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Abstract: VaR and CVaR are important risk measures, which are widely used in finance, economy, insurance and other 

fields. However, VaR is not a coherent risk quantity, and it is not sufficient to measure tail risk. CVaR (also known as expected 

shortfall, ES) is a coherent risk measure, and it makes up for the defect that VaR is not enough to measure tail risk. Therefore, 

CVaR has been paid more and more attention in both application and theory fields. Rockafellar and Uryasev (2000) and 

Trindade et al (2007) proposed an optimized type CVaR estimator and studied some asymptotic properties of the estimator. 

Since then, some scholars have discussed the properties of the estimator in the cases of ρ-mixing, φ-mixing and α-mixing. In 

this paper, we shall study the asymptotic properties of the optimized type CVaR estimator in the case where the samples are 

NA random variables. The consistency and the asymptotic normality of the optimized type CVaR estimator and their 

corresponding convergence rates are obtained. The convergence rates of estimation are n
-1/2

 or near to n
-1/2

. These results also 

establish the asymptotic relations of the optimized type CVaR estimator and the common CVaR estimator. And their deviation 

converges almost surely to 0 at the rate of n
-1/2

. 
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1. Introduction 

In the fields of finance, economy and insurance, it is very 

important to measure risk accurately. In financial filed, VaR 

is widely used to measure risk, which refers to the maximum 

possible loss under a certain confidence level for financial 

assets or portfolios in the holding period. Let �  be a loss 

variable of financial asset or portfolio, for a given small 

probability � ∈(0,1), in the confidence level of 1 − �, VaR is 

defined as 

���	
�� = inf��: �
�� ≥ 1 − ��,                    (1) 

where �
�� is distribution function of loss variable. 

However, Artzner et al. [2-3] found that the VaR doesn’t 

satisfy subadditivity, namely, it hasn’t convexity. So VaR is 

not a coherent risk measure, and it is insufficient to measure 

the tail risk. As an alternative measure of risk, CVaR (also 

known as expected shortfall, ES) is proposed, also known as 

the average excess loss, which denotes the expected loss 

which greater than the given VaR value for a portfolio, and 

its formula as 

����	
�� = ����� ≥ ���	
���.                    (2) 

Rockafellar and Uryasev [15] proved that the definition of 

CVaR is equivalent to the solution of an optimization 

problem, namely 

����	
�� = inf�∈��� + �!"�#� − �$%� ,              (3) 

where #�$% = max�0, �� . Pflug [14] proved the CVaR 

satisfies subadditivity, also is a coherent risk measurement. 

More researches are available in Rockafellar and Uryasev 

[16], Föllmer and Schied [6]. 

CVaR has better properties than VaR. Therefore, it is 

suitable as the optimization tool of investment portfolio, 
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which attracts scholar’s widely attention. For example, 

Andrew et al. [1], Mansini et al. [12], Noyan and Rodulf 

[13], Sun et al. [22]. Noyan and Rodulf [13] extended to 

multivariate CVaR, expand its application range. Also in 

other fields it is widely used, such as risk issues of books and 

newspapers selling (Gotoh and Takano, [7]), optimal 

placement of the gas detector in the petrochemical plant 

(Legg et al., [8]), wind power generation system (Chen et al., 

[4]), and so on. 

Scaillet [18], Luo and Yang [10], Luo and Ou [11] and 

references therein studied the CVaR kernel estimator. 

Escanciano and Mayoral [5], Wang and Zhao [24] studied the 

CVaR semi-parametric estimation. On the basis of the 

equivalence definition of formula (3), Trindade et al. [23] 

proposed a kind of optimization CVaR estimation, and 

studied the consistency and the asymptotic normality of the 

optimization CVaR estimation. For the optimization CVaR 

estimation, Luo and Yang [10] studied the strong consistency 

and asymptotic normality under the *-mixing samples, and 

its convergence rate. Xing et al. [25] studied the strong 

consistency under the +-mixing sample, and gave the rate of 

convergence. However, negatively associated (NA) sequence 

is also common in dependence. It was proposed by Joag-Dev 

in 1983, and then attracts many scholars, such as Su Chun 

[20], Roussas [17], Yang [27], Zhou et al. [28] and so on. 

However, as we know, the asymptotic normality on the 

optimal CVaR estimation under NA sequence hasn’t been 

studied, so this article will focus on the consistence and 

asymptotic normality of optimization CVaR estimation under 

NA sequence. 

In the end of this section, we give some relevant 

definitions as follows. 

The random variables �", �,, ⋯ , �., / ≥ 2 are said to be 

negatively associated (NA), if, for two arbitrary disjoint 

subsets 1" and 1, of �1,2,⋯ , /�, 
Cov 56"
�7 , 8 ∈ 1"�, 6,��9 , : ∈ 1,�; ≤ 0,             (4) 

where 6"  and 6,  are non-increasing or nondecreasing 

functions. Random sequence ��., / ≥ 1� is said to be NA if 

�", �,, ⋯ , �. are NA for any / ≥ 2. 

Let ℎ	
�, �� = � + �!"#� − �$%, >∗ = ����	
�� , from 

the (3) we have 

>∗ = inf�∈ℝ �ℎ	
�, �� .                                 (5) 

Assume �", �,, ⋯ , �.  is a sample coming from the 

population �, Rockafellar and Uryasev [15] and Trindade et 

al [23] define the optimization estimation for >∗, namely 

>A. = inf�∈ℝ /!"∑ ℎ	
�7 , ��.7C" .                         (6) 

2. Main Result 

To describe our main results, we firs introduce some 

denotations. For any given � ∈ ℝ, let 

D7
�� = ℎ	
�7 , ��, E.
�� = "
.∑ ℎ	
�7 , ��.7C" = "

.∑ D7
��.7C" ,  (7) 

F.
�� = G.!"
���E.
�� − �E.
���, �.�
�� = H
F.
�� < ��,  (8) 

where G.,
�� = Var�E.
���. 
We need the following basic assumptions. 

(A1)	��7: 8 ≥ 1� is a sequence of identically distributed NA 

random variables with ��" = 0  and ��|�"|,%N� < ∞  for 

some P > 0. 

(A2) �
1� < ∞ , where 

�
/� = sup9U"∑ �Cov��7 , �9��7:|7!9|U. . 

(A3) G,
�� > 0  for any � ∈ ℝ , where G,
�� =
lim.→X /G.,
��. 

(A4) There exist positive integers Y. and Z. such that 

Y. + Z. ≤ /, Z.Y.!" ≤ � < ∞,                 (9) 

and, as / → ∞, 

[". → 0, [,. → 0, �
Z.� → 0.                (10) 

where [". = Z.Y.!", [,. = Y./!". 
Because ℎ	
�, ��  is monotone increasing about � , 

�D7
��: 8 ≥ 1� is also a NA sequence. Under the assumptions 

(A1) and (A2), we have that 

/G.,
�� = /!"∑ Var�D7
���.7C" + 2/!"∑ Cov 5D7
��, D9
��;"\7]9\.

= Var�D"
��� + 2/!"∑ Cov 5D7
��, D9
��;"\7]9\. .
                                        (11) 

Let .̂ = /!"∑ Cov 5D7
��, D9
��;"\7]9\. . By Lemma 4.1 

in section 4, 

| .̂| ≤ �/!"_ �	Cov��7 , �9��"\7]9\.
 

 = �/!"∑ ∑ �	Cov��7 , �9��9!"
7C"

.9C,  

 ≤ �/!" ∑ ∑ |Cov��7 , �9�7:|7!9|U" |.9C,  

 ≤ �/!" ∑ sup9U"∑ |7:|7!9|U" Cov��7 , �9�|.9C,  

 ≤ � sup9U"∑ |7:|7!9|U" Cov��7 , �9�| = ��
1� < ∞. (12) 

Hence, .̂ is monotonous and bounded about /. Therefore, 

.̂  has finite limit as / → ∞ , so that lim.→X /G.,
�� =G,
�� < ∞, and the assumption (A3) implies that 

G.,
�� = `
/!"�, G.!,
�� = `
/�.                  (13) 

Theorem 2.1. Assume that ��7: 8 ≥ 1�  is a sequence of 

identically distributed NA random variables with ��7 = 0 

and �|�7|a < ∞ for some b ≥ 1. Then we have 

>A. − >∗ = c
/!d�, �. e.,                    (14) 

where (1) when 1 ≤ b < 2, f = 1 − "
a; (2) when b ≥ 2, we 

can take any f ∈ #0,1/2�. 
Theorem 2.2. Suppose that the assumptions (A1)-(A4) are 
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satisfied. Then for any given � ∈ ℝ, we have 

suph|�.�
�� − i
��| ≤ � j["."/k + [,."/k + [,.l/, + �"/k
Z.�m , (15) 

where i
�� is the distribution function of n
0,1�. 
Let o"  and o,  satisfy 0 < o" < o, < 1 . Take Z. =

p/qrs,  Y. = p/qts where #�$ denotes the integer part of �. In 

this case, the assumption (A4) is satisfied. Therefore, we 

have the following corollary. 

Corollary 2.1. If the assumptions (A1)-(A3) are satisfied, 

then for any given � ∈ ℝ, we have 

"
√. ∑ �ℎ	
�7 , �� − �ℎ	
�7 , ���.7C"

v→ n�0, G,
���.   (16) 

Theorem 2.3. Let Z = ���	
��, Z! = sup��: �
�� ≤ 1 −
��. If (A1)-(A3) are satisfied, we have 

>A. = inf�∈#wx,w$ /!" ∑ ℎ	
�7 , ��.7C" + cy�/!"/,�.    (17) 

There are two cases to consider: 

(i) If Z = Z!, we have 

>A. = /!" ∑ ℎ	
�7 , Z�.7C" + cy�/!"/,�,        (18) 

and 

/"/,
>A. − >∗� v→ n�0, G,
Z��,                    (19) 

where 

G,
Z� = lim.→X /G.,
Z� = lim.→X
/�,�!" ��b
∑ # �7 − Z$%.7C" �.                                               (20) 

Moreover, 

>A. = /!" ∑ ℎ	
�7 , Z�.7C" + c
/!d�, �. e.            (21) 

for any f ∈ 
0,1/2�. 

(ii) If Z > Z!, then the limit distribution of /"/,�>A. − >∗� 

is not a normal distribution. 

Remark 2.1. Recall that � is a loss variable of financial 

asset or portfolio. In practice, the loss variable is usually 

continuous, so that Z = Z! in Theorem 2.3. 

Remark 2.2. Let >z. = /!" ∑ ℎ	
�7 , Z�.7C" . Note that 

Z = ���	
��. Then 

>z. = /!" ∑ 
Z + �!"#�7 − Z$%�.7C"
= ���	
�� + "

.	 ∑ # �7 − ���	
��$%.7C" ,       (22) 

it is a common estimator of CVaR. Therefore, the equations 

(17), (18) and (21) establish the asymptotic relations of the 

optimized type CVaR estimator >z.  and the common CVaR 

estimator >z.. 

Remark 2.3. To give the confidence interval of CVaR >∗ 

by (19), we need to estimate the variance G,
Z� . Let 

Z{. = �A.!"
1 − ��  where �A.!"
��  is empirical distribution 

function of sample �", �,, ⋯ , �. . Denote �7 = #�7 −
Z{.$%,  8 = 1,2, ⋯ , / . From (20), it is easy to get the 

estimation of G,
Z� as following 

G{,
Z� = "

.	�t ∑ � �7 − ��,.7C" ,                  (23) 

where � = "
. ∑ �7.7C" . 

3. Proof of Theorem 2.1 

From the definition of >A. and >∗, we have 

 /d�>A. − >∗� 
 = /d |�>A. − >∗�}�~��!~∗U�� + �>A. − >∗�}�~��!~∗]��| 
 ≤ /d�>A. − >∗�}�~��!~∗U�� + /d�>A. − >∗�}�~��!~∗]�� 

 = /d |inf�∈ℝ
"
. ∑ ℎ	
�7 , ����C"  − inf�∈ℝ �ℎ	
�", ��| }
~��!~∗U�� 

 +/d |inf�∈ℝ
"
. ∑ ℎ	
�7 , ����C"  − inf�∈ℝ �ℎ	
�", ��| }�~��!~∗]�� 

 = /d inf�∈ℝ | "
. ∑ ℎ	
�7 , ����C" − inf�∈ℝ �ℎ	
�", ��| }
~��!~∗U�� 

 +/d inf�∈ℝ |�ℎ	
�", �� − inf�∈ℝ
"
. ∑ ℎ	
�7 , ����C"  | }�~��!~∗]��  

 ≤ /d inf�∈ℝ | ". ∑ ℎ	
�7 , ����C" − �ℎ	
�", �� + �ℎ	
�", �� − inf�∈ℝ �ℎ	
�", ��| 

 +/d inf�∈ℝ |�ℎ	
�", �� − "
. ∑ ℎ	
�7 , ����C" + "

. ∑ ℎ	
�7 , ����C" − inf�∈ℝ
"
. ∑ ℎ	
�7 , ����C"  | 

 ≤ inf�∈ℝ �/d | ". ∑ ℎ	
�7 , ����C" − �ℎ	
�", ��| + /d��ℎ	
�", �� − inf�∈ℝ �ℎ	
�", ���� 
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 + inf�∈ℝ �/d |�ℎ	
�", �� − "
. ∑ ℎ	
�7, ����C" | + /d |"

. ∑ ℎ	
�7 , ����C" − inf�∈ℝ
"
. ∑ ℎ	
�7 , ����C" |�                      (24) 

From Theorem 1 and related contents of Rockafellar and Uryasev [15], we know that �ℎ	
�", �� and 
"
. ∑ ℎ	
�7 , ��.7C"  are 

convex function about �. Hence, there exist �" ∈ � and �, ∈ � such that 

�ℎ	
�", �� = inf�∈ℝ �ℎ	
�", �"� , "
. ∑ ℎ	
�7 , �,���C" = inf�∈ℝ

"
. ∑ ℎ	
�7 , ����C" .                       (25) 

Combining (24) and (25), we have 

 /d�>A. − >∗� 
 ≤ /d |	".∑ ℎ	
�7 , �"���C" − �ℎ	
�", �"�| + /d |�ℎ	
�", �,� − "

.∑ ℎ	
�7 , �,���C" | 
≤ /d!"|∑ #ℎ	
�7 , �"���C" − �ℎ	
�", �"�$| + /d!"|∑ #ℎ	
�7 , �,� − �ℎ	
�", �,�$��C" |                            (26) 

Therefore, to prove the Theorem we only need to prove 

that, for any given � ∈ ℝ, 

"
.rx�∑ #	ℎ	
�7 , �� − �ℎ	
�7 , ��$.7C"

�.�.�� 0.             (27) 

(1) For 1 ≤ b < 2, by Theorem 2 in Su and Wang [21], we 

know (27) is true, and f = 1 − 1/b. 
(2) For b ≥ 2 , take Y ∈ #1,2�  and let f = 1 − 1/Y . Then 

�|�"|y ≤ 
�|�"|a�y/a < ∞  and 0 ≤ f < 1/2 . Hence 

we obtain (27) from the result of case (1). 

4. Proof of Theorem 2.2 

The following relevant lemmas will be used in the proof of 

theorem. 

Lemma 4.1. Assume that �" and �, are NA. Then 

�Cov�ℎ	
�", ��, ℎ	
�,, ���� ≤ �!,|Cov
�", �,�|.                                             (28) 

Proof Recall that ℎ	
�7 , �� = � + �!"#�7 − �$%, have 

Cov�ℎ	
�", ��, ℎ	
�,, ��� = �!,Cov
#�" − �$%, #�, − �$%�.                                   (29) 

From Hoeffding Lemma in Lehmamn [9], 

Cov
#�" − �$%, #�, − �$%�
= � � �H
#�" − �$% ≤ �, #�, − �$% ≤ �� − H
#�" − �$% ≤ ��H
#�, − �$% ≤ ���X

!X ����X
!X

= � � �H
#�" − �$% ≤ �, #�, − �$% ≤ �� − H
#�" − �$% ≤ ��H
#�, − �$% ≤ ���X
� ����X

� .
           (30) 

When � ≥ 0 and � ≥ 0, it is easy to know the following event equations 

�#�" − �$% ≤ �� = ��" − � ≤ ��, �#�, − �$% ≤ �� = ��, − � ≤ ��,
�#�" − �$% ≤ �, #�, − �$% ≤ �� = ��" − � ≤ �, �, − � ≤ ��.  

Hence 

Cov
#�" − �$%, #�, − �$%�
= � � �H
�" − � ≤ �, �, − � ≤ �� − H
�" − � ≤ ��H
�, − � ≤ ���X

� ����X
�

= � � �H
�" ≤ � + �, �, ≤ � + �� − H
�" ≤ � + ��H
�, ≤ � + ���X
� ����X

�
= � � �H
�" ≤ �, �, ≤ �� − H
�" ≤ ��H
�, ≤ ���X

� ����X
� 	

                     (31) 

Due to NA, H
�" ≤ �, �, ≤ �� − H
�" ≤ ��H
�, ≤ �� ≤ 0 for any �, � ∈ ℝ, so we get 

|Cov
#�" − �$%, #�, − �$%�|
= �� � �H
�" ≤ �, �, ≤ �� − H
�" ≤ ��H
�, ≤ ���X

� ����X
� �

≤ �� � �H
�" ≤ �, �, ≤ �� − H
�" ≤ ��H
�, ≤ ���X
!X ����X

!X �
= |Cov
�", �,�|.

                                              (32)

Combine (29) with (32) yields (28). Complete the proof. 

Lemma 4.2. (Luo, [10]) Assume that �|�|a < ∞ for some 

b > 0. Then there exists a positive constant C no depending 

on � such that 

�|ℎ	
�, �� − �ℎ	
�, ��|a ≤ ��|�|a .  
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Lemma 4.3. (Yang, [26]) Suppose that {�7: 8 ≥ 1} is a NA 

random sequence which satisfies ��7 = 0  and �|�7|a < ∞ 

for some b > 1. Then there exists a positive constant C no 

depending on / such that 

(1) for 1 < b ≤ 2, 

� max"\�\.�∑ �7�7C" �a ≤ � ∑ �.7C" |�7|a;           (33) 

(2) for b > 2, 

� max"\�\.�∑ �7�7C" �a ≤ � 5∑ �.7C" |�7|a + �∑ �.7C" �7,��/,;. (34) 

Lemma 4.4. (Yang, [27]) Let ��9: : ≥ 1� be a NA random 

sequence, ��9: : ≥ 1�  be a real-value constant sequence, 

1 = �� < �" < �, < ⋯ < �d = / . Denote �� =
∑ �9

��
9C��xr%" �9 for 1 ≤ � ≤ �. Then 

��exp�8� ∑ ����C" � − ∏ ���C" exp
8����� ≤
4�, ∑ ����9�"\�]9\. �Cov���, �9��.  

For any given � ∈ ℝ , let �7 = G.!"
��/!"�D7
�� −
�D7
���, 8 = 1,2, ⋯ , / , so that F.
�� = ∑ �7.7C" . Let �. =
#//
Y. + Z.	�$ , where #�$  denotes the integer part of �  as 

mentioned before. Then F.  may be split as F. = F.  + F.¡ +F.¢, where 

F.  = _ �.,�
��

�C"
, F.¡ = _ �.,� 

��

�C"
, F.¢ = �.,��%"  ,

�.,� = _ �7
£¤%y�!"

7C£¤
, �.,�  = _ �7

�¤%w�!"

7C�¤
, �.,��%"  = _ �7

.

7C��
y�%w��%"
,
 

�� = 
� − 1�
Y. + Z.� + 1, �� = 
� − 1�
Y. + Z.� + Y. + 1,� = 1,2,⋯ , �.. 

Lemma 4.5. Assume that the assumptions (A1)-(A4) are 

satisfied. Then 

�
F.¡�, ≤ �[". , �
F.¢�, ≤ �[,.,                 (35) 

H�|F.¡| ≥ ["."/k� ≤ �["."/k, H�|F.¢| ≥ [,."/k� ≤ �[,."/k.   (36) 

Proof From (13), it is easy to get that 

�
�7,� = ��G.!"
��/!"�D7
�� − �D7
����,
= G.!,/!,��D7
�� − �D7
���,
≤ �G.!,
��/!,
≤ �/!".

      (37) 

By Lemma 4.3, we can get that 

�
F.¡�, = ��∑ �.,� ���C" �, ≤ � ∑ ����C" ��.,�  �, ≤ � ∑ ∑ ��¤%w�!"7C�¤ |�7|,���C" .                      (38) 

Using (37), (38) and (9) yields that 

�
F.¡�, ≤ ��.Z./!" ≤ ¥w�
y�%w� ≤

¥w�y�xr
"%w�y�xr ≤ �Z.Y.

!" = �[". .  
Note that / − �.
Y. + Z.� < Y. + Z., we have 

�
F.¢�, ≤ � _ �
�7,�
.

7C��
y�%w��%"
≤ ��/ − �.
Y. + Z.��/!"
≤ �
Y. + Z.�/!"
≤ �
1 + Z.Y.!"�Y./!"
≤ �[,..

 

Therefore, (35) holds. By the Markov inequality, (36) is 

immediately yielded form (35). Complete the proof. 

Let e., = ∑ ����C" �b��.,��. We have the following lemma. 

Lemma 4.6. Under (A1)-(A4), have 

|e., − 1| ≤ ��["."/, + [,."/, + �
Z.��.           (39) 

Proof Because that �
F.  �, = ∑ Var��.,����7C" +
2∑ Cov��.,7 , �.,9�"\7]9\�� , we have that 

e., − 1 = 
�
F.  �, − 1� − 2∑ Cov��.,7 , �.,9�"\7]9\�� .  (40) 

Note that �
F.� = 0  and �
F.�, = Var
F.� = 1 , we 

know that 

�
F.  �, = �#F. − 
F.¡ + F.¢�$, = 1 + �
F.¡ + F.¢�, − 2�#F.
F.¡ + F.¢�$, 
hence, from Lemma 4.5, 

|�
F.  �, − 1| = |�
F.¡ + F.¢�, − 2�#F.
F.¡ + F.¢�$|
≤ 2
�|F.¡|, + �|F.¢|,� + 2
�|F.|,�"/,
�|F.¡ + F.¢|,�"/,
≤ 2
�|F.¡|, + �|F.¢|,� + 2��"/,|F.¡|, + �"/,|F.¢|,�
≤ ��["."/, + [,."/,�.

                          (41) 
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And 

�∑ Cov��.,7 , �.,9�"\7]9\�� � ≤ ∑ ∑ ∑ |Cov
��, �£�|£¦%y�!"
£C£¦

£§%y�!"
�C£§"\7]9\��

≤ � ∑ ∑ ∑ ∑ /!"£¦%y�!"
£C£¦ |Cov
��, �£�|£§%y�!"

�C£§
��9C7%"

��!"
7C"

≤ �/!" ∑ ∑ sup9U" ∑ �Cov��9, �£��£:|£!9|Uw�
£§%y�!"
�C£§

��!"
7C"

≤ ��
Z.�.

                  (42) 

 

Therefore, (39) holds from (40)-(42). Complete the proof. 

Lemma 4.7. (Yang, [27]) Suppose that �¨.: / ≤ 1�  and 
�©.: / ≤ 1�  are two random sequences, �[.: / ≤ 1�  is a 

positive constant sequence, and [. → 0. If 

sup
h
��ª�
�� − i
��� ≤ �[., 

then for any « > 0, have 

sup
h
��ª�%¬�
�� − i
��� ≤ ��[. + « + H
|©.| ≥ «��. 

Proof of Theorem 2.2 Assume that �©.,�: � = 1,2,⋯ , �.� 
be the independent random variables, and the distribution of 

©.,�  is the same with �.,�  for � = 1,2,⋯ , �. . Let ­. =
∑ ©.,����C" , ®., = ∑ Var�©.,�����C" , �A.�
��, ¯.�
��  and z̄.�
�� 
are the distribution functions of F.  , ­./®.	 and ­. 

respectively. Recall e., = ∑ Var��.,�����C" , it is obvious that 

®., = e.,, z̄.�
�� = ¯.�
�/e.	�, and 

suph��A.�
�� − i
���
≤ suph��A.�
�� − Ā.�
��� + suph� Ā.�
�� − i
�/e.	�� + suph�i
�/e.	�– i
���
= suph��A.�
�� − Ā.�
��� + suph� Ā.�
�/e.� − i
�/e.	�� + suph�i
�/e.	�– i
���
= ±". + ±,. + ±k..

               (43) 

First to estimate ±,.. By Lemma 4.3 we know 

∑ ����C" �©.,��,%N ≤ � ∑ j∑ �£¤%y�!"7C£¤ |�7|,%N + 5∑ �£¤%y�!"7C£¤ �7,;

,%N�/,m���C"

≤ � ∑ j∑ G.!
,%N�£¤%y�!"7C£¤ /!
,%N� + 5∑ /!"£¤%y�!"7C£¤ ;
,%N�/,m���C"
≤ ��∑ /!"!	N/,.7C" + 
Y./!"�
"%N/,��
≤ ��/!N/, + �.
Y./!"�
"%	N/,��
≤ ��/!N/, + 
Y./!"�N/,�
≤ �
Y./!"�N/,
= �[,.N/,.

                  (44) 

Note that ®., = e., → 1 by Lemma 4.6. From the Berry-

Esseen theorem, we get that 

±,. ≤ �®.!
,%N� ∑ ���.,��,%N��� ≤ �[,.N/,. (45) 

Next to estimate ±". . Assume ²
��  and ³
��  are 

characteristic functions of F.   and ­.  respectively. By Berry-

Esseen Inequality, we have 

±". ≤ � |´
£�!µ
£�£ |¶
!¶ �� + ­ suph � � z̄.�
� + �� − z̄.�
���|�|\·/¶ �� .                    (46) 

Note that 

³
�� = �exp
8�­.� = �exp�8� ∑ ©.,����C" � = ∏ ����C" exp�8�©.,�� = ∏ ����C" exp�8��.,��,               (47) 

and utilize Lemma 4.4 

|²
�� − ³
��| = ��exp�8� ∑ �.,����C" � − ∏ ����C" exp�8��.,���
≤ 4�,∑ ∑ ∑ |Cov
�h , �̧ �|£¦%y�!"

¸C£¦
£§%y�!"hC£§"\7]9\��

≤ 4�,�
Z.�.
                                 (48) 

On the other hand, 
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suph� z̄.�
� + �� − z̄.�
��� = suph|¯.�

� + ��/e.� − ¯.�
�/e.	�|
≤ suph�¯.�

� + ��/e.	�–i

� + ��/e.	��
+ suph�i

� + ��/e.	�–i
�/e.�� + suph�¯.�
�/e.	�–i
�/e.��
≤ ��[,.N/, + |�|/e.	� ≤ ��[,.N/, + |�|�.

          (49) 

Let ­ = �!"/k
Z.� then have 

±". ≤ � 5� |4��
Z�|¶
!¶ �� + ­ � �	[,.N/, + |�|���|�|\¥/¶ ;

≤ ���
Z.�­, + [,.N/, + 1/­�
≤ ���"/k
Z.� + [,.N/,�.

                                          (50) 

Finally to estimate ±k. . By mean value theorem, there 

exists ¹h ∈ #�, �/e.	$ ∪ #�/e. , �$ such that 

±k. = suph|i
�/e.� − i
��|
= suph "

√,» ¼!½¾
t/,|�/e. − �|	

≤ |��!"|
√,»�� suph|�| ¼

!ht¿���"," ��t⁄ �/,

= |��!"|
√,»��

"
Á¿���"," ��t⁄ � .

             (51) 

From Lemma 4.6, 

±k. ≤ ��["."/, + [,."/, + �
Z.��.          (52) 

Combining (43), (45), (50) and (52) yields that 

suph��z.�
�� − i
��� ≤ � 5["."/, + [,."/, + [,.N/, + �"/k
Z.�; .                                         (53) 

By Lemma 4.5 and Lemma 4.7, we have 

suph|�.�
�� − i
��| ≤ � 5["."/, + [,."/, + ["."/k + [,."/k + [,.N/, + �"/k
Z.�;
≤ � 5["."/k + [,."/k + [,.N/, + �"/k
Z.�; .

                                   (54) 

Complete the proof. 

5. Proof of Theorem 2.3 

Lemma 5.1. (Shapiro, [19]) Suppose that, for a sequence 
�f.� of positive number converging to infinity, the sequence 

f.�6Â.
�� − 6
���, of random elements of C(S), converges in 

distribution to a random element Y(x) of C(S). Then 

f. 5	inf�∈Ã	6Â.
�� − inf�∈Ã 6
��;
v→ 	 inf�∈Ã∗
Ä��
�� , 

where F ⊆ ℝ  and 6
��: F → ℝ , 6Â.
��  is sample average of 

6
�� , F∗
6�  is a set of points that 6
��  reaches minimum 

values in these points. 

Lemma 5.2. (Pflug, [14]) Suppose that �
�� is distribution 

function of random variable � . For � ∈ 
0,1� , let � =
sup��: �
�� ≤ 1 − �� and Æ = inf��: �
�� ≥ 1 − ��. Then 

#�, Æ$ = argmin È� + 1
� �#� − �$%, � ∈ ℝÉ . 

particularly, �!"
1 − �� ∈ argmin �� + "
	 �#� − �$%: � ∈

ℝ�. 

Proof of Theorem 2.3 From Corollary 2.1, we know 

that, for any � ∈ ℝ, 

/"/,#/!" ∑ ℎ	.7C" 
�7 , �� − �ℎ	
�, ��$ v→ n�0, G,
���. (55) 

Note that #Z!, Z$ = argmin��ℎ	
�, ��, � ∈ ℝ�  from 

Lemma 5.2. So, by Lemma 5.1, we have 

/"/,
>A� − >∗� v→ inf�∈#wx,w$ n�0, G,
���,           (56) 

and 

inf�∈#wx,w$�/"/,#/!" ∑ ℎ	.7C" 
�7 , �� − �ℎ	
�, ��$�
v→ inf�∈#wx,w$ n�0, G,
���.              (57) 

Thus, (56) and (57) imply that 

>A� − >∗ = inf�∈#wx,w$�/!" ∑ ℎ	
�7 , ��.7C" − �ℎ	
�, ��� +
cy�/!"/,�.                                  (58) 

Lemma 5.2 tells us that 

�ℎ	
�, �� = inf�∈#wx,w$ �ℎ	
�, �� = >∗  for any � ∈ #Z!, Z$. 

Therefore, (58) is equivalent to 

>A� = inf�∈#wx,w$ /!" ∑ ℎ	
�7 , ��.7C" + cy�/!"/,�,      (59) 

that is (17). 

When Z = Z!, it is obvious that (18) and (19) hold from 

(59) and (56), respectively. Let ©. = >A� −
/!" ∑ ℎ	
�7 , Z�.7C" , then 

©. = 
>A� − >∗� − 
/!" ∑ #ℎ	
�7 , Z� − �ℎ	
�7 , Z�$.7C" �. (60) 

From Theorem 2.1 and (27), we know that ©. =
c
/!d�, �. e., so obtain (21). 
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When Z > Z! , from (56), the limiting distribution of 

/"/,�>A� − >∗�  is a minimum value of a family of normal 

distributions, so it isn’t a normal distribution. 

6. Conclusion 

We know that ARMA models with negative 

autocorrelation coefficients are NA models, so NA dependent 

samples are widely existed in practice. Under NA variables, 

therefore, it is meaningful to discuss the asymptotic 

properties of the optimized type CVaR estimator proposed by 

Rockafellar and Uryasev [15] and Trindade et al [23]. We 

derive the consistency and the asymptotic normality of the 

estimator, and the consistency rates are /!"/,  or near to 

/!"/, . These results show that the estimatior has good 

theoretical properties in NA dependent environment. And the 

confidence interval of CVaR can be given by using the 

property of asymptotic normality. 
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