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Abstract: Replication of the factorial (cube) and/or axial (star) portions of the central composite design (CCD in response 

surface exploration has gained great attention recently. Some well known metrics (called single-value functions or criteria) and 

graphical methods are utilized in evaluating the regression based response surface design. The single-value functions 

considered here are the A-efficiency, ( )( ){ }1100 kA p N trace M ξ−= and the D-efficiency, ( ){ }1 p

k
D M Nξ= , where 

( )( )1 2 2p k k= + + , k is number of factors, 
k

ξ  is the k
th

 design measure, ( )kM ξ is the design’s information matrix, ( )1

kM ξ−
 

is its inverse and N is the total number of experimental runs. These two functions are very popular in parameter estimation in 

response surface methodology. The exact measures of these two design criteria will be developed analytically in this work to 

account for partial replication of the cube and/or star components of the CCD. This will alleviate the burden of manual 

computation of these metrics when there are partial replications and reduce over reliance on software values which, often, are 

approximate values and maybe inaccurate. 
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1. Introduction 

In many industrial experiments, relationship between a 

response of interest, y , and k  independent design variables, 

1 2
, ,..., kx x x , is often adequately described by second-order 

response surface model 

0
β ε′ ′= + + +y x b x Bx ,                (1) 

where y  is the 1N ×  vector of responses, N  being the 

number of experimental runs, 
0

β  is a constant, x  is a point 

in the design space spanned by the design, b  is a 1k ×  

vector of first-order regression coefficients. In addition, B  is 

a k k×  symmetric matrix whose main diagonal entries are 

the coefficients of the pure quadratic terms and the off-

diagonal entries are coefficients of one-half the mixed 

quadratic (interaction) terms, and ε  is the random error term 

associated with the responses (see [1]). The p number of 

model parameters consists of one constant, k  first-order 

terms, k quadratic terms and ( )1 2k k −  interaction terms. 

Designs for fitting second-order response surface models are 

called second-order response surface designs. 

The central composite design (CCD) of [2] is the most 

popular and commonly used second-order response surface 

designs. The design has three major components: the 

factorial portion (the cube) with coordinates,

( ) ( )1 2
,  ,  . . .,  1, 1, . . ., 1kx x x = ± ± ± ,the 'ix s , i = 1,...,k, are 

the factors; the axial portion (the star) with coordinates, 

( ) ( ), 0, 0, . . ., 0 , . . ., 0, 0, . . .,α α± ± , α  is the distance of the 

star point (also called the axial distance) from the centre of 

the design space, and the centre point with coordinates, 

( )0, 0, . . ., 0 . The number of design runs for the CCD is 

2c s oN n f n k n= + + , where f is the factorial or cube run, cn  

is the replication of f, 2k is the star run and sn  is the 

replication of 2k,
0

n  is the number of centre points, c is the 

cube, s is the star and o is zero (see, for example, [3]). 
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The A-efficiency and D-efficiency are the most commonly 

used single-value functions for estimating parameters in 

response surface exploration using response surface designs 

like the CCD (see [4]). [5] have extended the use of these 

optimality criteria to evaluating and selecting optimal designs 

for functional magnetic resonance imaging (fMRI). Further 

extension of the use of these efficiency criteria comes in the 

area of blocking. [6] considered partial replications of the 

components of the CCD which are arranged in orthogonal 

blocks and the emanating designs evaluated using the A- and 

D-efficiencies among other criteria. Statistical packages have 

made the computation of these single-value functions very 

easy. However, and as indicated by [7], the measures of these 

criteria provided by some statistical softwares could be 

approximated values and often misleading. Hence, it is 

imperative to have exact forms of these criteria that could be 

more reliable in design evaluation. 

[8] proposed exact versions of the A − , D − and G −
efficiencies as well as the IV − criterion for the classical 

CCD that is based on replication of the centre point alone. 

The inability of these exact functions to accommodate the 

replication of the cube or star or both portions of the CCD is 

a major drawback. In [9], exact functions have been provided 

for the G-efficiency and IV-criterion which compensate for 

partial replications of the components of the CD. In this 

work, we propose modified versions of the exact A −  and 

D − efficiencies for the CCD that accommodate the 

replication of the cube, star or both portions of the CCD for 

any given axial distance, α , for any number of centre points 

and in any given design region (spherical or cuboidal). The 

proposed modified versions will make it easy to evaluate the 

parameters of the regression model in response surface 

exploration involving the CCD where the components of the 

CCD are replicated to enhance the design’s performance. 

Doubts that surround the approximate results of some 

statistical packages are completely eliminated by using the 

exact forms of the efficiency criteria. 

2. Exact A- and D-Efficiency for the 

Partial Replication of CCD 

The D-efficiency is derived from the determinant of the 

information matrix, ( )kM X Xξ ′= , given that ( )kM ξ  is 

non-singular, such that the D − efficiency, 

{ }1
100

p
D X X N′= . The A − efficiency is derived from 

the trace of, ( )1

kM ξ−
, the inverse of ( )kM ξ , such that the 

A − efficiency, ( ){ }1
100A p trace N X X

−′= , X  is the 

design matrix expanded to model form. According to [8] and 

[10], the A −  and D − efficiency measures represent the 

percentage number of runs required by a particular 

orthogonal design to achieve the same determinant and trace. 

To obtain the D-efficiency, we first, derive the information 

matrix of the partially replicated CCD, then the determinant 

of the information matrix. Consider the design matrix of 

equation (2) for the k factor CCD, where k is a fixed positive 

integer and k>1. Let and , , be 

any two variables of the CCD. The CCD has  (q is 

an integer) support points at the vertices, 2k support points at 

the axes and  support points at the centre of the design 

space. 

}
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n
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′ ′ ′ 
 

 
 − −  − − 

 − −  =
 
 − 

 
 
 − 

 
  

           (2) 

Let f have 
c

n
 
multiplicity, 2k have 

s
n

 
multiplicity and 

with 
0

n centre points, with the subscripts, c, s and 0 

representing cube, star and zero, respectively. Also, let 
k

X
 

be the N p×
 
expanded design matrix from the N k×  design 

matrix of the partially replicated k-factor CCD and 
k

X ′ , its 

transpose for all k>1. The information matrix,

( )k k k
M X Xξ ′= is determined directly by matrix 

multiplication. The elements of ( )k k k
M X Xξ ′=

 
are the inner 

products of 
k

X ′
 
and 

k
X . Let jυω , 1, . . ., ; 1, . . .,j p Nυ= =

  
be the element of the j

th 
row of 

k
X ′

 
and 

uυθ , 1, . . .,u p= , be 

an element of the u
th 

column of 
k

X ′ , then the inner product of 

k
X ′  and 

k
X

 
is given by (see, for example, [11]) 

1 1 2 2 ...j u j u j u jN uNυ υω θ ω θ ω θ ω θ= + + +  =
1

N

j uυ υ
υ

ω θ
=
∑ . 

Hence, the information matrix for the k-factor partially 

replicated CCD in block form, containing sub-matrices and 

vectors, is given by 

( ) ( )

( )

1 3

1 2 4

2 5

3 4 5

.

.

k

k k k

k k

N d J

diag d
M X X

d J

diag F

ϕ ϕ
ϕ ϕ ϕ

ξ
ϕ ψ ϕ

ϕ ϕ ϕ

′ ′ ′ 
 ′
 ′= =
 ′
 
  

,  (3) 

where 
1

ϕ  = 1k ×  zero matrix, ( )diag d  = k k×  diagonal 

matrix with 
2

2 sd F n α= +  as the entries,
c

F n f= , 1
k

J k= ×  

unit column vector,
2

k kϕ = ×  zero matrix,
k

k kψ = ×  matrix 

whose diagonal entries are 
4

2 sF n α+  and the off-diagonal 

entries are 'F s , 
3

2
1

k

ϕ  = × 
 

 zero matrix, 
4

ϕ =
5

2

k

kϕ  = × 
 

 

ix ix ′ iiki >′= ;.,..,1
qkf −= 2

0n
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zero matrices and ( )
2 2

k k

diag F
   = ×   
   

 diagonal matrix with 

F as the entries. For example, for k = 2, the information 

matrix of the CCD with partial replication of the cube and 

star is given by 

( )

2 2

2

2

2 2 2 2 4

2 4

0 0 2 2 0

0 2 0 0 0 0

0 0 2 0 0 0

2 0 0 2 0

2 0 0 2 0

0 0 0 0 0

s s

s

s

s s

s s

N F n F n

F n

F n
M

F n F n F

F n F F n

F

α α
α

αξ
α α
α α

 + +
 + 
 +′= =  

+ + 
 + +
 
  

X X  (4) 

The derivation of the determinant of the information 

matrix, ( )k k kM X Xξ ′=  follows. Let jua , j,u = 1, 2,..., p, be 

the element of ( )kM ξ  and juW  be the ( ) ( )1 1p p− × −  

matrix obtained by deleting the j
th

 row and u
th 

column 

containing jua . Then, the determinant of ( )kM ξ  is given by 

(see [11]), 

( ) ( )
1

det 1 ,
p

u j

k ju ju

j

M a Wξ +

=

= −∑                (5) 

for any u, where ( )1
u j

juW
+−  are the cofactors of ( )kM ξ  

obtained by expanding juW  to the second-order determinant. 

After performing the tedious matrix algebra, the determinant 

of the information matrix of the partially replicated CCD is 

given by 

( ) ( ) ( ) ( )1 1 24 2det 2 2
k k k k

k s s
M n Q F n Fξ α α

− −= + ,      (6) 

where
4

2 sQ n N kα ρ= +  and ( )2
2 sNF F nρ α= − + . For 

example, fork = 2, the determinant is given by

( ) ( )( )2
4 2

2
det 2 2

s s
M n F n QFξ α α= + , where 

( )2
4 22 2 2 2

s s
Q n N NF F nα α= + − + . 

Multiplying the p
th

 root of the determinant by 100 and 

dividing by N gives the percentage D- efficiency. That is, 

( ) ( )
( ) 1

1
1

4 2 22 2

100

p
k k

k k

s s
n Q F n F

D
N

α α
−

−  + 
  = ×

   (7) 

To obtain the A-efficiency, the inverse of the information 

matrix will be derived first. To derive the inverse of ( )k
M ξ , 

the cofactors of the elements of ( )k
M ξ  are obtained as 

described in the case of the determinant to form the matrix of 

the cofactors, ( )k
M C . This matrix is transposed to obtain 

the adjugate or adjoint which is multiplied by the reciprocal 

of the determinant to obtain the inverse, ( )1

k
M ξ−

. Though 

( )k
M ξ  is symmetric matrix, so, ( )k

M C  is also symmetric 

and therefore, equal to the adjugate. The inverse of the 

information matrix for the partially replicated CCD is given 

by 

( ) ( ) ( )1 1

det
k k

k

M M C
M

ξ
ξ

− =  

which, expressed in block form is 

( ) ( )
( )

( )

1 1 2 3

1

1 2 411

2 2 3 5

1

3 4 5

.

.

k

k k k

k

J

diag d
M X X

J

diag F

ϕ ϕ
ϕ ϕ ϕ

ξ
ϕ ϕ

ϕ ϕ ϕ

−
−−

−

′ ′ ′ ′ 
 ′ ′= =  ′ 
 
 

A A

A A
,                                      (8) 

where ( )4
2 skF n Qα= +1A , ( )2

2 sF n Qα= − +2A , 
3

A is a  matrix with ( ) ( )4 4
2 ( 1) 2s sn N k n Qα ρ α+ − as 

diagonal entries and ( )4
2 sn Qρ α  as off-diagonal entries, 

4
2 sQ n N kα ρ= + , and ( )2

22
s

NF F nρ α= − + . 

For example, the matrix of cofactors for two-factor partially replicated CCD is given by 

( )

( ) ( )( )
( )( )

( )( )
( )( )
( )( )

2
4 4 2

2
4 2

2
4 2

2
2

4 2

2
4 2

2 2 2 2 0 0

0 2 2 0

0 0 2 2

2 2 0 0

2 2 0 0

0 0 0

s s s

s s

s s

s s

s s

F n n F n F

n F n QF

n F n QF
M C

n F n F

n F n F

α α α

α α

α α

α α

α α

 + +

 +


+= 
 − +

 − +



kk ×
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( )( ) ( )( )

( ) ( ) ( ){ }
( ) ( ){ } ( )

( )( )

2 2
4 2 4 2

2 2 2
2 2 2

2 2 2
2 2 2

2
4 2

2 2 2 2 0

0 0 0

0 0 0

2 2 2 0

2 2 2 0

0 0 2 2

s s s s

s s s

s s s

s s

n F n F n F n F

F n QF F n F NF F n

F n F NF F n F n QF

n F n Q

α α α α

α α α

α α α

α α

− + − +






+ − + − + 

− + − + +



+ 

 

Therefore, the inverse of the information matrix of the 

two-factor partially replicated CCD is obtained by 

multiplying ( )2M C  by the reciprocal of the determinant, 

( ) ( )( )2
4 2

2
det 2 2

s s
M n F n QFξ α α= + , which is the matrix,

( ) ( ){ } ( )11

2 2 2
detM M M Cξ ξ −− = . 

Let  be the diagonal elements of : see, for 

example, [12]. Then the trace of ( )1

kM ξ−
 is given by 

 

( )( )44

2 4

2 1 22

2 2

ss

s s

k

k Nn kkF n k

Q FF n n Q

α ρα
α α

 
 + −+  = + + +

+
   (9) 

Hence, the percentage A-efficiency is the product of p and 

100 divided by the product of the trace of ( )1

kM ξ−
 and N. 

That is, 

( ) ( )4

1 2 4

100
2 1 1

22 2

s

s s

p
A

k n N k k kk
N

FF n n Q

α ρ
α α

= ×
  − −  Α + + + +  

   (10) 

These mathematical expressions for the exact A- and D-

efficiencies will reduce to the [8] type of exact A- and D-

efficiencies if 1
c s

n n= = . That is when there are no partial 

replications of the components of the CCD. 

3. Conclusion 

The central composite design is a popular second-order 

response surface design. By replicating the cube and star 

portions of the CCD analytical functions have been 

developed for obtaining the A −  and D − efficiencies for the 

partially replicated design options for any given number of 

centre points and for any axial distance. The higher the 

values of A- and D-efficiencies, the better the model’s 

parameter estimation with minimum variance which 

corresponds to maximizing the information. With these 

results, parameter estimation in response surface exploration 

using the partially replicated regression-based CCD becomes 

less tedious and there is no risk of making inference based on 

sometimes misleading approximate values. 
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