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Abstract: Credit risk is a critical area in finance and has drawn considerable research attention. As such, survival analysis 

has widely been used in credit risk, in particular to model debt’s time to default mechanisms. In this study, we revisit different 

survival analysis approaches as applied in credit risk defaulters’ data and assess their performance in light of the Kenyan 

context. In practice, inconsistency in validity of credit risk models used by many company when predicting and analysis of 

loan default is a common phenomenon that occurs unexpectedly. Loan defaults, often causes major loses to creditors’ and can 

be of great benefit if quantified correctly in advance by using correct models. Here, we address the unbiasedness, analysis and 

comparison of survival analysis approaches, particularly, the models of credit risk. We carry out data analysis using Cox 

proportional hazard model and it’s extensions as well as the mixture cure and non-cure model. We then compare the results 

systematically by investigating the most efficient and preferable model that produces best estimates in Kenyan real data setting. 

Results show, the Cox Proportional Hazard (CPH) model is more efficient in the analysis of Kenyan real data set compared to 

the frailty, the mixture cure and non-cure model. 
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1. Introduction 

Credit risk is described as the risk of default on a debt that 

may arise when a borrower fails to make contractual 

payments. Credit risk arises whenever two counter-parties 

engage in borrowing and lending [1]. It remains a critical 

area both in banking and other lending institutions and is of 

great concern to stakeholders, i.e. borrowers, institutions, and 

policy regulators. Since the advent of Value at Risk (VaR) 

models in the 1990’s, there has been evolution of risk 

management practices and credit risk modelling. In this 

study, we review existing survival models in literature and 

systematically assess their performance in Kenyan setting. 

Currently, Kenya has 42 commercial banks, 8 

representative offices of foreign banks, 13 microfinance 

banks and one mortgage finance company [2]. Technically, 

financial institutions have been utilizing survival analysis 

tools to model credit risks [3]. According to the Central bank 

of Kenya 2016 annual report [4-9], the banking sector’s 

performance remains consistently, resilient. However despite 

being resilient, Kenya’s public and publicly guaranteed debt 

increased by 14.3 percent during the financial year 2017/18, 

with both domestic and external debt increasing at 17.4 

percent and 11.6 percent, respectively [6-7]. Public debt 

portfolio comprised of 49.2 percent and 50.8 percent 

domestic and external debt respectively by the end of the 

financial year 2017/18. The ratio of public debt to Gross 

Domestic Product (GDP) declined marginally to 57 percent 

at end-June 2018 as the projected rate of economic expansion 

surpassed the rate of buildup in public debt [5]. There has 

been an increase in non-performing loans as well. In a Credit 

Survey Report for the Quarter ended March 2018, the ratio of 

gross non-performing loans to gross loans increased from 

10.66 percent in December 2017 to 11.81 percent in March 

2018 [10]. The ratio of core capital to total risk-weighted 

assets also increased slightly from 16.05 percent in 

December 2017 to 16.15 percent as at March 2018 [11]. 

Historically, lending institutions have used different models 

in managing credit risk [12-17]. Several authors have looked 

at credit risk scoring and modelling by extending CPH 
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models [2, 18, 20-24]. One of the rationale for using survival 

analysis in credit risk setting is that time-to-default can be 

modeled with other determining features [21]. Given the 

emerging of many financial services provider firms and the 

growth in the financial industry, there is need for efficient 

credit risk measurement techniques. Standards such as the 

Basel II and International Financial Reporting Standard 

(IFRS) 9 have furthermore implied the need for effective 

credit risk measurement models. Kenya recently adopted the 

IFRS 9, thus credit providers are assessing the impact of it as 

well as seeking models useful in measuring different credit 

risk. Whereas other authors have fitted models of loan 

defaulters, there has not been a systematic comparison on the 

performance of different models in Kenyan context. In this 

study we fit different survival models into the Kenyan credit 

data and systematically compare the performance of models. 

This work attempts to evaluate and give recommendations on 

the best survival model in credit risk context in relation to the 

Kenyan data. 

In the next section, we describe the CPH model 

with its extensions. In Section 3, we discuss results 

and in Section 4 we discuss our results and draw 

conclusions. 

2. Methods 

We fits the Cox PH model and it’s extensions, that is, 

penalized splines and frailty model as well as the mixture 

cure and no-cure model to real Kenyan data set. Assessment 

is done to ascertain the most effective model in analyzing 

credit risk. 

2.1. Data 

The data used for the study was obtained from Metropol 

Credit Reference Bureau for the period 2014 to 2017. The 

data comprised of 20,299 individuals and included various 

covariates namely: the age of the individuals (from 22 years 

to 75 years), age bracket (18-33, 34-43, 44-53, >54), gender 

(male and female), marital status (married, single, divorced 

and widowed), the type of the account (credit card, loan 

account and current account), status of the loan (active or 

defaulted), loan amount (ranged from USD 10 to USD 

2,290,686) and the loan amount group. 

2.2. Study Design 

We fitted the Cox PH model and its extensions, that is, 

penalized splines and frailty model as well as the mixture 

cure and no-cure model to real Kenyan data set. Assessment 

is done to ascertain the most effective model in analyzing 

credit risk. 

2.2.1. Survival Analysis Framework 

The survival function denoted as the probability of not 

having experienced the event of interest over observed time t, 

is S (t) = P (T > t). In the context of credit risk, the event of 

interest is default [25]. The hazard function models the 

instantaneous risk. The Cox proportional hazard (CPH) 

model is more flexible and has widely been used [30]. 

2.2.2. Penalized Splines 

Whenever, the number of knots in a given spline becomes 

sufficiently large, a fitted function of the spline depicts more 

variation than justified by the data. Penalized splines are 

considered as a variant of smoothing spline with more 

flexible choice of knots, bases and penalties. A smoothness 

penalty implements the procedure of integrating the square of 

the second derivative of the fitted spline function. The 

penalty could also be based on higher-order finite differences 

of adjacent basis splines (B-splines) [31]. 

2.2.3. Frailty Model 

The Frailty models provide a better way for incorporating 

random effects in a given model to account for association 

and heterogeneity that is not observed. Generally, a frailty 

model can be considered as an unobserved random factor that 

modifies multiplicatively the hazard function of an 

individual, group or cluster of individuals. The model is 

represented by the following hazard given the frailty: 

λ(t|Z, X) = Zλ(t|X)                                   (1) 

Where λ is the hazard function and the frailty Z is an 

unobservable random variable varying over the sample which 

increases the individual risk if Z > 1 or decreases if Z < 1. 

The conditional survivor function for the model is presented 

as: 

S(t|Z, X) = 	exp(Z � λ(u|X)
�

�
du) 	= 	exp(ZΛ(t|X)) (2) 

where Λ(t|X) = 	Z	 � λ(u|X)du
�

�
. S(t|Z, X),	 represents the 

fraction of individuals surviving until time, t, given, Z, and 

given the vector of observable covariates X [31]. 

2.2.4. Mixture Cure and Non-Mixture Cure Model 

Conventionally, mixture cure models have been motivated 

by the existence of dis aggregated long-term survivors [24]. 

On the other hand, under non-mixture survival models, event 

of interest is assumed to occur in the long-run. Both mixture 

cure and non-cure models are used in the setting where a 

given fraction of the population will not experience the event 

of interest. The mixture cure model is therefore, a mixture of 

distributions where, on one hand, a logit regression model 

generates a mixing proportion of non-susceptibility; the 

survival model, on the other hand describes the survival 

function of the cases susceptible to the event of interest. The 

models are of particular interest in credit risk modeling as the 

event of interest here, default, will not occur for a very high 

proportion of the cases [24]. The survival function of the 

mixture cure model is given as; 

S(t|x) 	= 	π(x)S(t|Y	 = 	1, x) 	+ 	1	 − 	π(x)t     (3) 

where Y is the susceptibility indicator (Y = 1 if an account is 

susceptible, and Y = 0 if not). The conditional survival 

function modeling the cases that are susceptible is given by a 



 American Journal of Theoretical and Applied Statistics 2019; 8(2): 39-46 41 

 

CPH model: 

s(t|Y	 = 	1, x� = exp(−exp(β′x�	� ℎ�(�| = 1�!��
�

�
	 (4) 

In a non-cure mixture context, the Breslow-type estimator 

is used for estimation of the cumulative baseline hazard 

similar to the Cox PH model. Excellent summary on non-

cure mixture model can be found in [23-26]. 

3. Data Analysis 

Data was extracted from Kenya Metropol and comprised 

of 20,299 individuals. The data was extracted between 

December 2014 and December 2017 where different 

individual accounts were tracked over a certain period of 

time to obtain the accounts where the individuals went into 

default as well as those that did go into default within the 

period of the study. The date captured various covariates, that 

is, time difference, gender, age, type of the product, marital 

status, year of data retrieval and the loan amount groups. The 

time difference means for active individuals is 24.17 months, 

with a lower confidence interval of 24.04 months and an 

upper confidence interval of 24.30 months. For defaulters, 

the mean time difference is 24.70 months with a lower 

confidence interval of 24.45 months and an upper confidence 

interval of 24.94 months. The mean original amount for 

active individuals is Kshs 300,077.82 with a lower 

confidence interval of Kshs 247,589.00 and an upper 

confidence interval of Kshs 352,566.63. For the defaulters, 

the mean original amount is Kshs 195,210.76 with a lower 

confidence interval of Kshs 137,670.56 and an upper 

confidence interval f Kshs 252,750.95. The mean age for 

active individuals is 41 years with a lower confidence 

interval of 40.83 years and an upper confidence interval of 

41.17 years. For the defaulters, the mean age is 38.11 years 

with a lower confidence interval of 37.81 years and an upper 

confidence interval of 38.40 years. The time (in years) when 

data was retrieved is December 2014, 2015, 2016 and 2017. 

The gender for the individuals under study is male and 

female, we shall denote male as gender 1 and female as 

gender 2 for our analysis part. The individuals are grouped 

into the age brackets of 18-33, 34-43, 44-53 and above 54 

years. The amounts of the individuals are under different 

products namely; current account, loan account, and the 

credit card. The individuals under study are considered to be 

married, divorced, single or widowed. The individuals 

amount is also grouped in ranges starting from 0-50,000, 

50,001- 100,000, 100,001-250,000, 250,001-500,000, 

500,001-1,000,000 and over 1,000,000. Note that all the 

covariates have a p-value of less than 0.001 apart from the 

marital status which has a p-value of 0.006. The data can be 

summarized in table 1. 

We generated age boxplot with respect to active/defaulter 

clients and results shows evidence that young people are 

more likely to default loans than older people while there is 

no much significance in the time difference. 

Table 1. Summary of data, variables, covariates and there corresponding counts and p-value. 

Time Difference (95% CI) Mean=24.17 (24.04,24.30) Mean=24.70 (LCI=24.45, UCI=24.94) <.001 

Original Amount (95% CI) Mean=300,078 (247,589,352,567) Mean=195,210.76 (137,671,252,751) <.001 

Age (95% CI) Mean=41.00 (40.83,41.17) Mean=38.11 (37.81,38.40) <.001 

Gender 
F = 7857 (82.61%) = 1654 (17.39%) <.001 

M = 7989 (74.05%) = 2799 (25.95%) <.001 

Age Bracket 

>54 = 2150 (86.14%) = 346 (13.86%) <.001 

18-33 = 4652 (71.95%) = 1814 (28.05%) <.001 

34-43 = 4908 (78.73%) = 1326 (21.27%) <.001 

44-53 = 4136 (81.05%) = 967 (18.95%) <.001 

Loan Groups 

A = 533 (86.67%) = 82 (13.33%) <.001 

B = 848 (84.38%) = 157 (15.62%) <.001 

C = 1527 (84.32%) = 284 (15.68%) <.001 

D = 1473 (78.94%) = 393 (21.06%) <.001 

E = 1657 (75.66%) = 533 (24.34%) <.001 

F = 9808 (76.55%) = 3004 (23.45%) <.001 

Product Name 

Current Ac = 2419 (78.36%) = 668 (21.64%) <.001 

Loan Ac = 10877 (83.75%) = 2111 (16.25%) <.001 

Credit Card = 2550 (60.37%) = 1674 (39.63%) <.001 

Status 

Divorced = 43 (75.44%) = 14 (24.56%) 0.006 

Married = 10483 (78.60%) = 2854 (21.40%) 0.006 

Single = 5311 (77.11%) = 1577 (22.89%) 0.006 

Widowed = 9 (52.94%) = 8 (47.06%) 0.006 

Amount Group 

0-50,000 = 9808 (76.55%) = 3004 (23.45%) <.001 

50,001-100,000 = 1657 (75.66%) = 533 (24.34%) <.001 

100,001-250,000 = 1473 (78.94%) = 393 (21.06%) <.001 

250,001-500,000 = 1527 (84.32%) = 284 (15.68%) <.001 

500,001-1,000,000 = 848 (84.38%) = 157 (15.62%) <.001 

Over 1,000,000 = 533 (86.67%) = 82 (13.33%) <.001 
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Figure 1. Age distribution dropbox (0 for active clients and 1 for defaulters) with outliers. 

 

Figure 2. Time distribution drop-whiskers plot: Duration on loan (0 for active clients and 1 for defaulters). 

4. Results 

We fitted the Kaplan-Meier curves and the figure below represents the result. 

 

Figure 3. KM curves for age bracket. 
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By design, there are three assumptions used analysis of 

Kaplan-Meier; both censored and non-censored patients have 

the same survival prospects, the survival probabilities are the 

same for subjects recruited either earlier or late during 

observation, events happen at specified time. 

4.1. Cox Proportional Hazard (CPH) Model with Time 

Independent 

We fitted the CPH model (time, Status) regressed against 

gender, age bracket, loan principal amount, marital status and 

product name). The number of customers, n= 20,282, number 

of events= 4, 445 (Loan Defaulters). 17 observations were 

missing such information and were therefore deleted. 

Concordance= 0.635 (se = 0.005 ), Rsquare= 0.049 (max 

possible= 0.98), Likelihood ratio test= 1019 ( p=<2e-16), 

Wald test = 1041 (p=<2e-16) and Score (logrank) test = 1094 

(p=<2e-16). See table 2. 

Table 2. Cox PH Model with time independent. 

Covariates coef exp (coef) se (coef) z Pr (>|z|) exp (coef) Exp (-coef) LCI (95%) UCI (95%) 

gender2 -3.190e-01 7.269e-01 3.122e-02 -10.218 < 2e-16 0.7269 1.3757 0.6837 0.7728 

age_bracket (34-43) -2.667e-01 7.659e- 3.622e-02 -7.363 1.8e-13 0.7684 1.3014 0.7157 0.8250 

age_bracket (44-53) -4.569e-01 6.333e-01 3.985e-02 -11.463 < 2e-16 0.6321 1.5821 0.5845 0.6835 

age_bracket (>54) -6.933e-01 4.999e-01 5.879e-02 -11.792 < 2e-16 0.5039 1.9844 0.4491 0.5655 

Divorced -2.756e-01 7.591e-01 2.680e-01 -1.028 0.3038 1.0000 1.0000 1.0000 1.0000 

Single 4.053e-02 1.041e+00 3.140e-02 1.291 0.1967 1.3194 0.7579 0.7803 2.2310 

Widowed -1.233e-01 8.840e-01 3.546e-01 -0.348 0.7280 1.3618 0.7343 0.8045 2.3052 

Loan Ac -8.604e-01 4.230e-01 3.286e-02 -26.180 < 2e-16 NA NA NA NA 

Current Ac -4.777e-01 6.202e-01 4.583e-02 -10.423 < 2e-16 0.4375 2.2858 0.4101 0.4667 

Original Amount -3.098e-08 1.000e+00 1.468e-08 -2.110 0.0349 0.6339 1.5775 0.5793 0.6936 

4.2. Penalized Splines for Cox PH Model 

We tested model nonlinearities in the covariate by using penalized splines. B-splines are piecewise-defined polynomials 

joined at knots, with cubic B-splines being the most frequently used basis functions. Results shows linearity in age as a 

prediction though amount of loan dispatched was non-linear. 

 

Figure 4. Penalized Spline graphs for defaulter’s prediction with age and amount of loan advanced as covariates. The y-axis (spline prediction in each case 

illustrates the realized estimated defaulter frequencies, obtained from B-splines. For the two variables (age and loan advanced), the data have been sorted and 

grouped into 50 equal-sized groups.  

4.3. Frailty Model 

The frailty model incorporates an excellent way to add 

random effects, association and unobserved heterogeneity 

into survival models. The unobserved random 

proportionality factor that modifies the hazard function of 

an individual, or of related individuals is displayed. A 

frailty model is a random effects model for time variables, 

where the random effect (the frailty) has a multiplicative 

effect on the hazard. We fitted time and status regressed 
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against gender, age bracket, marital status, and product 

name and frailty random factor for age assuming a Gaussian 

distribution 

Table 3. Frailty model estimates. 

Covariates Value Std. Error z p 

r (Intercept) 3.56981 0.07783 45.87 <0.001 

gender2 0.08900 0.00908 9.80 < 0.001 

age_bracket (34-43) 0.06853 0.01431 4.79 <0.001 

age_bracket (44-53) 0.12367 0.01555 7.95 <0.001 

age_bracket (>54) 0.18903 0.01928 9.80 < 0.001 

Married -0.07917 0.07723 -1.03 0.31 

Single -0.08895 0.07738 -1.15 0.25 

widowed NA 0.00000 NA NA 

Loan_Ac 0.22697 0.01000 22.70 < 0.001 

Current_Ac 0.12829 0.01339 9.58 < 0.001 

Log (scale) -1.24457 0.01242 -100.18 < 0.001 

Results show, scale= 0.288 Weibull distribution, loglik 

(model) = -21, 804.5, Loglik (intercept only) = -22, 316.2, 

Chi-square value= 1023.41 on 20 degrees of freedom, p= 

3.7e-204, with number of Newton-Raphson Iterations: 719 

and n=20,282. 17 observations that were missing were 

deleted. 

4.4. Mixture Cure Model 

During survival, it often happens that a certain subjects 

never experience the event of interest. These event times are 

usually considered infinite and the subjects are said to be 

cured. Survival models that take this feature into account are 

commonly referred to as cure models. Here we fitted age 

covariate i.e. (time, Status) against age. The distribution was 

assumed to be Weibull proportional hazard with link function 

as logistic. N = 20,299, Events: 4,453, Censored: 15,846, 

total time at risk: 492,930, log-likelihood = - 22,349.14, 4 

degrees of freedom and AIC = 44,706.28. 

Table 4. Mixture Cure Model estimates for age. 

covariates data mean estimate LCI (95%) UCI (95%) Standard error exp (est) LCI 95% UCI 95% 

Theta NA 1.02e-02 NA NA NA NA NA NA 

shape NA 3.44e+00 NA NA NA NA NA NA 

scale NA 2.51e-06 NA NA NA NA NA NA 

age 4.04e+01 -2.28e+00 NA NA NA 1.02e-01 NA NA 

For gender covariate we fitted (time, status) against gender. The distribution was assumed to be Weibull proportional hazard 

with link function as logistic. N = 20,299, all events were 4,453, censored events: 15,846, Total time at risk: 492,930, Log-

likelihood = -22,298.5, degree of freedom = 4 and AIC = 44,605.  

Table 5. Mixture Cure Model estimates for gender. 

Covariates Data mean estimate LCI (95%) UCI (95%) Standard error exp (est) LCI 95% UCI 95% 

theta NA 3.01e-05 3.45e-14 1.00e+00 NA NA NA NA 

shape NA 3.47e+00 3.38e+00 3.55e+00 4.31e-02 NA NA NA 

scale NA 2.62e-06 1.96e-06 3.50e-06 3.87e-07 NA NA NA 

gender2 4.69e-01 9.16e+00 -1.14e+01 2.97e+01 1.05e+01 9.51e+03 1.09e-05 8.30e+12 

For age covariate we fitted (time, status) against age bracket. The distribution was assumed to be Weibull proportional 

hazard with link function as logistic. N = 20,299, events: 4,453, censored events were 15,846, Total time at risk: 492930, Log-

likelihood = -22, 276.01, degree of freedom = 6 and AIC = 44,564.03. 

Table 6. Mixture Cure Model estimates for age bracket. 

covariates data mean estimate LCI (95%) UCI (95%) Standard error exp (est) LCI 95% UCI 95% 

theta NA 1.20e-04 6.09e-09 7.03e-01 NA NA NA NA 

shape NA 3.49e+00 3.40e+00 3.57e+00 4.35e-02 NA NA NA 

scale NA 2.58e-06 1.93e-06 3.46e-06 3.84e-07 NA NA NA 

age_bracket (34-43) 3.07e-01 7.06e+00 -2.83e+00 1.69e+01 5.05e+00 1.16e+03 5.88e-02 2.29e+07 

age_bracket (44-53) 2.51e-01 7.67e+00 -2.22e+00 1.76e+01 5.05e+00 2.15e+03 1.09e-01 4.24e+07 

age_bracket (>54) 1.23e-01 8.64e+00 -1.25e+00 1.85e+01 5.05e+00 5.66e+03 2.87e-01 1.12e+08 

 

4.5 Non-mixture Cure Model 

The rationale behind non-mixture cure models is that 

observation stage it is assumed that an individual is left with 

some levels of possible occurrence of event and has the 

potential of experiencing the event of interest. Number of 

events is assumed to have a Poisson distribution. For age 

covariate, we fitted (time, status) against age. The 

distribution was assumed to be Weibull proportional hazard 

with link function as logistic. N = 20,299, number of events 

were 4,453, censored events were 15,846, total time at risk: 

492,930, Log-likelihood value yielded -22,247.71, degree of 

freedom = 4 and AIC = 44503.42. 
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Table 7. Non-Mixture Cure Model estimates for age. 

Covariates data mean estimate LCI (95%) UCI (95%) Standard error exp (est) LCI 95% UCI 95% 

theta NA 3.60e-37 2.59e-49 5.02e-25 NA NA NA NA 

shape NA 3.45e+00 3.36e+00 3.54e+00 4.41e-02 NA NA NA 

scale NA 5.11e-08 3.29e-08 7.94e-08 1.15e-08 NA NA NA 

age 4.04e+01 8.91e-01 5.79e-01 1.20e+00 1.59e-01 2.44e+00 1.79e+00 3.33e+00 

For age categories we fitted (time, status) against age bracket. The distribution was assumed to be Weibull proportional 

hazard with link function as logistic. N = 20299, Events: 4453, Censored: 15846, Total time at risk: 492930, Log-likelihood = -

22232.87, degree of freedom = 6 and AIC = 44477.75. 

Table 8. Mixture Non-Cure Model estimates for age bracket. 

Covariates Data mean estimate LCI (95%) UCI (95%) Standard error exp (est) LCI 95% UCI 95% 

theta NA 1.54e-238 3.19e-11 0.00e+00 NA NA NA NA 

shape NA 3.45e+00 3.37e+00 3.54e+00 4.29e-02 NA NA NA 

scale NA 5.80e-09 2.54e-10 1.33e-07 9.26e-09 NA NA NA 

age_bracket (34-43) 3.07e-01 -2.95e-01 -3.66e-01 -2.25e-01 3.61e-02 7.44e-01 6.93e-01 7.99e-01 

age_bracket (44-53) 2.51e-01 -4.21e-01 -4.99e-01 -3.43e-01 3.98e-02 6.56e-01 6.07e-01 7.10e-01 

age_bracket (>54) 1.23e-01 -7.36e-01 -8.51e-01 -6.21e-01 5.87e-02 4.79e-01 4.27e-01 5.38e-01 

 

5. Discussion and Conclusions 

In this study, we reviewed the performance of several 

survival analysis techniques in credit risk analysis. A real-life 

data sets from Kenya Metropol from December 2014 to 

December 2017 was used, and we used Akaike Information 

Criteria (AIC) as the main evaluation measures to assess 

model performance. The survival models used were the CPH 

model, penalized splines, frailty and the mixture cure and 

non-cure model. From the study it’s clearly evidenced that all 

the models were significant in the analysis of a Kenyan real 

data set. However, the penalized splines model only fitted 

age as a loan default predictor. The mixture non-cure model 

also fitted age and age bracket as the loan default predictors. 

Furthermore, the CPH model seemed to have outperformed 

the other models in comparison though the other models did 

not perform significantly different in most cases. The models 

revisited collectively have the advantage of not requiring the 

survival function to go to zero when time goes to infinity; a 

situation that is seldom and appropriate for credit risk data. 

Stepanova et al. [25], in there evaluation of credit scoring 

models found that survival analysis models outperformed 

other scoring models. Survival analysis is advantageous in 

that the time to default can be modeled, and not just whether 

an applicant will default or not [18, 24-28]. This study 

conquers with other studies [18, 30-33] in that the CPH 

model outperformed the frailty, penalized spline, and mixture 

cure and non-cure models. The individual in the age bracket 

of 18 years to 33 years are more likely to default while the 

males are more likely to default a loan compare to female. 

Individuals with credit card account are more likely to 

default followed by the ones with a current account then the 

loan account individuals. Those individuals that are single 

are also more like to default a loan. The study concludes that 

the CPH model is more efficient in the analysis of Kenyan 

real data set compared to the frailty, penalized spline and the 

mixture cure and non-cure model. However, it would be 

appropriate to further extend the mixture cure and non-cure 

model and study the performance of these models in 

comparison with a CPH model and some of its extensions. 

Comparison between CPH model, its extensions, and mixture 

and non-mixture models assuming different distributions was 

assessed using the AIC, where a lower AIC value indicates 

better model fit. 

Table 9. Results of AIC for four survival analysis models. 

Model AIC 

Cox PH Model with time independent 39,747 

Frailty Model 42,1001 

Mixture Cure model 44,503 

Non- Mixture Cure model 44,478 

Additionally, this study also points out that there was a 

challenge in finding an appropriate evaluation measure that is 

evidenced across all the methods for survival analysis 

comparison. 
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