 

study. Prediction of the soil properties under Gaussian 

random field model after Box-Cox transformation is made. A 

stationary, isotropic Gaussian random field model is used for 

the soil properties, and they are predicted by ordinary kriging 

using a variogram functions obtained by restricted maximum 

likelihood estimation. An exponential variogram function is 

used because this model shows the least AIC and BIC values. 

Spatial prediction is done by kriging using the sample data 

and the associated prediction variance is computed. We 

predicted the field grid 100 100×  using kriging and 
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simulation. As expected, kriging predictors are more accurate 

when the predictions are close to the observation locations. 

The variance of the predictors increases with increasing 

distance from observation locations. Moreover, conditional 

simulations using the Gaussian random field model is made. 

There is a relationship between kriging and conditional 

simulations since the average of the conditional simulations 

corresponds to the kriging surface while the variance of 

simulations corresponds to kriging variance. The effect is 

demonstrated in the study. Kriging predictors are accurate 

while the cross-validation errors should be normally 

distributed with mean zero and this is demonstrated. 

 

References 

[1] Omre H.; 1984: Introduction to Geostatistical Theory and 
Examples of Practical Application; Note, pp. 1-20. 

[2] Wikle C. K, and Royle J. A; 2010: Spatial Statistical 
Modeling in Biology, Encyclopedia of Life Support System 
(EOLSS), Eolss Publisher, [http://www.eolss.net] (accessed on 
11, 2011), pp. 1-27. 

[3] Santra P, Chopra U. K and Chakraborty D; 2008: Spatial 
variability of soil properties and its application in predicting 
surface map of hydraulic parameters in an agricultural farm, 
Current science, Vol. 95, No. 7, pp. 1-9. 

[4] Kempen M, Heckelei T, Britz W, Leip A, Koeble R, Marchi 
G; 2005: Computation of a European Spatial Land Use Map 
the Underlying Statistical Procedures; Agricultural and 
Resource Economics, Discussion Paper, pp. 1-16. 

[5] Bohling G; 2005: Kriging, C and PE 940, Note, 
[http://people.ku.edu/∼gbohling/cpe940] (accessed on 3, 
2012); pp. 1-20. 

[6] Alan E. G, Peter J. D, Montserrat F. and Petter G.; 2010: Hand 
Book of Spatial statistics; Modern Statistical Method; 
Chapman and Hall. 

[7] Chiles; J-P. and Delfiner P; 2012: Geostatistics: Modeling 
Spatial Uncertainity; 2. 

[8] Matheron G.; 1965: Les Variables Regionalisees of lear 
Estimation. Une Application de la Theorie des Functiones 
Alatoires aux science de la Natwe; Masson, Paris. 

[9] Paulo J. Ribeiro and Peter J. Diggle; may 2, 2016: analysis of 
geostatistical data; version1.7-5.2. 

[10] Kevin P Murphy; 2007: Conjugate Bayesian Analysis of the 
Gaussian Distribution; Note; pp. 1-29. 

[11] Simpson D, Lindgren F and Rue H; 2011: Markovian 
Gaussian Model in Spatial Statistics; Statistics, No. 9, pp. 1-
17. 

[12] Rue H and Martino S; 2006: Approximate Bayesian Inference 
for Hierarchical Gaussian Markov Random Field Models, 
Statistical Planning and Inference, Vol. 137, pp. 1-8. 

[13] Vijay Kumar and Remadevi; 2006: Kriging of Ground Water 
Levels-A Case Study; Journal of Spatial Hydrology Vol. 6 No. 
1. 

[14] Paulo J. Ribeiro and Peter J. Diggle; 2001: geoR: A Package 
for Geostatistical analysis, Vol.1/2. 

[15] Firas Ajil Jassim, Fawzi Hasan Altaany; 2013: Image 
Interpolation Using Kriging Technique for Spatial Data; 
Canadian Journal on Image Processing and Computer Vision 
Vol. 4 No. 2. 

[16] Andreas Lichtenstern; 2013: Kriging Method in Spatial 
Statistics; Bachelor’s Thesis. 

[17] Rue H and Follestad T; 2003: Gaussian Markov Random Field 
Models with Applications; Spatial Statistics; pp. 1-20. 

[18] Gao Gu M and Zhu H; 2000: Maximum Likelihood 
Estimation for Spatial Models by Markov Chain Monte Carlo 
Approximation; J. R statist.soc.; Vol. 63, part 2, pp. 339-355. 

[19] Ethan B and Michael L; 2008: Estimating Deformations of 
Isotropic Gaussian Random Fields on the Plane; The Anals of 
Statistics; Vol. 36, No. 2,; pp. 1-24. 

[20] Jo Eidsvik; 2011: Spatial statistics, Parameter Estimation and 
Kriging for Gaussian Random Fields; Note, pp 1-12. 

[21] Michael Sherman.; 2011: Spatial Statistics and Spatio-
Temporal Data, Covariance Function and Directional 
Properties; Jhon Wiley and sons Ltd publication 

[22] Derya Ozturk and Fatmagul Kilic; 2016: Geostatistical 
Approach for Spatial Interpolation of Meteorological data; 
Anal of the Brazilian Academy of science. 

[23] Jack P. C. Kleijnen; 2017: Kriging: Method and application. 

Tomislav Malvic et al.; 2019: Kriging with a Small Number of 
Data Points Supported by Jack-Knifing, a case Study in the 
Sava Depression (Northern Croatia), Geosciences article. 

 

 


