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Abstract: In this article the interval estimation of a P(X1 < X2) model is discussed when X�  and X�  are non-negative 

independent random variables, having general inverse exponential form distributions with different unknown parameters. 

Different interval estimators are derived, by applying different approaches. A simulation study is performed to compare the 

estimators obtained. The comparison is carried out on basis of average length, average coverage, and tail errors. The results are 

illustrated, using inverse Weibull distribution as an example of the general inverse exponential form distribution. 
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1. Introduction 

There has been continuous interest in the problem of 

estimating the stress–strength reliability, R � P�X� � X�	 , 

where X�  and X�  are independent random variables. The 

parameter R is referred to as the reliability parameter. This 

problem arises in the classical stress–strength reliability, 

where the random strength	X�  of a component exceeds the 

random stress X� to which the component is subjected. If 

	X� � X� , then the component fails. Kotz et al.[1] have 

surveyed most all the theoretical and the practical results on 

the theory and applications of the stress-strength reliability 

problem up to year 2003. However, after year 2003 several 

authors have considered the stress-strength reliability 

problem by different approaches for example, Al-Mutairi et 

al. [2], Amiri et al. [3], Rezaei et al. [4], among others. 

Recently Mokhlis et al. [5] have obtained the point and the 

interval estimation of R � P�X� � X�	 by different methods, 

under the assumption that X�  and X� are non-negative 

independent and continuous random variables, having the 

general inverse exponential form with the cumulative 

distribution functions (CDFs) and probability density 

functions (pdfs) given respectively by 

�
�
��;��	�����������;�	�,���

�
�
��;��	�����

���;�	 ����������;�	�; ��,�.
	           (1) 

where c is a common known parameter, η ∈ 	 ζ ; 	i � 1, 2, are 

unknown parameters,ζ  is the parametric space,g�x; c	  is a 

continuous, monotone decreasing, differentiable function , 

such that, g�x; c	 → ∞  as x → 0  and g�x; c	 → 0  as x → ∞ . 

They proved that the reliability function, R, is given by 

	R �
�.

�/0�.
, if and only if, X�  and X�  have CDFs as in (1). 

Also, Mokhlis et al. [6] obtained interval estimators of R, 

when c is unknown, and η �b , c	  is a function of the 

unknown parameters b and c; i	 � 	1,2 . The reliability, R, 

takes the form 

R �
�.�2.,�	

�/�2/,�	0	�.�2.,�	
                       (2) 

The present paper, presents estimation of R, when X� and 

X� follow the general inverse exponential form distributions 

with CDFs and pdfs given respectively by 
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F4�

�x; η , c 	 = exp�−η �b , c 	g�x; c 	� , and
f4��x; η , c 	 = −η �b , c 	g<�x; c 	 exp�−η �b , c 	g�x; c 	�; i = 1,2 .                                               (3) 

whereη = η �b , c 	 is a differentiable function in two unknown parameters b  and c , where	c ∈ 	∁ , b ∈ 	B , and ∁  and B  are 

the parametric spaces of c  and b , respectively. The function g�x; c 	 is a continuous, monotone decreasing, differentiable 

function, such that, g�x; c 	 → ∞ as x → 0 and g�x; c 	 → 0asx → ∞, g<�x; c 	 is the first derivative of g�x; c 		w.r.t x. Using (3), 

the reliability is given by
 R = 	? −η2�b2, c2	@

A g′�z; c2	 expD−η1�b1, c1	g�z; c1	 − η2�b2, c2	g�z; c2	E dz                               (4) 

The above integral can be evaluated numerically. If c� =	 c� = c, then the reliability can be expressed as in (2) as 

Mokhlis et al. [6]. 

Different interval estimators are constructed by applying 

different approaches. (i) An approximate confidence interval for 

R is constructed; using the maximum likelihood estimator 

(MLE) of R. (ii) A generalized confidence interval is obtained, 

using the generalized variable (GV) approach. (iii) Two 

bootstrap confidence intervals (percentile and t) are also 

presented. (iv) Two Bayesian credible intervals of R are 

obtained, using Markov chain Monte Carlo (MCMC) method, 

with different priors. The different interval estimators obtained 

are illustrated using inverse Weibull distributions as examples of 

the underlying distributions. A comparison is performed, by 

means of simulation among the estimators obtained on the basis 

of average length, average coverage, and tail errors. 

This paper is organized as follows: the approximate 

confidence interval for R is obtained, in Section 2. In Section 

3, using generalized variable approach, the generalized 

confidence interval of R is derived. The bootstrap intervals 

are obtained, using percentile and t-bootstrap methods, in 

Section 4. In Section 5, using MCMC method, two Bayesian 

credible intervals of R are presented by applying two 

different sets of priors. In Section 6, taking the inverse 

Weibull distribution as an example of the underlying 

distributions, the results obtained are illustrated and a 

numerical comparison of the interval estimators is performed. 

2. Approximate Confidence Interval 

(ACI) of R 

Let X = FX �, X �, … , 	X ��H; 	i = 1, 2,  be two independent 

random samples from populations with general inverse 

exponential form distributions given by (3). The likelihood 

function is 

( ) ( ) ( ) ( )i i

i i i i

n n2 2 2

1 2 1 2 1 2 i i ij i i ij i
i 1 i 1 j 1 i 1 j 1

, , b ,c b ,cL x ,x , c c exp n ln ln g (x ;c ) g(x ;c ) ,
= = = = =
∑ ∑ ∑ ∑ ∑
 
 
 

η η = η + − − η′          (5) 

where xij is the jth observation in the sample X ; j = 1, …, ni. For simplicity write η = η �b , c 	; i = 1,2, the log-likelihood 

function is
 

( ) ( )1

i in n2 2 2

2 1 2 1 2 i i ij i i ij i
i 1 i 1 j 1 i 1 j 1

ln ln , ,L= L x ,x , c c n ln ln g (x ;c ) g(x ;c ).
= = = = =
∑ ∑ ∑ ∑ ∑η η = η + − − η′                  (6) 

To derive the MLEs,ηI  ,	cI , and bJ  of η ,c , and b ; i = 1, 2, respectively, solve the following system of equations for ηI  ,	cK , and 

bJ   

i

i i i ii i i i i i i i

n
i i

ij i
j 1

i i i ˆ ˆb b ,c c ,
ˆ ˆ ˆb b ,c c , ˆ

nln
g(x ;c ) 0,and

b b

L
=

= == = η =η η =η

∑
  ∂η∂ = − = ∂ η ∂ 

                                        (7) 

 

( ) ii i

i i i i

n

ij i
j 1

i i i i i i i i

n n
i i i

ij i i ij i
j 1 j 1

ˆi i i i i i ˆb b ,c c ,ˆ ˆ ˆ ˆb b ,c c ,

g(x ;c )
nln

ln g (x ;c ) g(x ;c ) 0.
c c c c c

L
== =

= =

∑

= = η =η η =η

∑ ∑
∂η ∂η∂ ∂ ∂′= + − − −η

∂ η ∂ ∂ ∂ ∂
=              (8) 

As known i

i

0
b

∂η ≠
∂

, from (7) the MLE, ηI   of ηi; i = 1, 2, is 

expressed as

 

i

i
ni

ij i
j 1

n
ˆ ;  i = 1, 2. 

ˆg(x ;c )
=
∑

=η                                 (9) 

The MLE, cI of c ; i = 1, 2, can be obtained by substituting 

(9) in (8), and then solving (8) numerically. Finally, the 

MLE, bJ  of b ; i = 1, 2,  is obtained by using the relation ηI  = η �bJ  , cI 	 . Consequently, the MLE, RL of R can be 

obtained by replacing the parameters in (4) with their MLEs. 

This means 

RL = 	? −ηI�@
A g<�z; cI�	 exp�−ηI�g�z; cI�	 − ηI�g�z; cI�	� dz. (10) 

Clearly, bJ   doesn't need to be in RL . The MLE, RL is 

asymptotically normal with mean R	and variance 

σNL� = 	SPT��S , where T��  is the inverse of the Fisher 
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information matrix, T, of θ = �θ�, θ�, θS, θT	 =�c�, c�, b�, b�	 , SP is the transpose of matrix S, where

 
i

R
S

 ∂=  ∂θ 
, and 

2

i j

ln L
T E

 ∂= −  ∂θ ∂θ  
, with 

( )i i i

2
2 2 2

n n n
i i i

ij i ij i i ij i2 2 2 2
j 1 j 1 j 1

i i i i i i i

nln
ln g (x ;c ) 2 g(x ;c ) g(x ;c ),

c c c c c c

L
= = =
∑ ∑ ∑

 ∂η ∂η∂ ∂ ∂ ∂′= − + − − −η ∂ η ∂ ∂ ∂ ∂ ∂   

i
2 2

n
i i i i

ij i 2
j 1

i i i i i i i i i

nln ln
g(x ;c ) ,

c b b c b c b c

L L
=
∑

∂η ∂η ∂η∂ ∂ ∂= = − −
∂ ∂ ∂ ∂ ∂ ∂ η ∂ ∂

 

2
2

i i

2 2

i i i

nln
;i 1,2,

b b

L  ∂η∂ = − = ∂ η ∂ 
 

2 2 2 2

i j i j i j i j

ln ln ln ln

b b c c b c c b
0;i, j 1,2,i j

L L L L∂ ∂ ∂ ∂= = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= ≠ . 

Clearly, the explicit expression of UNL� depends on 

η , g<Fx V; c H , and gFx V; c H ; j = 1, … , n , i = 1, 2 . The�1 −
α	100% ACI for R is FRL ±z���[ �⁄ 	σKNLH , where σKNL� =
SPT��S|2��2L�,����I�,����K� is the estimator of UNL�. 

3. Generalized Confidence Interval 

(GCI) of R 

Let X = FX �, X �, … , 	X ��H; 	i = 1, 2,  be two independent 

random samples from populations with distributions given in 

(3), having unknown parameters c and b ; 	i = 1, 2 . It is 

known that, a GPQ of any parameter is a function of 

observed statistics and random variables whose distribution 

is free of unknown parameters. For constructing the GCI, 

applying a useful feature of the GV approach, which states 

that if G2� and G�� are GPQs of b  and c , then η �G2� , G��	 is a 

GPQ of η ; 	i = 1, 2. This feature enables us obtaining a GPQ 

for R given as GN = R�G�/ , G�. , G�/ , G�.	by replacing the 

parameters in (4) with their GPQs, then using GN  in 

constructing confidence interval for R. The  �1 − α	100% GCI for R is obtained 

asFGN�[ �	⁄ , GN���[ �	⁄ H, where GN�[ �	⁄  and GN���[ �	⁄  are the 

�α 2	⁄ th and �1 − α 2	⁄ th quantiles of R. 

4. Bootstrap Confidence Interval (boot) 

of R 

There are several ways to construct bootstrap confidence 

intervals. Clearly, the percentile and t-bootstrap confidence 

intervals are commonly used for the reliability, (see, Efron 

[7]). Algorithm 1 is applied for constructing the bootstrap 

confidence intervals. 

Algorithm 1. 

1. From the original data  _`, compute the MLEs, cI  and ηI   
of c  and η ; 	i = 1, 2, respectively, and the MLE, RL  of 

R. 

2. Resample two independent random samples _∗̀; i = 1,2, 

from x ; 	i = 1,2,  respectively; compute the 

MLEs, cI�∗, cI�∗ , ηI�∗ , ηI�∗ ,  and RL∗ of c�, c�, η�, η�,  and R, 
respectively. 

3. Repeat step 2, N times to derivebRL V∗; j = 1, … , Nd, and 

orderRL V∗; j = 1, … , N, like thatRL V∗��	 ≤ ⋯ ≤ RL V∗�g	
. 

4. Construct the percentile and t-bootstrap confidence 

intervals of R, as follows: 

a. Percentile bootstrap (P-boot) 

The �1 − α	100% P-boot for R is given by 

FRL�[ �	⁄∗ , RL���[ �	⁄∗ H , where RL�[ �	⁄∗  and RL���[ �	⁄∗  are the 

�α 2	⁄ th and �1 − α 2	⁄ th quantiles of RL∗, respectively. 

b. T-bootstrap (T-boot) 

The �1 − α	100% T-boot for R is expressed as FRL −
t̂���[ �	⁄ S∗, RL − t̂�[ �	⁄ S∗H , where S∗ is the sample standard 

deviation of bRL V∗; j = 1, … , Nd and t̂�[	 is the �α	th quantile of 

jNLk∗�NL
l∗ ; j = 1, … , Nm. 

5. Bayesian Credible Interval (BCI) of R 

a. Gamma priors (G-BCI) 

Let X ; 	i = 1, 2 be two independent random samples from 

general inverse exponential form distributions in (3) with 

unknown parameters b  and c . Consider, η = η �b , c 	, as a 

single parameter, assume that the prior distributions of η ; 	i = 1, 2 are independent with pdfs 

i

i i i
i i i i

1i
i i

i

 ;i 1,2, , , 0.( ) e
α

α − −β ηπ = η α β >
βη = η
Γα

       (11) 

Moreover assume that, c ; 	i = 1, 2  have independent 

gamma priors with pdfs 

i

i i i
ii i i i

1 ci
i i

i

 ;i 1,2,c , , 0.(c ) c e
µ

µ − −λπ = µ λ >
λ=
Γµ

    (12) 

The joint posterior distribution of η and c ; 	i = 1, 2 is as 

follows 
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( )
( )

( )
1 1 2 2 11 1 22 2

1 2 1 2 1 2

1 1 2 2 11 1 22 2 1 2 1 2
0 0 0 0

1 2 1 2 1 2

1 2 1 2 1 2

( ) ( ) (c ) (c )
, ,c ,c | x , x

( ) ( ) (c ) (c )d d dc dc

L x ,x , ,c ,c

L x ,x , ,c ,c
∞ ∞ ∞ ∞
∫ ∫ ∫ ∫

π η π η π π
π η η =

π η π η π π η η

η η

η η
                (13) 

It is observed that (13) cannot be obtained in a closed form. The BCI can be computed by a combination of Metropolis-

Hastings and Gibbs sampling. Moreover the marginal posterior distribution of η  is 

( )

( )

( )
( )

i i
i

i
i i

i

n
n

i ij i nj 1 n 1

1 2i i i i i ij i
j 1

i i

, 

g(x ;c )

|c ,x ,x exp g(x ;c )
n

+α

= +α −

=

∑

∑

 
      η   

  

β +
π η = −η β +

Γ + α
                            (14) 

which is Gamman�n + α 	, pβ + ∑ gFx V; c H��V�� st; i=1, 2. The marginal posterior distribution of c  is 

( ) ( ) ( ) ( )i in n
1

ii i 1 2 i i i i i ij i i i i ij i
j 1 j 1

c x ,x A exp 1 ln c c ln g (x ;c ) n ln g(x ;c ) ,
−

= =
∑ ∑

  ′π = µ − − λ + − − + α β +    
           (15) 

where ( ) ( ) ( ) ( )i in n

i i i i i ij i i i i ij i i
j 1 j 10

A exp 1 ln c c ln g (x ;c ) n ln g(x ;c ) dc ;i 1,2.
∞

= =
∑ ∑∫

 ′= µ − − λ + − − + α β + =  
 

Notice that the marginal posterior distribution of c ; 	i	 =	1,2, is not known and so the Metropolis-Hastings with Gibbs 

sampling algorithm can be used to solve it as follows (see, 

Asgharzadeh et al. [8]). 

Algorithm 2. 

1. Choose a starting values c �A	; 	i	 = 	1, 2. 

2. For j=1 to N times. 

3. Generate η �V	  from Gamma n�n + α 	, pβ +
∑ g px V; c �V��	s��V�� st; i=1, 2, respectively. 

4. Generate c �V	  from (15) using the Metropolis-Hastings 

algorithm with the normal proposal distribution 

ρ ∼	N�c �V��	, 1	; 	i	 = 	1, 2. 
a. Generate ξ  from the proposal distribution ρ ; 	i	 = 	1, 2. 

b. Define Q = min y1, z��F{�|�/,�.H}�p���k~/	s
z��p���k~/	��/,�.s}��{�	� ; 	i	 = 	1, 2. 

c. Generate u  from Uniform (0, 1). Take  

														c �V	 = y ξ ; 	u 	≤ 	Q ,
c �V��	; 	otherwise. 

5. Calculate the RV, using 

RV =	? −η��V	
∞0 g< pz; c��V	s exp �−η��V	g pz; c��V	s −

η��V	g pz; c��V	s� dz. 
6. End j loop. 

7. Order RV; j = 1, … , N, in ascending ordered to obtain RV��	 ≤ ⋯ ≤ RV�g	. 
8. Construct the �1 − α	100%G-BCI for R of gamma 

priors as FR���[ �	⁄ , R�����[ �	⁄ H , where R���[ �	⁄  and 

R�����[ �	⁄  are the �α 2	⁄ th and �1 − α 2	⁄ th quantiles 

of R, respectively. 

b. Mixed priors (M-BCI) 

Assume that X , i = 1, 2  are two independent random 

samples from populations with (3) having unknown 

parameters b  and c ; 	i = 1, 2, and also assume that, η ; 	i =1, 2  has independent gamma prior as in (11), and c has 

uniform improper prior distribution with pdf 

ii i i(c ) 1;i 1,2,c 0.π = = >  

The joint posterior distribution of η  and c ; 	i = 1, 2 

cannot be obtained in a closed form. The marginal posterior 

of η  is obtained as (14), while the marginal posterior 

distribution of c  is given by 

( ) ( ) ( )i in n
1

ii i 1 2 i ij i i i i ij i
j 1 j 1

c x , x B exp ln g (x ;c ) n ln g(x ;c ) ,
−

= =
∑ ∑

  ′π = − − + α β +    
                                         (16) 

where ( ) ( )i in n

i ij i i i i ij i i
j 1 j 10

B exp ln g (x ;c ) n ln g(x ;c ) dc ;i 1,2.
∞

= =
∑ ∑∫

  ′= − − + α β + =    
 

The marginal posterior distribution of c ; 	i	 = 	1, 2, is not a 

known form. To obtain the �1 − α	100%M-BCI for R of 

mixed priors, use Algorithm 2 with a difference in step 4 by 

generating c �V	from (16) instead of (15).  

The �1 − α	100%M-BCI for R isFR���[ �	⁄ , R�����[ �	⁄ H , 

where R���[ �	⁄  and R�����[ �	⁄  are the �α 2	⁄ th and 

�1 − α 2	⁄ th quantiles of R, respectively. 

6. Numerical Illustration 

This section, presents a numerical illustration of the results 

obtained. The confidence intervals; ACI, GCI, P-boot, T-

boot, G-BCI, and M-BCI for R with some general inverse 

exponential form distributions are compared. 1000 samples 

of sample sizes (n1, n2) = (10, 10) and (30, 30) from the 

underlying distributions of X� and X� , with unknown 
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parameters are generated. Taking α = 0.05, average length, 

average coverage probability, left and right tail errors of the �1 − α	100%  confidence intervals are calculated. The 

parameter values that produce the values of R to be 

approximately 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, and 0.99 are 

selected. 

The inverse Weibull distribution is chosen as an example 

of the general inverse exponential form. The inverse Weibull 

distribution is flexible and includes a variety of distributions. 

For the inverse Weibull distributions, the CDFs with 

η �b , c 	 = 	 �
2�

�� , g�x; c 	 = �
���,	and g<�x; c 	 = ���

����/ ; 	i = 1,2 , 

are 

F4��x; b , c 	 = exp �− p �
2���s

���,                (17) 

and the reliability is obtained by substituting these values in 

(4) as 

R = 	? c2b2−c2z−c2−1@
A exp�−b1−c1z−c1 − b2−c2z−c2� dz.	 (18) 

As noticed from (9), ηI  = �
2L�

�I� = ��
∑ ��k

~�I���k�/
; i = 1, 2, and 

hence bJ  = �∑ ��k
~�I���k�/

�� �
/
�I�

. Using the Newton–Raphson 

iterative method cI is obtained from (8) after applying the 

suitable substitutions. 

(i) The �1 − α	100% ACI of R can be obtained as 

FRL ±z���[ �⁄ 	σKNLH , where RL  is obtained from (10), and 

 σKNL� = SPT��S|2��2L�,����I�,����K�  is obtained from the following 

equations. 

( )( )i

i i

2
n 2

i

i ij2 2 c c
j 1

i i i ij

nln 1 1
ln b x ,

c c b x

L
=
∑

∂ = − −
∂

 

( )i i

i i i i

2 2
n n

i i

i ijc 1 c c 1 c
j 1 j 1

i i i i i i ij i ij

n cln ln 1 1 1
ln b x ,

c b b c b b x b x

L L
+ += =

∑ ∑
∂ ∂= = − + −
∂ ∂ ∂ ∂

 

i

i i

2
n

i i i i

2 2 c 2 c
j 1

i i i ij

n c c (c 1)ln 1
;i 1,2

b b b x

L
+ =

∑
+∂ = − =

∂
. 

(ii) As mentioned in Section 3, taking G�� = p��
�I�s cIA = �I��

�I�∗∗, 

and G2� = p2�
2L�s

/
��� bJA = n �

2L�∗∗t
/

��� bJA ; i = 1, 2,  and cIA  and bJA  
are the observed values of cI  and bJ  . The distributions of 

cI ∗∗ = p�I�
��s  and bJ  ∗∗ = p2L�

2�s ; i = 1,2,  do not depend on any 

unknown parameters, and so they are pivotal quantities (see, 

Thoman et al. [9]). cI ∗∗ and bJ  ∗∗ are the MLEs of c  and b , 

respectively, based on two independent random samples from 

standard inverse exponential distributions (see, 

Krishnamoorthy et al. [10]). Then consequently the GPQs of 

η  are G�� = n �
���

t���
. The GCI is obtained by computing the 

GN = R�G�/ , G�. , G�/ , G�.	. The next Algorithm 3 is used to 

estimate the GCI of R (see, Krishnamoorthy and Lin [11]). 

Algorithm 3. 

1. Let _`; 	i = 1, 2, be two independent random samples 

from (17), respectively. Compute the cIA  and bJA  of c  
and b ; i = 1, 2. 

2. Generate two independent random samples _∗̀∗; 	i =1, 2,  from standard inverse exponential distributions. 

Compute the cI ∗∗  and bJ  ∗∗of c  and b . 
3. Compute the G�� , G2�, G�� , and henceGN; i = 1, 2. 

4. Repeat the steps 2-3, N times to obtain a set of values of 

GN, say �GNk; j = 1, … , N�.  

Order GNk; j = 1, … , N, ascending to obtain GNk
��	 ≤ ⋯ ≤

GNk
�g	

. 

5. Construct the �1 − α	100% GCI of R as 

FGN�[ �	⁄ , GN���[ �	⁄ H. 

(iii) The �1 − α	100%  P-boot and T-boot of R are 

obtained, using Algorithm 1. 

Table 1. Average length of the confidence intervals of R for inverse Weibull distributions, �� = �
��

�� ; � = 1, 2. 

 R 

Average length 

n=10 n=30 

ACI GCI 
boot BCI 

ACI GCI 
boot BCI 

P T Gamma Mixed P T Gamma Mixed 

c1 = 2, c2 = 5, b1 = 

1.2, b2 = 0.9 
0.6207 0.4605 0.4512 0.4812 0.4812 0.3909 0.3947 0.2759 0.2915 0.2814 0.2814 0.2517 0.2530 

c1 = 3, c2 = 4, b1 = 

1.2, b2 = 0.9 
0.7050 0.4161 0.4230 0.4180 0.4180 0.3931 0.3875 0.2525 0.2715 0.2535 0.2535 0.2439 0.2408 

c1 = 2, c2 = 3, b1 = 

2, b2 = 1 
0.8068 0.3429 0.3748 0.3042 0.3042 0.3741 0.3591 0.2106 0.2394 0.2066 0.2066 0.2206 0.2131 

c1 = 2, c2 = 3, b1 = 

2.8, b2 = 0.9 
0.9127 0.2223 0.2822 0.1767 0.1767 0.3199 0.2803 0.1341 0.1666 0.1280 0.1280 0.1633 0.1475 

c1 = 2, c2 = 3, b1 = 

4, b2 = 0.9 
0.9557 0.1455 0.2128 0.1118 0.1118 0.2857 0.2366 0.0865 0.1170 0.0828 0.0828 0.1264 0.1105 

c1 = 2, c2 = 3, b1 = 

6, b2 = 0.9 
0.9799 0.0855 0.1511 0.0628 0.0628 0.2489 0.1992 0.0498 0.0745 0.0482 0.0482 0.0919 0.0764 

c1 = 2, c2 = 3, b1 = 

9, b2 = 0.9 
0.9910 0.0513 0.1088 0.0422 0.0422 0.2175 0.1699 0.0274 0.0451 0.0277 0.0277 0.0663 0.0529 
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Table 2. Average coverage probability of the confidence intervals of R for inverse Weibull distributions, �� = �
��

�� ; � = 1, 2. 

 R 

Average coverage probability 

n=10 n=30 

ACI GCI 
boot BCI 

ACI GCI 
boot BCI 

P T Gamma Mixed P T Gamma Mixed 

c1 = 2, c2 = 5, b1 = 

1.2, b2 = 0.9 
0.6207 0.887 0.951 0.884 0.838 0.985 0.973 0.907 0.944 0.904 0.866 0.956 0.945 

c1 = 3, c2 = 4, b1 = 

1.2, b2 = 0.9 
0.7050 0.865 0.942 0.867 0.811 0.954 0.959 0.893 0.941 0.879 0.853 0.924 0.933 

c1 = 2, c2 = 3, b1 = 2, 

b2 = 1 
0.8068 0.835 0.94 0.793 0.746 0.874 0.963 0.874 0.944 0.864 0.82 0.914 0.947 

c1 = 2, c2 = 3, b1 = 

2.8, b2 = 0.9 
0.9127 0.794 0.923 0.732 0.666 0.741 0.915 0.871 0.953 0.846 0.801 0.865 0.937 

c1 = 2, c2 = 3, b1 = 4, 

b2 = 0.9 
0.9557 0.772 0.919 0.718 0.614 0.627 0.879 0.834 0.942 0.826 0.755 0.787 0.907 

c1 = 2, c2 = 3, b1 = 6, 

b2 = 0.9 
0.9799 0.721 0.918 0.688 0.588 0.513 0.809 0.83 0.942 0.835 0.718 0.713 0.861 

c1 = 2, c2 = 3, b1 = 9, 

b2 = 0.9 
0.9910 0.695 0.922 0.681 0.55 0.421 0.71 0.789 0.926 0.801 0.684 0.642 0.82 

Table 3. Left tail error of the confidence intervals of R for inverse Weibull distributions, �� = �
��

�� ; � = 1, 2. 

 R 

Left tail error 

n=10 n=30 

ACI GCI 
boot BCI 

ACI GCI 
boot BCI 

P T Gamma Mixed P T Gamma Mixed 

c1 = 2, c2 = 5, b1 = 

1.2, b2 = 0.9 
0.6207 0.2219 0.2540 0.2435 0.2210 0.2373 0.1956 0.1318 0.1536 0.1270 0.1421 0.1416 0.1222 

c1 = 3, c2 = 4, b1 = 

1.2, b2 = 0.9 
0.7050 0.1961 0.2555 0.2145 0.1796 0.2930 0.2282 0.1238 0.1550 0.1212 0.1274 0.1670 0.1331 

c1 = 2, c2 = 3, b1 = 2, 

b2 = 1 
0.8068 0.1658 0.2562 0.1552 0.1376 0.3083 0.2530 0.1035 0.1475 0.0999 0.1031 0.1631 0.1359 

c1 = 2, c2 = 3, b1 = 

2.8, b2 = 0.9 
0.9127 0.1158 0.2240 0.1013 0.0846 0.3016 0.2342 0.0677 0.1152 0.0689 0.0604 0.1384 0.1101 

c1 = 2, c2 = 3, b1 = 4, 

b2 = 0.9 
0.9557 0.0783 0.1816 0.0712 0.0517 0.2821 0.2156 0.0459 0.0883 0.0495 0.0384 0.1156 0.0912 

c1 = 2, c2 = 3, b1 = 6, 

b2 = 0.9 
0.9799 0.0475 0.1363 0.0440 0.0284 0.2516 0.1916 0.0273 0.0604 0.0322 0.0209 0.0885 0.0685 

c1 = 2, c2 = 3, b1 = 9, 

b2 = 0.9 
0.9910 0.0297 0.1019 0.0336 0.0168 0.2224 0.1685 0.0154 0.0384 0.0200 0.0110 0.0656 0.0496 

Table 4. Right tail error of the confidence intervals of R for inverse Weibull distributions, �� = �
��

�� ; � = 1, 2. 

 R 

Right tail error 

n=10 n=30 

ACI GCI 
boot BCI 

ACI GCI 
boot BCI 

P T Gamma Mixed P T Gamma Mixed 

c1 = 2, c2 = 5, b1 = 

1.2, b2 = 0.9 
0.6207 0.2385 0.1972 0.2376 0.2601 0.1535 0.1991 0.1441 0.1379 0.1544 0.1393 0.1100 0.1307 

c1 = 3, c2 = 4, b1 = 

1.2, b2 = 0.9 
0.7050 0.2200 0.1674 0.2035 0.2383 0.1000 0.1592 0.1286 0.1164 0.1323 0.1261 0.0769 0.1076 

c1 = 2, c2 = 3, b1 = 2, 

b2 = 1 
0.8068 0.1771 0.1186 0.1489 0.1665 0.0657 0.1061 0.1071 0.0918 0.1066 0.1035 0.0575 0.0771 

c1 = 2, c2 = 3, b1 = 

2.8, b2 = 0.9 
0.9127 0.1065 0.0582 0.0753 0.0920 0.0183 0.0460 0.0664 0.0513 0.0591 0.0676 0.0248 0.0374 

c1 = 2, c2 = 3, b1 = 4, 

b2 = 0.9 
0.9557 0.0672 0.0312 0.0406 0.0601 0.0036 0.0210 0.0406 0.0287 0.0332 0.0443 0.0108 0.0192 

c1 = 2, c2 = 3, b1 = 6, 

b2 = 0.9 
0.9799 0.0379 0.0147 0.0188 0.0344 -0.0026 0.0076 0.0224 0.0141 0.0160 0.0273 0.0034 0.0079 

c1 = 2, c2 = 3, b1 = 9, 

b2 = 0.9 
0.9910 0.0215 0.0068 0.0086 0.0253 -0.0048 0.0013 0.0120 0.0067 0.0076 0.0166 0.0006 0.0032 
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(iv) Finally, the �1 − α	100% G-BCI and �1 −α	100%M-BCI of R, are obtained using Algorithm 2. The 

hyper-parameters of priors for G-BCI and M-BCI are chosen 

on basis of the same mean but different variances as the 

follow 

G-BCI: let �α�, β�	 = �2, 4	, �α�, β�	 = �1, 2	, �μ�, λ�	 =
pS

� , 3s,	and �μ�, λ�	 = p�
� , 1s. 

M-BCI: let �α�, β�	 = �2, 4	,	and	�α�, β�	 = �1, 2	. 

The comparisons on the basis of average length, average 

coverage, and left and right tail errors are introduced in 

Tables (1-4), respectively. From Tables 1-4, the following 

results are observed: 

1. As expected, the average length of all confidence 

intervals decreases when n and R increase. 

2. When R = 0.8068-0.9910, the average length of boot 

and the left tail error of T-boot are smallest, and the left 

tail error of all confidence intervals decrease when n 

and R increase. 

3. The average coverage of GCI is approximately around 

the �1 − α	100%. 

4. The average coverage of ACI, boot, and G-BCI 

decrease when R increases. But the average coverage of 

ACI and boot increase when n increases. 

5. For all the confidence intervals, the right tail error is 

decreasing when R is increasing. Moreover the right tail 

error of all confidence intervals except BCI are 

decreasing when n is increasing. 

6. The right tail error of BCI is the smallest. 

7. Conclusion 

In this article, several approaches for estimating the 

confidence intervals of Stress-Strength Reliability P(X1 < X2) 

are provided when random variables having general inverse 

exponential form distributions with different unknown 

parameters. A simulation study is performed to compare its 

performance using the inverse Weibull distribution as an 

example of the general inverse exponential form distribution. 

The comparison is carried out on basis of average length, 

average coverage, and tail errors. The results obtained were 

very close to each other. 
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