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Abstract: VaR and CVaR are important risk measures, which are widely used in finance, economy, insurance and other
fields. However, VaR is not a coherent risk quantity, and it is not sufficient to measure tail risk. CVaR (also known as expected
shortfall, ES) is a coherent risk measure, and it makes up for the defect that VaR is not enough to measure tail risk. Therefore,
CVaR has been paid more and more attention in both application and theory fields. Rockafellar and Uryasev (2000) and
Trindade et al (2007) proposed an optimized type CVaR estimator and studied some asymptotic properties of the estimator.
Since then, some scholars have discussed the properties of the estimator in the cases of p-mixing, ¢-mixing and o-mixing. In
this paper, we shall study the asymptotic properties of the optimized type CVaR estimator in the case where the samples are
NA random variables. The consistency and the asymptotic normality of the optimized type CVaR estimator and their
corresponding convergence rates are obtained. The convergence rates of estimation are n”? or near to n”"%. These results also
establish the asymptotic relations of the optimized type CVaR estimator and the common CVaR estimator. And their deviation

converges almost surely to 0 at the rate of n”?,
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1. Introduction

In the fields of finance, economy and insurance, it is very
important to measure risk accurately. In financial filed, VaR
is widely used to measure risk, which refers to the maximum
possible loss under a certain confidence level for financial
assets or portfolios in the holding period. Let X be a loss
variable of financial asset or portfolio, for a given small
probability a €(0,1), in the confidence level of 1 — &, VaR is
defined as

VaR,(X) = influ: F(u) = 1 — a}, €))

where F (u) is distribution function of loss variable.
However, Artzner et al. [2-3] found that the VaR doesn’t
satisfy subadditivity, namely, it hasn’t convexity. So VaR is
not a coherent risk measure, and it is insufficient to measure
the tail risk. As an alternative measure of risk, CVaR (also

known as expected shortfall, ES) is proposed, also known as
the average excess loss, which denotes the expected loss
which greater than the given VaR value for a portfolio, and
its formula as

CVaR,(X) = E(X|X = VaR,(X)). )

Rockafellar and Uryasev [15] proved that the definition of
CVaR is equivalent to the solution of an optimization
problem, namely

CVaR,(X) = inf.ep{x + a 1E[X — x]*}, 3)

where [a]t = max{0,a} . Pflug [14] proved the CVaR
satisfies subadditivity, also is a coherent risk measurement.
More researches are available in Rockafellar and Uryasev
[16], Follmer and Schied [6].

CVaR has better properties than VaR. Therefore, it is
suitable as the optimization tool of investment portfolio,
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which attracts scholar’s widely attention. For example,
Andrew et al. [1], Mansini et al. [12], Noyan and Rodulf
[13], Sun et al. [22]. Noyan and Rodulf [13] extended to
multivariate CVaR, expand its application range. Also in
other fields it is widely used, such as risk issues of books and
newspapers selling (Gotoh and Takano, [7]), optimal
placement of the gas detector in the petrochemical plant
(Legg et al., [8]), wind power generation system (Chen et al.,
[4]), and so on.

Scaillet [18], Luo and Yang [10], Luo and Ou [I11] and
references therein studied the CVaR kernel estimator.
Escanciano and Mayoral [5], Wang and Zhao [24] studied the
CVaR semi-parametric estimation. On the basis of the
equivalence definition of formula (3), Trindade et al. [23]
proposed a kind of optimization CVaR estimation, and
studied the consistency and the asymptotic normality of the
optimization CVaR estimation. For the optimization CVaR
estimation, Luo and Yang [10] studied the strong consistency
and asymptotic normality under the p-mixing samples, and
its convergence rate. Xing et al. [25] studied the strong
consistency under the ¢p-mixing sample, and gave the rate of
convergence. However, negatively associated (NA) sequence
is also common in dependence. It was proposed by Joag-Dev
in 1983, and then attracts many scholars, such as Su Chun
[20], Roussas [17], Yang [27], Zhou et al. [28] and so on.
However, as we know, the asymptotic normality on the
optimal CVaR estimation under NA sequence hasn’t been
studied, so this article will focus on the consistence and
asymptotic normality of optimization CVaR estimation under
NA sequence.

In the end of this section, we give some relevant
definitions as follows.

The random variables Xy, X,, -, X;,,n = 2 are said to be
negatively associated (NA), if, for two arbitrary disjoint
subsets A; and A4, of {1,2,---,n},

Cov (fl(xi,i €A, fy(x;) € Az)) <0, @)

where f; and f, are non-increasing or nondecreasing
functions. Random sequence {X,,n = 1} is said to be NA if

nof(x) =n"tTiL, Var(Z,(x)) + 2n7! Lizicjn Cov (Z:(x), ()
= Var(Z,(x)) + 2n™' ¥1<i<j<n Cov (Zi(x),Z]-(x)) .

Let I, = n™' ¥1cicjen Cov (Zi(x),Z]-(x)). By Lemma 4.1

in section 4,
Ihl<cn™ Y | cov(x,x)|
1si<jsn
= 1Y, B2 Cov(X, X;)|
S Cn YR, Yiiejie [Cov(Xy, X)) |

< Cn7' X7, Supjag Diviojio1 | Cov(Xy, X))

< € supjzy Dijimji=1 | Cov(Xy, X;)| = Cu(l) < oo. (12)

X1, X5, X, are NA for any n > 2.
Let h,(X,x) = x + a[X — x]%,0* = CVaR,(X), from
the (3) we have

0" = infyeg Ehe (X, x). (5)

Assume Xq,X,,-+,X, is a sample coming from the
population X, Rockafellar and Uryasev [15] and Trindade et
al [23] define the optimization estimation for 8*, namely

é\n = infxe]R nt ?:1ha(Xirx)' (6)

2. Main Result

To describe our main results, we firs introduce some
denotations. For any given x € R, let

Zl(x) = ha(Xi'x)'gn(x) 2% ?:lha(Xi'x) 2% ?=1Zi(x)' (7)
Sn () = 071 () (g (x) = Egn(x)), F¥ () = P(S,(x) <w), (8)

where a2(x) = Var(g,(x)).

We need the following basic assumptions.

(A1) {X;:i = 1} is a sequence of identically distributed NA
random variables with EX; = 0 and E(|X1|2+6) < oo for
some 6 > 0.

(A2) u(l) < o ,
u(n) = supjsy Yiji-jj=n| Cov(X;, X;)|-

(A3) 6%(x)>0 for any xER ,
lim,,_,o no2(x).

(A4) There exist positive integers p,, and g, such that

where

where o02(x) =

Pnt Gn SN, qupnt < C <o, )
and, asn — oo,

Yin O'VZn - O,H(qn) - 0. (10)

where Y1 = qnPn’, Van = pan ™"

Because h,(X,x) is monotone increasing about X ,
{Z;(x):i = 1} is also a NA sequence. Under the assumptions
(A1) and (A2), we have that

(11)

Hence, I, is monotonous and bounded about n. Therefore,
I, has finite limit as n = oo, so that lim,_. no2(x) =
02(x) < o0, and the assumption (A3) implies that

oy () =0(m™),0;%(x) = 0(n). (13)

Theorem 2.1. Assume that {X;:i = 1} is a sequence of
identically distributed NA random variables with EX; = 0
and E|X;|” < oo for some r = 1. Then we have

0,—60"=o0(n""),a.s., (14)
where (1) when1<r<2,7=1 —%; (2) whenr = 2, we
can take any T € [0,1/2).

Theorem 2.2. Suppose that the assumptions (A1)-(A4) are



American Journal of Theoretical and Applied Statistics 2019; 8(6): 253-260 255

satisfied. Then for any given x € R, we have
sup,|FE ) — | < € (1 + 131> + 31 +w(40)), (15)

where @ (u) is the distribution function of N(0,1).

Let A; and A, satisfy 0<4; <4, <1. Take g, =
[n*1], pn = [n*2] where [x] denotes the integer part of x. In
this case, the assumption (A4) is satisfied. Therefore, we
have the following corollary.

Corollary 2.1. If the assumptions (A1)-(A3) are satisfied,
then for any given x € R, we have

B 1 (he(Xy ) — Eha (X, %)) S N(0,0%(x)). (16)

0?(q) = limy_eo 103 (q) = limyyeo (nar®) ™ Var (X, [ X; —

Moreover,

0, =n"t¥" h,(X;,q) +o(n7%),a.s. 1)

for any 7 € (0,1/2).

(ii)If g > q~, then the limit distribution of n'/2(8, — 6*)

is not a normal distribution.

Remark 2.1. Recall that X is a loss variable of financial
asset or portfolio. In practice, the loss variable is usually
continuous, so that ¢ = g~ in Theorem 2.3.

Remark 2.2. Let 8, =n"'¥", h,(X;,q) . Note that
q = VaR,(X). Then

0, =n"'YLi(q+a[X;—q]")

= VaR,(X) + XL, [ X; — VaR,(X)]*, (22)

it is a common estimator of CVaR. Therefore, the equations
(17), (18) and (21) establish the asymptotic relations of the

nT|9n A

:nT

Theorem 2.3. Let g = VaR,(X),q~ = sup{x: F(x) < 1—
a}. If (A1)-(A3) are satisfied, we have

0, = infrefg-q ™ 2iy e (Xi, %) + 0,(n7Y2). (17)

There are two cases to consider:
(i) If g = q~, we have

6, =113 ho (X, q) +0,(n72),  (18)
and
N d
n'/2(8, — %) > N(0,02(q)), (19)
where
q]*). (20)

optimized type CVaR estimator 8, and the common CVaR
estimator ,,.

Remark 2.3. To give the confidence interval of CVaR 6*
by (19), we need to estimate the variance o2(q). Let
G, = E;'(1 —a) where E;7(x) is empirical distribution
function of sample X;,X,,--,X, . Denote V;,=[X;—
Gn)*, i=12,--,n. From (20), it is easy to get the
estimation of a2(q) as following

~ 1 7\ 2
8%(@) = G Zim(Vi = V), (23)

7 1
where V ==Y1,V,.
n

3. Proof of Theorem 2.1

From the definition of §,, and 8”, we have

(Bu = 0)(5,-0°50) + (Br = 0715, —0°<o0)|

< n°|0, — 0"[1(g,_6s0) + |0 — 0"|1(5,-6"<0)

. 1
=n |1nfxeR;Z?=1 ho(Xix) —

infyelm Eh,(X1,y) | 1(§n—a*zo)

. 1 .
+1 [infyeq = By ho(Xp %) — infyer Eha (X1, )| (5, -0°<o)

. 1 .
= n"inf | 220, he (X, ) = infyep Ehg (X0, 9)| ,-0°0)

. . 1
+nT31/relﬂfK |Eha(X1'Y) - lnfxER;Z?zl hq (X, x) | I(én—9*<0)

= TlTJicIélng | %Z?zl ha(Xi,x) = Eha(Xlﬁx) + Eha(Xltx) - innylR Eha(Xl' Y)|

. 1 1 . 1
n* Inf |Eha(X1,y) — 2t ha (KXo y) + o Xisy he (Xi y) — Inf = 3ty R (X, X) |

< inf {n’
x€ER

SRRy ha (X %) = Ehg(Xy, 00| + 07 |Ehg (X, x) = infyeg Ehg (X5, )|}
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1
Ehy(Xy,y) = = Bily ho(X,, )| + 1

+inf {n’
YER

1 . 1
Ty he(Xoy) = Inf 220 he (X, )|} (24)

From Theorem 1 and related contents of Rockafellar and Uryasev [15], we know that Eh,(X;,y) and %Z?:l he(X;,y) are
convex function about y. Hence, there exist y; € R and y, € R such that

. 1 o1
Eha(Xy,y) = infyep Ehg (X1, y1) )7 Xiti he (Xiy ¥2) = Inf =30y ha (X, %) (29)

Combining (24) and (25), we have
nT|9n - 0"

1
o Eha(Xy,y2) = 511 ho(X,,3)]

< " HE L [he (X y1) — ERg (X1, y)II + n*HEL [he (X1, ¥2) — Eh (X1, y2)] (26)

Therefore, to prove the Theorem we only need to prove we obtain (27) from the result of case (1).
that, for any given x € R,

1
I e (X 1) = Ehg(Xy, y1)| +

4. Proof of Theorem 2.2

The following relevant lemmas will be used in the proof of
(1)For 1 < r < 2, by Theorem 2 in Su and Wang [21], we  theorem.

know (27) is true,and 7 = 1 — 1/r. Lemma 4.1. Assume that X; and X, are NA. Then
(2)Forr = 2, take p € [1,2) and let 7 =1 —1/p. Then
E|X,|P < (E|X;|")P/" < o and 0 <7< 1/2. Hence

1
ni-t

" [ he (X, %) — Ehg (X, )] = 0, 27)

|Cov(hy (X1, %), he (X2, %))| < @™2|Cov(Xy, Xo)I. (28)
Proof Recall that h, (X;, x) = x + a"1[X; — x]*, have
Cov(ha(Xy, %), he (X5, x)) = a~2Cov([X; — x]*, [X, — x]7). (29)
From Hoeffding Lemma in Lehmamn [9],

Cov([X; — x]*, [X, — x]%)
= [T 17 P(X, — x]" < w [X, — x]* < v) — P([X; — x]* < WP([X, — x]* < v)}dudv (30)
= Jy [ PX = x]" <u [X; —x]* <) = P([X; = x]* SwP([X, —x]* < v)}dudv.

Whenu = 0 and v = 0, it is easy to know the following event equations

(X —x]"<u}={X; —x<u}{[X; —x]* <v}={X, —x < v},
{IX;—x]" <u[X; —x]*<vi={X,—x<u,X, —x < v}

Hence

Cov([X; — x]*, [X, — x]1)
= fooo fow{P(Xl —xSuX; —x<v) - PX; —x Sw)P(X; — x S v)}dudv

= f0°° fOOO{P(X1 Su+xX,<v+x)—PX; <u+x)P(X, <v+x)}dudv (1)
= fxm fxoo{P(X1 <u,X, <v) - PX, SwPX, <v)}dudv
Due to NA, P(X; < u, X, <v) — P(X; < u)P(X, <v) <0 foranyu,v € R, so we get
|Cov([Xy — x]*, [X; — x]7)I
= Uxoo fxoo{P(X1 <uX, <v)—PX, < uwP(X, < v)}dudv| o)
<|[7 [Z{P(X; Swu, X, < v) — P(X; SwP(X, < v)}dudy|
= |Cov(Xy, Xp)I.
Combine (29) with (32) yields (28). Complete the proof. on x such that

Lemma 4.2. (Luo, [10]) Assume that E|X|" < oo for some

r > 0. Then there exists a positive constant C no depending Elhe(X,x) = Ehe (X, )" < CEIX]".
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Lemma 4.3. (Yang, [26]) Suppose that {X;:i = 1} is a NA
random sequence which satisfies EX; = 0 and E|X;|” < o
for some r > 1. Then there exists a positive constant C no
depending on n such that

(Hforl<r <2,

Emaxygeen|Z, Xi| S CILLEIXI (33)
2)forr > 2,
k r n r n 2\1/2
Ema cien|Zoy Xl < € (BB X1+ (B, EXE)T7). (34)

Lemma 4.4. (Yang, [27]) Let {X]-:j = 1} be a NA random

sequence, {a]-: j= 1} be a real-value constant sequence,

Sn

yn,m

i=tm
= (m - 1)(pn + qn) +1, lm

Lemma 4.5. Assume that the assumptions (A1)-(A4) are

l=mg<m <my<--<my,=n Denote Y, =

X 41 % Xj for 1 < I < k. Then

|Eexp(it 12, V) — [Tics E exp(itY))| <
462 Y1 <5< jen|asq;] |Cov(Xs, X;)|-

For any given x €R , let ¥ =0, (x)n"(Z;(x) —
EZ;(x)),i=12,-,n, so that S,(x) = ¥, Y;. Let k, =
[n/(pn + g, )], where [x] denotes the integer part of x as
mentioned before. Then S,, may be split as S, = S, + S, +
Sy, where

kn kn
" o__ 14 m o__ I
E Yn,m :Sn - E Yn,m :Sn - yn,kn+1'
m=1 m=1

tm+ton—1

Z YL :yr’l,‘m = z Yl ;y;l,kn.'.l = Z YL ,

Ilm+qn-1 n

i=lm i=kn(Pntan)+1

=m-Dp,+q) +p,+1m=12-k,.

2
satisfied. Then EY?) =E{o;'()n 1 (Z;(x) — EZ(x))}
o 2
E(S0)? < Cyun ESI)? < Cram, (35) = ow*nE(Zi(x) ~ EZ,(x)) (37)
1/3 1/3 1/3 1/3 = Cagz(x)n_z
P(IS21 2 ¥ip ) < Crin  P>ISR 1 2 Va3 ) S Cpy - (36) <cn,
Proof From (13), it is easy to get that By Lemma 4.3, we can get that
E(SD? = E(Z5, yim) < CZN Byl < CXf, St ot p |y 2, (38)
Using (37), (38) and (9) yields that immediately yielded form (35). Complete the proof.
2 B Can Canpit Lets; = Z,’Z‘:l 4 ar(yn,m). We have the following lemma.
E($7)? < Chkpgqun™' < — 2= < =0 < Cqppyt = Cape Lemma 4.6. Under (A1)-(A4), have

Pntdn 1+qnpn

Note that n — k,,(p,, + q») < Pn + qn, we have
n

<cC
i=kn(Pn+tqn)+1

< C(n - kn(pn + Qn))n_l

< C(pn+ qu)n™!

< C(A+ gnpa Dppn™

< CYon.

E(Sy)? E(Y?)

Therefore, (35) holds. By the Markov inequality, (36) is
=E[S,—(S;+SN)? =

E(Sp)?
hence, from Lemma 4.5,

[E(Sp)? — 1

= |E(S} + 5102 —

Is2 — 1] < C{y, 2 + vl + ulqn)}- (39)

Proof  Because that E(S))? = Zf:l Var(ynm) +

2 Y 1<icjzky Cov(yn,i, yn,]-), we have that

st—1=(EGS)?—1) — 2T 1cicjck, COV(Vnis Ynj)- (40)

Note that E(S,) =0 and E(S,)? =Var(S,) =1, we

know that

1+ E(S) + Sp)? = 2E[S,(S) + 5!,

2E[Sp(Sn + SO

< 2(EIS; 12 + EIS712) + 2(E1S.| DV (EISy + S5/ 1)1?

< 2(EIS2|2 + EIS21?) + 2(E?|52) +
<c(rit+y

E1/2|51/1n|2) (41)

1/2
Van
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|215i<jsknCOV(yn,i'yn,j” Slestans:ti
kn—1 ti+pn—1 t]+pn 1
SCYI Xl L+1Z D)

<Cn?! Zk" !

Asymptotic Properties of Optimized Type CVaR Estimator for NA Random Variables

Ty L Cov(Y, Yo

s=t; t=tj n_l |C0V(XSJ Xt)l (42)

ti+pnp—1

s=t;  SUPj=1 Zt:lt—j|2qn|COV(Xj,Xt)|

< Cu(qy).

Therefore, (39) holds from (40)-(42). Complete the proof.

Lemma 4.7. (Yang, [27]) Suppose that {,:n < 1} and
{np:n <1} are two random sequences, {y,:n <1} is a
positive constant sequence, and y,, = 0. If

sup|F¢n(u) - <D(u)| < Cyy,
u
then for any € > 0, have
sup|F¢n+nn(u) - <D(u)| < C(yn +e+ P(n,l = e)).
u

Supu|ﬁnx(u) - (D(u)|

< supy| B (W) — GY W] + supy |G (W) — @ (u/sy )| + supy|@(w/s, )- 2 @)

=Jin+Jon + 3n-
First to estimate J,,. By Lemma 4.3 we know

k » E |nn’m|2+5

Proof of Theorem 2.2 Assume that {Un,mi m=12,--, kn}
be the independent random variables, and the distribution of
Npm is the same with y,,, for m =1,2,---,k,. Let T,, =
St Mm s BE = Tty Var(in,m) B (W), G (W) and G (W)
are the distribution functions of S;,T,/B, and T,
respectively. Recall 52 = Z’;;;lVar(yn_m), it is obvious that
B} = s},Gy(u) = Gy (u/sy ), and

: G G, (43)
= Supuanx(u) - G‘rJLC(u)l + SupulG;[C(u/sn) - (D('U./Sn )| + Supu|d)(u/sn )_(D('U.)l
- _ (2+8)/2
< CZ (Zt,_nﬂzn lp ¥;]2+8 + (Ztm+pn 1 le> )
— (2+6)/2
< CZfr:l:l (me;’Pn 1 1:(2+5) —(246) + (met_::n 1n_1) )
-1-4/2 -1Y(1+68/2)
n + (pan ™) ) "

<C(Th,

< C(n—6/2 + kn(pnn—l)(1+ 6/2))

< C(n™9% + (p,n~1)%/?)

< C(p n—1)5/2
_ Cys/z.
Note that B2 = s? - 1 by Lemma 4.6. From the Berry-
Esseen theorem, we get that

2+6

Jon < CBy O Skn gy, |70 < Cysl?. (45)

Jin < [0 [EEE dy + T sup, |

Note that

Y(t) = Eexp(itT,) = Eexp(it Zﬁ:‘zl nnlm) = Hf,le E exp(itnn,m) = H,k,f:lE exp(ityn,m),

and utilize Lemma 4.4

lo(®) — (@)

titpn—1
S A4t Yicicjcky, Lu=t;  Lyp=

Next to estimate [, . Assume ¢@(t) and Y(t) are

characteristic functions of S;, and T}, respectively. By Berry-
Esseen Inequality, we have

preeyrl G +3) = Grw| dy. (46)
47)

= |EeXp(it Zﬁ:l Yn,‘m) - Hfr:l 1E exp(ity‘rl m)|
f}”’" Ycov(y,, v,)I (48)

< 4t2%u(q,).

On the other hand,
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sup, |Gy (u +y) = GY )| = supy |Gy ((w + y)/sn) = G (w/s,)]
< supy |GY (U +¥)/sp )~ P((u +¥) /50 )]

(49)
+supy [D((u + y) /5, )= P (u/sp)| + supy |G (u/s, )- P (u/sy)|
5 5
< C(ypn” +1yl/sn) < Clran” +191):
Let T = u~%/3(q,) then have
T s
Jin < C ([T latu@lde +T [ (v3 +1yl)dy)
< C(u(g)T? +y5)? + 1/T) (50)
8
< C(u'3(qn) + y2n/2).
Finally to estimate J;,. By mean value theorem, there From Lemma 4.6,
exists &, € [u,u/s, | U [u/s,, u] such that Jan < € Ve 1 @) 2
< + +u .
Jin = supul®(/s) — 4@ LR
= sup, 2= e~/ u/s, — ul Combining (43), (45), (50) and (52) yields that
< |5;;Sll Supu|u| e—u2 min{1,1/s3}/2 (51)
_ Isn—1] 1
= Vzmsp y/min{1,1/52}
=~ 5
supy @) — 0| < C(ra” + 150 +van” +u(an)).- (53)
By Lemma 4.5 and Lemma 4.7, we have
supy|EF@W) — @@l < C(nf> + 12 + 7l + vl +valt + 03 (q0)) 5
s
< (B2 +ml +rl + 0 (qw).
Complete the proof. Note that [q~,q] = argmin{Eh,(X,x),x € R} from
Lemma 5.2. So, by Lemma 5.1, we have
5. Proof of Theorem 2.3

Lemma 5.1. (Shapiro, [19]) Suppose that, for a sequence
{T,} of positive number converging to infinity, the sequence
To{fu(x) = f(x)}, of random elements of C(S), converges in
distribution to a random element Y(x) of C(S). Then

8t Y,

R d

T (inf /() = inf () =

where § € R and f(x):S — R, f,(x) is sample average of

f(x), S*(f) is a set of points that f(x) reaches minimum

values in these points.

Lemma 5.2. (Pflug, [14]) Suppose that F(x) is distribution

function of random variable X . For a € (0,1), let a =
sup{u: F(u) <1 —a}and b = inf{u: F(u) = 1 — a}. Then

1
[a,b] = argmin{x +EE[X —x]t,x € ]R{}.

particularly, F~1(1 — a) € argmin {x + iE[X —x]t:x €

R}.
Proof of Theorem 2.3 From Corollary 2.1, we know
that, for any x € R,

N2 S hy (X x) — Eh (X, )] S N(0,62(x)). (55)

. d
n'/2(8, — 6*) - infyefy- 4 N(0, 0% (x)), (56)
and

infxe[q_,q]{nl/2 [n_l 7i1=1 ha (Xiﬁx) - Eha(X, x)]}

d
> infrepg-q N(0, 02 (x)). (57)

Thus, (56) and (57) imply that
én -0 = infxe[q_,q]{n_1 7i1=1 ha(Xi'x) - Eha(Xﬁ x)} +
0,(n1/2). (58)
Lemma 5.2 tells us that

Ehy(X,x) = infyeq-q) ERq(X,x) = 8" for any x € [q7, q].
Therefore, (58) is equivalent to

0, = infrejg-qin " Xiey ha (X, x) + op(n_l/z), (59)

that is (17).
When q = q7, it is obvious that (18) and (19) hold from
(59) and (56), respectively. Let n,=0,—

-1y

n i=1 ha(Xi' CI), then

M= (0 — 0% — (™ 21 [he (X5, @) — ERy(Xi, @)]). (60)

From Theorem 2.1 and (27), we know that 7, =
o(n™"),a.s., so obtain (21).
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When g > q~, from (56), the limiting distribution of
n/2(9, — 6*) is a minimum value of a family of normal
distributions, so it isn’t a normal distribution.

6. Conclusion

We know that ARMA models with negative
autocorrelation coefficients are NA models, so NA dependent
samples are widely existed in practice. Under NA variables,
therefore, it is meaningful to discuss the asymptotic
properties of the optimized type CVaR estimator proposed by
Rockafellar and Uryasev [15] and Trindade et al [23]. We
derive the consistency and the asymptotic normality of the
estimator, and the consistency rates are n=/? or near to
n~Y2 . These results show that the estimatior has good
theoretical properties in NA dependent environment. And the
confidence interval of CVaR can be given by using the
property of asymptotic normality.
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