
 

American Journal of Theoretical and Applied Statistics 
2018; 7(4): 156-162 

http://www.sciencepublishinggroup.com/j/ajtas 

doi: 10.11648/j.ajtas.20180704.14 

ISSN: 2326-8999 (Print); ISSN: 2326-9006 (Online)  

 

Regularized Nonlinear Least Trimmed Squares Estimator in 
the Presence of Multicollinearity and Outliers 

George Kemboi Kirui Keitany, Ananda Omutokoh Kube, Joseph Mutua Mutisya,
  

Fundi Daniel Muriithi 

Department of Statistics and Actuarial Science, Kenyatta University (KU), Nairobi, Kenya 

Email address: 

 

To cite this article: 
George Kemboi Kirui Keitany, Ananda Omutokoh Kube, Fundi Daniel Muriithi, Joseph Mutua Mutisya. Regularized Nonlinear Least 

Trimmed Squares Estimator in the Presence of Multicollinearity and Outliers. American Journal of Theoretical and Applied Statistics.  

Vol. 7, No. 4, 2018, pp. 156-162. doi: 10.11648/j.ajtas.20180704.14 

Received: April 17, 2018; Accepted: May 29, 2018; Published: June 29, 2018 

 

Abstract: This study proposes a regularized robust Nonlinear Least Trimmed squares estimator that relies on an Elastic net 

penalty in nonlinear regression. Regularization parameter selection was done using a robust cross-validation criterion and 

estimation through Newton Raphson iteration algorthm for the oprimal model coefficients. Monte Carlo simulation was 

conducted to verify the theoretical properties outlined in the methodology both for scenarios of presence and absence of 

multicollinearity and existence of outliers. The proposed procedure performed well compared to the NLS and NLTS in a 

viewpoint of yielding relatively lower values of MSE and Bias. Furthermore, a real data analysis demonstrated satisfactory 

performance of the suggested technique. 
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1. Introduction 

The knowledge of nonlinear regression is one of the widely 

used models in analyzing the effect of explanatory variables 

on a response variable. For example, Khademzadeh et al. [9] 

used MapReduce to model large-scale nonlinear regression 

problems, Ramalho and Ramalho [13] used moment based 

estimation of nonlinear regression models with boundary 

outcomes and endogeneity to nonnegative and fractional 

responses. Moreover, Tabatabai et al. [15] used robust 

nonlinear regression to estimate drug concentration, and 

tumor size-metastasis. 

The computational field of statistics has developed over 

time with the introduction of the computer which has in-

creased statistical methods and algorithms with numerous 

applications capable of generating and storing significant 

amounts of data. Various studies in Genomics, Medicine, 

Epidemiology, Marketing and basic sciences meet data sets 

whereby the effects of collinearity arise in analysis amongst 

their study variables [2]. 

Regularization techniques have widely been used for the 

solution of ill-posed problems occurring in the use of maxi-

mum likelihood or least squares methods and have proved 

successful in several fields including regression analysis and 

machine learning [16]. The methodology involves the addition 

of restrictions or penalty to a model [14], with the objective of 

preventing overfitting [11]. It also improves predictive 

accuracy in situations where there exist many predictor 

variables, high collinearity, seeking for a sparse solution or 

accounting for variables grouping in the high-dimensional 

dataset [5]. Tikhonov [17] developed this mathematical tech-

nique of regularization while working on the solution of 

ill-posed problems. In vast literature, choices of penalty 

functions such as,	��, 		��, �� or �� norms are available. 

Ando, Konishi and Imoto [1] introduced radial basis func-

tions with hyperparameter and constructed nonlinear regres-

sion models with the help of regularization. Tateishi, Matsui 

and Konishi [16] constructed nonlinear regression models 

with Gaussian basis functions using weighted �� type regu-

larization for analyzing data with complex structures. Far-

noosh, Ghasemian and Fard [4] proposed a weighted ridge 

penalty on a fuzzy nonlinear regression model using fuzzy 

numbers and Gaussian basis functions. Jiang, Jiang and Song 

[7] developed weighted composite regression estimation and 

used the Adaptive Lasso and SCAD regularization to achieve 



157 George Kemboi Kirui Keitany et al.:  Regularized Nonlinear Least Trimmed Squares Estimator in the   

Presence of Multicollinearity and Outliers 

a simultaneous parameter model estimation and selection.  

Zucker et al. [19] developed an approximate version of the 

Stefanski-Nakamura corrected score approach, using the 

method of regularization to obtain an approximate solution of 

the relevant integral equation and Hang et al. [6] proposed a 

graph regularized nonlinear ridge regression (RR) model for 

remote sensing data analysis, including hyper-spectral image 

classification and atmospheric aerosol retrieval. Although 

these regularization methods have shown exceptional per-

formance in various fields, it uses the least squares loss func-

tion which is influenced by outliers [12]. Outlier resistant 

regularized methods have been developed by replacing the 

least squares loss function with the robust technique [5]. 

Amongst these methods are Huber’s M-estimators, 

MM-estimators, Least Trimmed Squares, Least Median 

Squares estimators. Lim [10] proposed robust Ridge regres-

sion estimation procedures for nonlinear models with varying 

variance structure.  

Regularization parameter selection is an essential problem 

in Lasso-type methods since effective variable selection, and 

model estimation depends on adjusted parameters. AIC, BIC, 

Cross-validation, Mallow’s Cp criterion and generalized in-

formation criterion have been suggested for choosing regu-

larization parameters. However, the Lasso-type penalty cannot 

be analytically derived because they are not differentiable and 

local quadratic approximation, LARS, and Coordinate descent 

algorithms have been developed to settle this issue. 

Elastic Net penalty, a regularization method, has been es-

tablished to encourage grouping effect when predictors are 

highly correlated and also useful when there exists a large 

number of predictors than that of the observations in linear 

regression [18]. Section 2 introduces the proposed regularized 

robust nonlinear Least Trimmed Squares estimator with an 

Elastic net penalty in nonlinear regression models. In section 3, 

the procedure for estimation and parameter selection of the 

proposed methodology is derived. Lastly, the efficiency of the 

strategy is investigated through Monte Carlo study and real 

data analysis in section 4.  

2. Regularized Nonlinear Least Trimmed 

Squares Regression 

The nonlinear regression model has the form 

= ( , ) . = 1, 2, ,⋯i i iy f x i nβ ε+       (1) 

where iy  are response values, ix  covariates, ( , )if x β  is a 

nonlinear function of the parameters, β  is an unknown p 

dimensional vector of parameters and iε  is a random error 

assumed to have a distribution function ( )F ⋅  with finite 

variance. The most popular criterion for obtaining parameter 

model estimates is the Nonlinear Least Squares criterion 

(NLS), given by  

( )2

=1

( , ) .min

n

i i

i

y f x
β

β−∑          (2) 

However, the error distribution in the model (1) may exhibit 

heavy tails and asymmetry due to data inadequacies often 

caused by measurement or recording errors. Robust 

techniques are commonly used to accommodate violation of 

the assumptions that such errors cause. 

Nonlinear Least Trimmed Squares estimator (NLTS) is a 

high breakdown regression technique which safeguards 

against wild observations [3]. It derives the parameters of the 

model (1) by minimizing the objective function of the form 

2
( )

=1

ˆ = ( )min

s

iNLTS

i

arg r
β

β β∑           (3) 

Where s is the breakdown point, 2
( )ir  are the order statistics 

of the squared residuals and s n≤ . Model estimates of the 

objective function (3) are derived using an iterative procedure 

because it cannot be expressed in a closed form. An approach 

to nonlinear modeling is to approximate ( , )if x β  by a first 

order Taylor series expansion about an initial value 0β . This 

is given by  
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However, due to the presence of multicollinearity, the 

inversion may not be useful. The study proposes to obtain 

parameter model estimates to enhance the estimation 

performance of NLTS by minimizing the objective function  

2 2
( ) 1 2

=1 =1 =1

ˆ = [ | | ]min

p ps

i j jNLTS ELnet

i j j

arg r
β

β λ β λ β− + +∑ ∑ ∑  (4) 

Where 
2

1 2

=1 =1

| |

p p

j j

j j

λ β λ β+∑ ∑  is the Elastic net penalty. 

The objective function (4) above combines NLTS loss 

function with an Elastic net penalty envisaged to produce 
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stable model estimates when multicollinearity is present with 

the existence of outliers. The NLTS-ELnet estimator is based 

only on s observations having small residuals to relax the 

effect of outliers satisfying <
2

n
s n≤ . The trimming constant 

s defines the breakdown point of the estimator, and a break-

down point of s = 0.75n is considered, to include a sufficient 

number of observations [8]. 

3. Parameter Selection and Estimation of 

the NLTS-Elnet Estimator 

The objective function (4) above can be simplified to  

2
( )

=1

ˆ = ( ) .min

s

iNLTS Elnet

i

arg r Pα
β

β λ β−

  + 
  
∑     (5) 

Where, 

2

=1

( ) = (1 ) | | ,
2

p
j

j

j

Pα
αβ

β α β
  + − 
  

∑      (6) 

and 2 1 2= / ( )α λ λ λ+ , 0 1α≤ ≥  and >λ 0. 

However, the penalty term (6) cannot be analytically 

derived since it is not differentiable at zero. The local 

quadratic approximation of a Lasso-type penalty has been 

proposed to settle this drawback. Suppose 0β  is given as an 

initial value of the minimizer of equation (5), then the local 

quadratic approximation of the derivative of the penalty term 

is given by  

0

0

(| |)
(| |)

| |

'
' j

j j

j

P
P

λ
λ

β
β β

β
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Where for 1(| |) = | | , (| |) = | |q ' q
j j j jP P qλ λβ λ β β λ β −   

evaluated at 0=β β . 

The regression parameter vector β̂  is derived using 

Newton-Raphson iterative method given by  

1

2 ˆ ˆ
= .

new old NLTS Elnet NLTS Elnet

T
E

β β
β β

ββ β

−

− −

  
  ∂ ∂  −   ∂ ∂ ∂ 
    

 (8) 

The study proposes to use the robust Generalized Cross 

Validation approach to select regularization parameters of the 

suggested procedure. The criterion is given by  

2

=1

2

ˆ{ ( , )}
1

=
1

{1 }

s

i i

i

y f x

GCV
s

trH
s

λ−

−

∑
        (9) 

Where ˆ ( , )i iy f xλ−  is the predicted value and H the hat 

matrix. An optimal set of the regularization parameters that 

minimizes equation (8) based on the estimated β̂  by the 

NLTS-Elnet at each set of tuning parameters 1λ  and 2λ  are 

selected using grid search. 

4. Data Analysis and Discussion 

In this section, Monte Carlo study is conducted to 

investigate the behaviour of the proposed NLTS-Elnet 

estimator on simulated and real data with a comparison of its 

performance to NLS and NLTS. The Mean Squared Error and 

Bias are considered in evaluating their performance. A 

breakdown point of s = 0.75n is considered to include a 

sufficient number of observations. Standard normal error 

distribution with 30% Uniform (-1, 4) and Student ' s t (3) 

contamination are considered. Subsection (4.1) studies the 

properties of NLTS-Elnet, NLTS and NLS estimators using 

simulated data sets. Subsection (4.2) exhibits the behaviour of 

NLTS-Elnet, NLS and NLTS methods on SENIC data set 

obtained from the Hospital Infections Program for the 

1975-76 study period. 

4.1. Study on the Regularized Least Trimmed Squares Es-

timator 

In this subsection, a Monte Carlo study is carried out to 

evaluate the performance of the proposed nonlinear regression 

estimator. 

Samples of size 10, 20, 40, 80 and 200 are generated from an 

exponential regression model (10) below adopted from [7]. 

0 1= ( ) .y exp cXβ β εΤ+ +           (10) 

where X = ix  for i=1, 2, 3, and ix ~N (0, 1), ε  is the error, 

0β , 1β  and c = ( 2β , 3β , 4β ) are model parameters. The 

true values of the parameters are 0β  = 1, 1β  = 1.5 and c = 

(-0.6, -0.8, -0.7). The predictors used in model (18) are 

generated with Correlation between lx  and mx  components 

chosen as 0.99 for all l m≠ . 

MSE and Bias of parameter estimates are computed using 

the following equations  

100
2

=1

ˆ( )

ˆ( ) = ,
100

i

j

i
jMSE

β β
β

−∑
 

and, 

100

=1

1ˆ ˆ( ) = ( ).
100

i

jj j

i

Bias β β β−∑  
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where ˆ

i

jβ  is the thj  estimate for the thi  replication and 
jβ  is the actual value of the thj  coefficient. 

Table 1. Parameter estimates, Mean squared error and Bias for NLS under Standard normal error distribution with 30% Uniform (-1, 4) and Student s t (3) 

contamination and correlation , where the actual value of =1.5, =-0.6, =-0.8 and =-0.7. 

Sample size Method  N (0, 1) U (-1, 4) Student s t (3) 

10 NLS  1.609327 1.77371411 1.660426 

   0.243427 0.07853708 1.407617 

   -1.605003 -1.46876380 -2.121418 

   -0.734116  -0.58356018 -1.457292 

  MSE 0.9595708 0.7582854 2.670094 

  Bias -0.3465914 -0.2750182 -0.3526667 

20 NLS  1.5272375 2.0345280 1.9842881 

   -0.4701652 -1.3465106 -0.2879741 

   -0.6547902 -0.8149247 -1.0895364 

   -0.9778032 0.1913489  -0.5474260  

  MSE 0.3506121 0.3859287 0.2387807 

  Bias -0.3688803 -0.2088896 -0.2839435 

40 NLS  1.4959432 1.7239093 1.5973638 

   -0.5533025 -0.7946368 -0.5926128 

   -1.2039739 -0.7353629 -1.0001144 

   -0.3668179  -0.5043841  -0.4862598  

  MSE 0.39657641 0.2207952 0.3115529 

  Bias -0.3820378 -0.3026186 -0.3454058 

80 NLS   1.5291588  1.6557942 1.5839527 

   -0.4599272 -0.4428682 -0.4073917 

   -0.6229685  -0.5830034 -0.5286050 

   -1.0102957 -1.0221216  -1.1369590  

  MSE 0.3573145 0.358397 0.4040612 

  Bias -0.3660082 -0.3230497 -0.3472507 

200 NLS  1.4766949 1.6263476 1.5504234 

   -0.6142729 -0.6253511 -0.6158236 

   -0.7626872 -0.7067085 -0.7676446 

    -0.7299139  -0.7281655 -0.7006240 

  MSE 0.2788032 0.2615671 0.2707363 

  Bias -0.3825448 -0.3334694 -0.3584172 

Table 2. Parameter estimates, Mean squared error and Bias for NLTS under Standard normal error distribution with 30% Uniform (-1, 4) and Student s t (3) 

contamination and correlation , where the true value of =1.5, =-0.6, =-0.8 and =-0.7. 

Sample size Method  N (0, 1) U (-1, 4) Student s t (3) 

10 NLTS  1.3437355 1.6982425 0.9987979 

   0.3507451 -1.2423452 1.7786562 

   -2.0735187 -1.7478642 -1.3560213 

   -1.7891295  0.7787984 -2.2302166 

  MSE 1.444423 1.028366 3.180467 

  Bias -0.519817 -0.3532921 0.6879124 

20 NLTS   1.2574173 1.2613346 1.3365464 

   0.4424735 -0.1514221 -0.4278354 

   -1.7775931  -0.1245679 -0.4368943 

   -0.9978442  -1.0034554 -0.5578914 

  MSE 1.325282 0.3201558 0.1396193 

'

0.99=ρ
1β 2β 3β 4β

'

1β̂

2β̂

3β̂

4β̂
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Sample size Method  N (0, 1) U (-1, 4) Student s t (3) 

  Bias -0.4938866 -0.2295277 -0.2465187 

40 NLTS   1.8534590 1.7527521 1.9904183 

    -0.7851019  -0.5478011  -0.5963147 

    -1.5693212  -0.6329218 -0.8815890 

   -0.5213991 -0.3021591 -0.5256798 

  MSE 0.7234556 0.1396244 0.3235155 

  Bias -0.4805909 -0.1575323 -0.2282913 

80 NLTS   1.4587371 1.4969420 1.4997631 

   -0.6788972 -0.6690801 -0.5905346 

   -0.7653232 -0.5797892 -0.7485236 

   -0.6888851 -0.6091631 -0.4974361 

  MSE 0.2670524 0.1780042 0.201955 

  Bias -0.393592 -0.3152725 -0.3091828 

200 NLTS   1.5036851 1.4975423 1.5352761 

   -0.6675032 -0.5659642 -0.5178946 

   -0.6554532 -0.6731342 -0.7986543 

   -0.6944664 -0.6656221 -0.5838793 

  MSE 0.2291182 0.2243317 0.2466874 

  Bias -0.3534344 -0.3267946 -0.316288 

Table 3. Parameter estimates, Mean squared error and Bias for NLTS-Elnet under Standard normal error distribution with 30% Uniform (-1, 4) and Student s 

t (3) contamination and correlation , where the true value of =1.5, =-0.6, =-0.8 and =-0.7. 

Sample size Method  N (0, 1) U (-1, 4) Student s t (3) 

10 NLTS-Elnet  1.1638659 1.4980528 0.9167169 

   0.2218354 -0.8023751 1.5666763 

   -1.1224322 -1.5938046 -2.3750704 

   -1.6595342  0.4037786 -2.0503756 

  MSE 0.453267 0.4723531 2.334767 
  Bias -0.1990663 0.0264129 -0.3355132 

20 NLTS-Elnet  1.4264178 1.4624274 1.5185405 

   0.2344779 -0.2758001 -0.5070444 

   -1.6575995  -0.6473159 -0.6317984 

   -0.9217019  -1.1847514 -0.9538816 

  MSE 0.371599 0.09120341 0.02543304 

  Bias -0.07960139 -0.01135998 0.006454027 

40 NLTS-Elnet   1.5592783 1.5662982 1.8057587 

    -0.5759615  -0.6228295  -0.3979009 

    -1.0434944  -0.9112180 -0.7115833 

   -0.4675405  -0.5589851 -0.8197677 

  MSE 0.02935468 0.009292828 0.03912356 

  Bias 0.01807045 0.01831639 0.1191264 

80 NLTS-Elnet   1.4749362 1.5074405 1.5441754 

   -0.5436800 -0.5642293 -0.6305667 

   -0.8648110 -0.9621981 -0.8440099 

   -0.7061941 -0.5791841 -0.6055693 

  MSE 0.002009741 0.0105599 0.003434955 

  Bias -0.009937187 0.0004572395 0.01600737 

200 NLTS-Elnet   1.4859725 1.4735395 1.5159358 

   -0.6097271 -0.6054939 -0.6252666 

   -0.7518974 -0.7423253 -0.8325394 

   -0.7443109 -0.7613827 -0.6383703  

  MSE 0.001142175 0.001956137 0.001437345 

  Bias -0.004990739 -0.008915572 0.004939872 

'

1β̂

2β̂

3β̂

4β̂
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Table 4. Parameter Model estimates using NLS and NLTS-Elnet Methods for SENIC data. 

Parameter Method Estimated Parameters 

 NLS -1.17154828 

 NLTS -1.17154881 
 NLTS-Elnet -1.20376870 

 NLS -0.28534202 

 NLTS -0.28434123 
 NLTS-Elnet -0.03864024 

 NLS -0.08243559 

 NLTS -0.08121456 
 NLTS-Elnet -0.06126209 

 NLS 0.11961430 

 NLTS 0.12673410 

 NLTS-Elnet 0.08975999 

Table 5. MSPE estimates of NLS and NLTS-Elnet Methods for SENIC data set. 

METHOD RMSPE 

NLS 0.03042244 

NLTS 0.03033311 

NLTS-Elnet 0.03029495 

+ The example for this table. The example for this table. The example for this table. The example for this table. The example for this table. The example for this 

table. 

Tables (1), (2) and (3) displays the MSE and Bias under 

standard normal errror distribution, and in the presence of 

Uniform and students t error contaminations. Moreover, 

parameter estimates of model (18) are displayed where the 

three covariates 1x , 2x , and 3x  are highly correlated ( ρ  

=0.99).  

From table (1), the nonlinear least squares method show 

low estimates of MSE and bias under the considered error 

distributions and sample sizes. Throughout the considerd error 

distributions, the method perfomed poorly under small sample 

sizes, producing estimates far from the true values, and 

estimates well with the sample of size 200. 

From table (2), the nonlinear least trimmed squares esti-

mator shows high values of MSE and bias estimates for small 

sample sizes and reduces significantly for larger sample sizes. 

Generally, the values of MSE are lower than those for NLS.  

From table (3), the proposed regularized NLTS method give 

best estimates of MSE, bias and parameters of the model. 

These values became better when n increased from 10 to 40, 

which give true values from 80 to 200 under all the considered 

error distributions.  

The methodologies perform poorly when n=10 and im-

proves as the sample increases. Furthermore, NLTS-Elnet has 

the lowest values of MSE under all the considered error dis-

tributions. Its values also seem to decrease consistently from 

n=10 to n=200 except for U (-1, 4) unlike for NLS and NLTS. 

Moreover, the model estimates of the proposed method appear 

to approach a stable value faster than those for the considered 

methods. 

4.2. Real Data Application 

In this section, the NLTS-Elnet, NLS and NLTS estimators 

are applied to SENIC data set obtained from the Hospital 

Infections Program for the 1975-76 study period. Model (11) 

below is used to model the relationship between the infection 

rate (y) and length of stay , routine culturing , 

number of beds  and the average daily census  for 

hospitals indexed 1, 2, 3, 111, 112 and 113. NLTS-Elnet, NLS 

methods are compared in parameter model estimation. 

              (11) 

First, Variance Inflation Factor (VIF) which measures 

multicollinearity in independent variables was computed 

using the formula, 

. 

where  is the multiple correlation coefficient when  

is regressed against all the other explanatory variables in the 

model. The average VIF value was calculated as 10.54781 

which is an indication of highly correlated variables. Mean 

Squared Prediction Error (MSPE), the fitted and estimated 

observations are considered in evaluating the performances of 

NLTS-Elnet, NLS and NLTS methods. The MSPE is given by 

 

where  and  denote the actual and estimated 

observations respectively. The results are summarized in 

Tables (4) and (5). 

From Table (4), the estimated coefficients for -  were 

negative and positive for , showing that the infection rate 

1β̂
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increases with the average number of patients in the hospital 

per day and decreases with the length of stay, routine culturing 

and the average number of beds during the 1975-76 study 

period of the Hospital Infections Program. Probably, this 

depicts the actual scenario because a high average number of 

patients in the hospital increases the chances of cross infection 

among patients which can be minimized by decreased length 

of stay, routine culturing and the average number of beds. The 

Mean Squared Prediction Error values in Table (5) are 

comparably the same and lowest for the proposed 

methodology. 

5. Conclusions 

Regularized robust Nonlinear Least Trimmed Squares es-

timator has been proposed in this study by adding an Elastic 

net penalty to the NLTS loss function. Robust generalized 

cross-validation was used to select the regularization 

parameters robustly. It can be seen through Monte Carlo study 

and real-world data example that the proposed methodology 

performs well in several situations compared to the NLS and 

NLTS in the viewpoint of yielding relatively lower values of 

MSE and Bias when there is the presence of multicollinearity. 

A breakdown point of 0.75n was predetermined to enhance 

efficiency by including the majority of the data points. Future 

work remains to be done towards considering the 

simultaneous selection of optimal values of regularization 

parameters and the breakdown point. Also, variable selection 

behaviour of the proposed estimator in a large number of 

predictors could be a possible problem which needs to be 

explored. 
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