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Abstract: In this article the interval estimation of a P(X; < X,) model is discussed when X; and X, are non-negative
independent random variables, having general inverse exponential form distributions with different unknown parameters.
Different interval estimators are derived, by applying different approaches. A simulation study is performed to compare the
estimators obtained. The comparison is carried out on basis of average length, average coverage, and tail errors. The results are

illustrated, using inverse Weibull distribution as an example of the general inverse exponential form distribution.
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1. Introduction

There has been continuous interest in the problem of
estimating the stress—strength reliability, R = P(X; < X;),
where X; and X, are independent random variables. The
parameter R is referred to as the reliability parameter. This
problem arises in the classical stress—strength reliability,
where the random strength X, of a component exceeds the
random stress X; to which the component is subjected. If
X; = X,, then the component fails. Kotz et al.[1] have
surveyed most all the theoretical and the practical results on
the theory and applications of the stress-strength reliability
problem up to year 2003. However, after year 2003 several
authors have considered the stress-strength reliability
problem by different approaches for example, Al-Mutairi et
al. [2], Amiri et al. [3], Rezaei et al. [4], among others.

Recently Mokhlis et al. [5] have obtained the point and the
interval estimation of R = P(X; < X,) by different methods,
under the assumption that X; and X, are non-negative
independent and continuous random variables, having the
general inverse exponential form with the cumulative
distribution functions (CDFs) and probability density
functions (pdfs) given respectively by

Fx; (xni)=exp[-njg(x;c)],and )
fx; Gxni)=—n;g’ (x;c) exp[-nig(x;c);i=1,2.

where ¢ is a common known parameter, n; € {;; i = 1,2, are
unknown parameters,{; is the parametric space,g(x;c) is a
continuous, monotone decreasing, differentiable function,
such that, g(x;c) = o as x » 0 and g(x;c) = 0 as x - .
They proved that the reliability function, R, is given by

R=—"__if and only if, X; and X, have CDFs as in (1).

nitn2
Also, Mokhlis et al. [6] obtained interval estimators of R,

when c¢ is unknown, and m;(b;,c) is a function of the
unknown parameters b;and c;i = 1,2. The reliability, R,
takes the form

N2(b2,0)
= 2
N1(b1,0)+ n2(b2,0) 2)

The present paper, presents estimation of R, when X; and
X, follow the general inverse exponential form distributions
with CDFs and pdfs given respectively by
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Fx,(x;m;, ¢1) = exp[—n;(b;, c)g(x; ¢;)], and

fy, G 1 €)= —1i(by €)' (6 1) expl—m;(by g el = 1.2. 3)

wheren; = n;(b;, ¢;) is a differentiable function in two unknown parameters b; and c;, where c; € (;, b; € B;, and (; and B; are
the parametric spaces of ¢; and b;, respectively. The function g(x; c;) is a continuous, monotone decreasing, differentiable
function, such that, g(x; ¢;) = o as x = 0 and g(x; ¢;) = Oasx = oo, g’ (x; ¢;) is the first derivative of g(x; c;) w.r.t x. Using (3),

the reliability is given by

R= fooo _le(bz: c2) g!(Zi c2) exp [_Tll(bp c1)g(z ¢1) — le(b2: c)g(z Cz)] dz 4)

The above integral can be evaluated numerically. If
c; = ¢, = c, then the reliability can be expressed as in (2) as
Mokhlis et al. [6].

Different interval estimators are constructed by applying
different approaches. (i) An approximate confidence interval for
R is constructed; using the maximum likelihood estimator
(MLE) of R. (ii) A generalized confidence interval is obtained,
using the generalized variable (GV) approach. (iii) Two
bootstrap confidence intervals (percentile and t) are also
presented. (iv) Two Bayesian credible intervals of R are
obtained, using Markov chain Monte Carlo (MCMC) method,
with different priors. The different interval estimators obtained
are illustrated using inverse Weibull distributions as examples of
the underlying distributions. A comparison is performed, by
means of simulation among the estimators obtained on the basis
of average length, average coverage, and tail errors.

This paper is organized as follows: the approximate
confidence interval for R is obtained, in Section 2. In Section

3, using generalized variable approach, the generalized
confidence interval of R is derived. The bootstrap intervals
are obtained, using percentile and t-bootstrap methods, in
Section 4. In Section 5, using MCMC method, two Bayesian
credible intervals of R are presented by applying two
different sets of priors. In Section 6, taking the inverse
Weibull distribution as an example of the underlying
distributions, the results obtained are illustrated and a
numerical comparison of the interval estimators is performed.

2. Approximate Confidence Interval
(ACD of R

Let X; = (Xil,Xiz, e Xini); i=1,2, be two independent
random samples from populations with general inverse
exponential form distributions given by (3). The likelihood
function is

2 2 0 , 2 o
L(§1’§2‘n1’n2’cl’cz) = eXP[Elni Inm; (bi.c;) +i§1j§11n(_g (Xij;ci)) 2N (bvci)j;g(xij;ci)} )

where x; is the jth observation in the sample X;; j = 1, ..., n;. For simplicity write n; = n;(b;, ¢;); 1 = 1,2, the log-likelihood
function is
_ 2 2 0 , 2 n;
InL=tnL (x,.%,[ N My.¢.¢,) = £ I + 5 3 In (=g (x;0)) ~ £, 3 (x50, ©)
To derive the MLEsfj;, €;, and b;of ;,¢;, and by; i = 1, 2, respectively, solve the following system of equations for fi;, ¢;, and
b;
InL n, .
? = = (—" b g(Xu;ci)J? =0,and )
b; b;=b;,c;=¢; 1, = N A b; b;=b;,¢;=¢;,n; =A;
olnL on o 0 , n, on. n 0
- :&ﬂ+§*hl(_g(xijéci))_§g(X,J§Ci) L N, 2 ——g(x;¢,) =0. ®)
dc, bobotnsy T dc, #0c, i dc, Foc by, y26, 1

As known% #0, from (7) the MLE, fj; of n;; i =1, 2, is
expressed as

L S ©)

ﬁi = n; ~
> g(x;::6,)
=l

The MLE, ¢;of ¢;;i = 1, 2, can be obtained by substituting
(9) in (8), and then solving (8) numerically. Finally, the

MLE, b; of b;;i = 1,2, is obtained by using the relation
fl; = 0i(b;, &) . Consequently, the MLE, Rof R can be
obtained by replacing the parameters in (4) with their MLEs.
This means

R= [ —7,8(z¢) exp[-1.8(z ¢;) — 1,8(z €,)] dz. (10)

Clearly, b; doesn't need to be in R. The MLE, Ris
asymptotically normal with mean R and variance
0% = S'T™'S, where T™! is the inverse of the Fisher
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information  matrix, T, 0 =1(0,,0,,05,0,) = R InL
(c1, €, by, by) , Stis the transpose of matrix S, where S :{—},and T= —E{ae P :I, with
i i ]
L _ n () . no n n 0 ¥
le—‘n—?(a +J§{$i21n(_g(xij;ci))_2£Egig(xij;ci)_ni%‘{gizg(xij;ci),
°InL _o0’mL _ an » 0 n, on, on
= :_ﬂg_g(xij;ci)__;iﬂ’
Oc,0b,  db,0c, 0b, = dc; n; db, dc,
°InL _ n,(an, ’ .
P 1= 192a
ob; n; \ db;

°’InL _0°InL _0*mmL _o*InL _

dbdb, dcdc, dbdc, dcdb,

Clearly, the explicit expression of a}% depends on
Ni, g’(Xi]’; Ci) . and g(Xij; Ci); ] = 1, ...,ni,i = 1, 2. The (1 -
a)100% ACI for R is (R#*zy_q/8g) ., where 6% =

tm—1 N . . 3
SYT™* S|y, =p, c;=¢;n;=n; 1S the estimator of o3.

3. Generalized Confidence Interval
(GCI) of R

Let X; = (Xil,Xiz, s Xmi); i=1,2, be two independent
random samples from populations with distributions given in
(3), having unknown parameters cjandb;; i=1,2. It is
known that, a GPQ of any parameter is a function of
observed statistics and random variables whose distribution
is free of unknown parameters. For constructing the GCI,
applying a useful feature of the GV approach, which states
that if Gy, and G, are GPQs of b; and ¢;, then 1;(Gy,,, G,) is a
GPQ of n;; i = 1, 2. This feature enables us obtaining a GPQ
for R given as Gg = R(Gy,,, Gy,, G¢,, G¢,) by replacing the
parameters in (4) with their GPQs, then using Gg in
constructing confidence interval for R. The

(1-w)100%  GCI for R is obtained
as(GR(a/z),GR(l_a/z)), where Gg(q/2) and Gr(1—q/2) are the
(a/2)th and (1 — a/2)th quantiles of R.

4. Bootstrap Confidence Interval (boot)
of R

There are several ways to construct bootstrap confidence
intervals. Clearly, the percentile and t-bootstrap confidence
intervals are commonly used for the reliability, (see, Efron
[7]). Algorithm 1 is applied for constructing the bootstrap
confidence intervals.

Algorithm 1.

1. From the original data x;, compute the MLEs, €; and j;
of ¢; and n;; i = 1,2, respectively, and the MLE, R of
R.

. Resample two independent random samples x;;i = 1,2,

=0;i,j=12,i%].

from x;; i=1,2, respectively; compute the
MLEs, €,¢5,13,f5 and R* of cy,cy1nq,M, and R,
respectively.

. Repeat step 2, N times to derive{ﬁ}‘;j =1, ...,N}, and
orderﬁ}*;j =1,..,N, like that/R\;(l) <. < ﬁ;(N).
Construct the percentile and t-bootstrap confidence
intervals of R, as follows:

a. Percentile bootstrap (P-boot)

The (1—-a)100% P-boot for R is given by
(R?a/z)'Ra—a/z)) , where R{g/,) and Rij_q/,) are the
(a/2)th and (1 — o/2)th quantiles of R*, respectively.

b. T-bootstrap (T-boot)

The (1 —a)100% T-boot for R is expressed as (FA{ -
t1-a/2)S" R —1(4/2)S"), where S*is the sample standard
deviation of {ﬁ}*;j =1,.., N} and f(a) is the (a)th quantile of

{ﬁ
-
5. Bayesian Credible Interval (BCI) of R

a. Gamma priors (G-BCI)

Let X;; i = 1,2 be two independent random samples from
general inverse exponential form distributions in (3) with
unknown parameters b; and c;. Consider, n; = n;(b;, ¢;), as a
single parameter, assume that the prior distributions of
n;i; 1 = 1, 2 are independent with pdfs

4.

;i=1, ...,N}.

qj
Tri(ni)=%n?i‘1e‘ﬁi”i;i:1,2,ni,ai,Bi>o. (11)
Moreover assume that, c; i=1,2 have independent
gamma priors with pdfs
A
() = moet e i =120, >0, (12)

i

The joint posterior distribution of njand ¢;; i = 1,2 is as
follows
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L (%)% 101,05 LML (1) () )
TTTTL (%1511 504565 ) UL (1,07, (0T (e, )dn dn.de e

(13)

m(n,.N,.0,00, |X,.%,) =

It is observed that (13) cannot be obtained in a closed form. The BCI can be computed by a combination of Metropolis-
Hastings and Gibbs sampling. Moreover the marginal posterior distribution of n; is

n; (niﬂxi)
(Bj i Jél g(xij’ G )j (mj+0;-1)

(N lex,.%,) = M (n, +a) N exp{—ﬂi (Bl +J§1g(xij;ci)ﬂ’ (14)
which is Gamma((ni + ay), (Bi + Z]n:ll g(xij ; ci))>; i=1, 2. The marginal posterior distribution of ¢; is
g (Ci|§1,§z) = A7 exp[(Ui ~1)Inc; —c, + 3 ln(_g'(xij;ci)) ~(n +ai)ln(Bi +3 g(Xij;Ci)ﬂ, (15)
j=l j=1

where A, = Texp[(pi =1)Inc, —cA, + _nz‘lln(—g'(xij;ci )—(ni +O(i)1n([3i + Elg(xij;ci))}dci;i =1,2.
0 = =

Notice that the marginal posterior distribution of ¢;; i =
1,2, is not known and so the Metropolis-Hastings with Gibbs
sampling algorithm can be used to solve it as follows (see,
Asgharzadeh et al. [8]).

Algorithm 2.

1. Choose a starting values ci(o) ;1= 1,2

2. For j=1 to N times.

3. Generate ni(j) from Gamma ((ni+ai),(ﬁi+

Zjn:il g (Xii; Ci(j_l)))>; i=1, 2, respectively.

4. Generate ci(j) from (15) using the Metropolis-Hastings
algorithm with the normal proposal distribution
pi~ NI, 1) i = 1,2,

a. Generate §; from the proposal distribution p;; i = 1, 2.

i (Eilx1.x2)pi(c) ) s
(e zl.zz)pi(ii)}' :
c. Generate u; from Uniform (0, 1). Take

G _ [ & u=Q
G = ci(j_l)

b. Define Q; = min {1, =1,2.

; otherwise’
5. Calculate the RJ, using

R= [ g (zc))exp|[-n{g(zc]”) -

Tg; (Ci|§1’§2) =B eXpL% ln(_g'(xu;ci)) =(n; + O‘i)ln(Bi * j% g(xii;ci)ﬂ’

Vg (z; cg))] dz.

6. Endj loop.

7. Order Rj;j =1,...,N, in ascending ordered to obtain
RD < ... < RV,

8. Construct the (1 — «)100%G-BCI for R of gamma
priors as (Rga/2), Rgi—as2)) » Where Ry 2y and
Rg(1-ay2) are the (a/2)th and (1 — a/2)th quantiles
of R, respectively.

b. Mixed priors (M-BCI)

Assume that X;,i=1,2 are two independent random
samples from populations with (3) having unknown
parameters b; and ¢;; i = 1,2, and also assume that, n;; i =
1,2 has independent gamma prior as in (11), and c; has
uniform improper prior distribution with pdf

T, (c,)=11=1,2,¢c, >0.

The joint posterior distribution of m; and ¢; i=1,2
cannot be obtained in a closed form. The marginal posterior
of m; is obtained as (14), while the marginal posterior
distribution of ¢; is given by

(16)

where B; = Texp[% 1n(—g'(xij;ci)) - (ni + O(i)ln (Bl +3 g(xij;ci)ﬂdci;i =12
0 j=1 j=1

The marginal posterior distribution of ¢;; i = 1,2, is not a
known form. To obtain the (1 — «)100%M-BCI for R of
mixed priors, use Algorithm 2 with a difference in step 4 by
generating ci(j)from (16) instead of (15).

The (1 — @)100%M-BCI for R is (Rp(ay2) Rmi-a/2)) s
where Rpyo/z) and Rpi—gsz) are the (a/2) th and
(1 — a/2)th quantiles of R, respectively.

6. Numerical Illustration

This section, presents a numerical illustration of the results
obtained. The confidence intervals; ACI, GCI, P-boot, T-
boot, G-BCI, and M-BCI for R with some general inverse
exponential form distributions are compared. 1000 samples
of sample sizes (n;, n;) = (10, 10) and (30, 30) from the
underlying distributions of X; and X, , with unknown
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parameters are generated. Taking a = 0.05, average length,
average coverage probability, left and right tail errors of the
(1 —a)100% confidence intervals are calculated. The
parameter values that produce the values of R to be
approximately 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, and 0.99 are
selected.

The inverse Weibull distribution is chosen as an example
of the general inverse exponential form. The inverse Weibull
distribution is flexible and includes a variety of distributions.

For the inverse Weibull distributions the CDFs with
ni(b;, ¢i) = cl, gixc) = 7 and g'(x¢)) = 375 i = 1.2,
are
1 \S
Fx, (x; bj, ¢;) = exp [— (ﬁ> ] (17)

and the reliability is obtained by substituting these values in
(4) as

R= f cyb; %z 2 exp[—b; Iz — b, 2z 2] dz. (18)

1
B_EZﬁ,i—IZ and
1

]111

As noticed from (9), fij; =

- an C
hence b; = (':1—”>
1

iterative method €;is obtained from (8) after applying the
suitable substitutions.

(1) The (1 —a)100% ACI of R can be obtained as
(ﬁ iz(l_a/z)ﬁﬁ) , where R is obtained from (10),
6% = S'T7IS|,,

o

Using the Newton—Raphson

is obtained from the followmg

i=bj,ci=¢yn;=f;
equations.
62111L n. 1 n 1 2
= In(bx.]] ,
o b;‘w%x;;( (o)

0’InL _nc, c(c,+Dm 1 . _
b b b ek

i=1 x &
] Xij
Ci) ~ Coi
e — c = —
(ei 0i e»{*a
1

and Gy, = (E.)Gcl bo; = (ﬁ)ﬁci boi;i = 1,2, and €; and by;

are the observed values of ¢ and b;. The distributions of
¢ = (%) and B{* = (E);i = 1,2, do not depend on any
unknown parameters, and so they are pivotal quantities (see,
Thoman et al. [9]).¢*andb;*are the MLEs of c; andb;,
respectively, based on two independent random samples from
standard  inverse = exponential  distributions  (see,
Krishnamoorthy et al. [10]). Then consequently the GPQs of

(ii) As mentioned in Section 3, taking G,

Ge;
(é) . The GCI is obtained by computing the

n; are Gy, =
Gr = R(Gy,, Gy,, G¢,, G¢,). The next Algorithm 3 is used to
estimate the GCI of R (see, Krishnamoorthy and Lin [11]).

Algorithm 3.

1. Letx;; i=1,2,be two independent random samples
from (17), respectively. Compute the €y; and by; of ¢
and b;;i=1,2.

2. Generate two independent random samples X;*; i =
1,2, from standard inverse exponential distributions.
Compute the & and b;*of ¢; and b;.

3. Compute the Gci, Gbi, Gm, and henceGg;i =1, 2.

4. Repeat the steps 2-3, N times to obtain a set of values of

G, say {GRj;j =1, N}

Order GRi;j =1, ..., N, ascending to obtain G}glj) <<
(N)
GR], .

5. Construct  the (1 —a)100%

(Grea/2) Gra-a/2))-
(i) The (1 —a)100% P-boot and T-boot of R are

GCI of R as

0*InL 621nL n, 1 »n 1 c, 1 . ) X
=-—t+— 3 = o (blxl ) obtained, using Algorithm 1.
Oc,0b, Gb oc; b, b = x.‘ bC j=1 ; !
Table 1. Average length of the confidence intervals of R for inverse Weibull distributions, n; = % ;i=1,2.
Average length
n=10 n=30
R
boot BCI boot BCI
ACI GCI ACI GCI
P T Gamma  Mixed P T Gamma Mixed
1 2 tz) 020 95 0= 0.6207 0.4605 0.4512 0.4812 0.4812 0.3909 0.3947 0.2759 0.2915 0.2814 0.2814 0.2517 0.2530
2z, 02 = V.
(1:12:5:’ 320:94’ = 0.7050 0.4161 0.4230 0.4180 0.4180 0.3931 0.3875 0.2525 0.2715 0.2535 0.2535 0.2439 0.2408
2z, 02 = V.
;1 ; 2: 32 = b= 0.8068 0.3429 0.3748 0.3042 0.3042 0.3741 0.3591 0.2106 0.2394 0.2066 0.2066 0.2206 0.2131
s U2
;18: t2)’ 520:93’ 0= 0.9127 0.2223 0.2822 0.1767 0.1767 0.3199 0.2803 0.1341 0.1666 0.1280 0.1280 0.1633 0.1475
.6, 0= 0.
Zl : 2_’ ((:)29: hlb = 0.9557 0.1455 0.2128 0.1118 0.1118 0.2857 0.2366 0.0865 0.1170 0.0828 0.0828 0.1264 0.1105
s U2 — U.
21 ; 2: 329: S 1= 0.9799 0.0855 0.1511 0.0628 0.0628 0.2489 0.1992 0.0498 0.0745 0.0482 0.0482 0.0919 0.0764
s, U2 — UL
©=26=3b1=" 9910 00513 01088 00422 00422 02175  0.1699 00274 00451 0.0277 00277 0.0663  0.0529

9,b,=0.9
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Table 2. Average coverage probability of the confidence intervals of R for inverse Weibull distributions, n; = % ;i=1,2.
Average coverage probability
R n=10 n=30
boot BCI boot BCI
= — P T Gamma Mixed = e P T Gamma Mixed
T‘;lf’ 320: 95’b‘: 06207 0.887 0951 0884 0.838 0985 0973 0907 0944 0904  0.866 0.956 0.945
2,0 =0.
T‘;S’ ?O: 94’b‘: 07050 0.865 0942 0867 0811 0954 0959 0893 0941 0879 0853 0.924 0.933
2z, 02 = V.
01:2,C2:3,b1:2,
o] 0.8068 0.835 094 0793 0.746 0874 0963  0.874 0944 0864 082 0914 0.947
-
31825’ 320: 93’b‘: 09127 0794 0923 0732 0.666 0741 0915 0871 0953  0.846  0.801 0.865 0.937
.0, b = 0.
c1=2,¢,=3,b1=4,
P 09557 0772 0919 0718 0.614 0.627 0879 0834 0942 0826  0.755 0.787 0.907
= U.
01:2,C2:3,b1:6,
oo 09799 0721 0918 0688 058 0513 0809  0.83 0942 0835 0718 0.713 0.861
= U.
01:2,02:3,b1:9,
oo 09910 0.695 0922 0681 055 0421  0.71 0789 0926 0801  0.684 0.642 0.82
h = U.
Table 3. Left tail error of the confidence intervals of R for inverse Weibull distributions, n; = % ;i=1,2.
Left tail error
R n=10 n=30
boot BCI boot BCI
ACL Gel P T Gamma Mixed ACL Gl P T Gamma Mixed
T‘;é’ izozgs’b‘: 0.6207 02219 02540 0.2435 02210 02373  0.1956 0.1318  0.1536 0.1270  0.1421 0.1416 0.1222
2z, D2 = V.
T‘;S’ 520294’“: 0.7050 0.1961  0.2555 0.2145 0.1796 02930 02282  0.1238 01550 0.1212  0.1274 0.1670 0.1331
2z, D2 = V.
E‘i?’ ©=3.01=2 (2068 0.1658 02562 0.1552 0.1376 03083 02530 0.1035 0.1475 00999 0.1031 0.1631 0.1359
-
;‘S:E’ i2;93’b‘: 09127 0.1158  0.2240 0.1013 0.0846 03016 02342 00677 0.1152  0.0689  0.0604 0.1384 0.1101
.6, 0=V,
E‘i%’;2:3’b‘:4’ 0.9557 0.0783  0.1816 0.0712 0.0517 02821 02156 0.0459  0.0883  0.0495  0.0384 0.1156 0.0912
= U.
E‘if)’9°2:3’b‘:6’ 0.9799 0.0475  0.1363 0.0440 0.0284 02516 0.1916  0.0273  0.0604  0.0322  0.0209 0.0885 0.0685
= U.
E‘ié’9°2:3’b‘:9’ 09910 0.0297  0.1019 0.0336 0.0168 02224  0.1685 00154  0.0384 0.0200 0.0110 0.0656 0.0496
= U.
Table 4. Right tail error of the confidence intervals of R for inverse Weibull distributions, n; = %; i=1,2.
Right tail error
R n=10 n=30
boot BCI boot BCI
AL Sl P T Gamma Mixed LLEL EC P T Gamma Mixed
T‘;s’ fzozgs’b‘: 0.6207 02385  0.1972 0.2376 02601 0.1535 0.1991  0.1441  0.379  0.1544  0.1393 0.1100 0.1307
2z, D2 = V.
T‘;S’ 320=94,b1= 0.7050 02200  0.1674 0.2035 0.2383 0.1000 0.1592  0.1286  0.1164  0.1323  0.1261 0.0769 0.1076
2,0 =0.
E‘j’ ©=301=2 (2068 0.1771 0.1186 0.1489 0.1665 0.0657 0.1061 0.1071 00918 0.1066 0.1035 0.0575 0.0771
-
;‘825’ SZOZ 93’b‘: 09127 0.1065 0.0582 0.0753 0.0920 0.0183  0.0460  0.0664  0.0513  0.0591  0.0676 0.0248 0.0374
.6, 0=V,
E‘i3’9°2:3’b‘:4’ 0.9557 0.0672  0.0312 0.0406 0.0601 0.0036  0.0210  0.0406  0.0287  0.0332  0.0443 0.0108 0.0192
n = U.
E‘ié’9°2:3’b‘:6’ 09799 0.0379  0.0147 0.0188 0.0344 -0.0026 0.0076  0.0224  0.0141  0.0160  0.0273 0.0034 0.0079
n = U.
©=2,6=3b1=9 (9910 00215 00068 0.0086 0.0253 -0.0048 00013 00120 00067 00076 00166 0.0006 0.0032

b2 = 09
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(iv) Finally, the (1 — «)100% G-BCI and (1 —
a)100%M-BCI of R, are obtained using Algorithm 2. The
hyper-parameters of priors for G-BCI and M-BCI are chosen
on basis of the same mean but different variances as the
follow

G-BCL: let (aq,B1) = (2,4), (az,B2) = (1,2), (1, ) =
(2.3),and (uz,2,) = (5,1).

M-BCI: let (ay, B1) = (2,4), and (o, B2) = (1, 2).

The comparisons on the basis of average length, average
coverage, and left and right tail errors are introduced in
Tables (1-4), respectively. From Tables 1-4, the following
results are observed:

1. As expected, the average length of all confidence

intervals decreases when n and R increase.

2. When R = 0.8068-0.9910, the average length of boot
and the left tail error of T-boot are smallest, and the left
tail error of all confidence intervals decrease when n
and R increase.

3. The average coverage of GCI is approximately around
the (1 — a)100%.

4. The average coverage of ACI, boot, and G-BCI
decrease when R increases. But the average coverage of
ACT and boot increase when n increases.

5. For all the confidence intervals, the right tail error is
decreasing when R is increasing. Moreover the right tail
error of all confidence intervals except BCI are
decreasing when n is increasing.

6. The right tail error of BCI is the smallest.

7. Conclusion

In this article, several approaches for estimating the
confidence intervals of Stress-Strength Reliability P(X; < X;)
are provided when random variables having general inverse
exponential form distributions with different unknown
parameters. A simulation study is performed to compare its
performance using the inverse Weibull distribution as an
example of the general inverse exponential form distribution.
The comparison is carried out on basis of average length,
average coverage, and tail errors. The results obtained were
very close to each other.
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