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Abstract: This study was prompted by the fact that the presence of outliers in discrete-time stochastic series may result in 

model misspecification, biases in parameter estimation and in addition, it is difficult to identify some outliers due to masking 

effects. However, the iterative approach which involves joint estimation of outliers effects and model parameters appears to be 

a panacea for masking effects. Considering the dataset on credit to private sector in Nigeria from 1981 to 2014, we found that 

ARIMA (1, 1, 1) model fitted well to the series without considering the presence of outliers. Using the iterative procedure 

method to reduce masking effects, the following outliers, IO (t = 24), AO (t = 33) and TC (t = 22) were identified. Adjusting 

the series for outliers and iterating further, ARIMA (2, 0, 1) model alongside AO (t = 33) and TC (t = 22) outliers was found to 

fit the series better than ARIMA (1, 1, 1) model. The implication is that in the presence of outliers, ARIMA (1, 1, 1) model was 

misspecified, the order of integration was wrong and by extension, autocorrelation and partial autocorrelation functions were 

misleading, and the estimated parameters were biased. 
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1. Introduction 

In statistical analysis, it is good practice to inspect the 

data at every stage of the analysis for extreme or unusual 

observations and such observations are called outlier 

observations (Fuller, 1996). In Chen and Liu (1993), the 

usual stochastic model is designed to grasp the 

homogeneous memory pattern of a discrete-stochastic 

series, the presence of outlying observations or structural 

changes raise the question of efficiency and adequacy in 

fitting general autoregressive moving average (ARMA) 

models to stochastic series. Thus, outliers in a discrete-

stochastic series can adversely affect data analysis. 

According to Wei (2006), outliers are known to wreak 

havoc in data analysis, making the resultant inference 

unreliable or even invalid. Also, in Tsay (2010), outliers can 

seriously affect discrete-stochastic series analysis because 

they may induce substantial biases in parameter estimation 

and lead to model misspecification. Similarly, Box, Jenkins 

and Reinsel (2008) maintained that the presence of outliers 

in discrete-stochastic series can have substantial effects on 

the behavior of sample autocorrelations, partial 

autocorrelations, estimates of ARMA model parameters, 

forecasting, and can even affect the specification of the 

model (see also Chen and Liu, 1993). Ledolter (1989) 

specified that outliers affect the forecasts from ARMA 

models by inflating the estimated variance of the series 

thereby causing the prediction interval to become severely 

misleading. Recently, Nare, Maposo and Lesaoana, (2012) 

pointed out that least squares and maximum likelihood 

methods of ARMA estimation are both sensitive to outliers. 

Meanwhile, Galeano and Pena (2013) opined that outliers 

have a strong effect on the model building process for a 

given time series in that they introduce bias in the model 

parameter estimate, thus distort the power of statistical tests 

based on biased estimates and may increase the confidence 

intervals for the model parameters and consequently 

influence predictions. Moreover, outliers are of different 

types, Fox (1972) introduced additive outliers (AO), which 

affect a single observation and innovative outlier (IO) 

which affect a single innovation. Also, Tsay (1988) added 

two new types of outliers: the level shift (LS), which is a 



 American Journal of Theoretical and Applied Statistics 2017; 6(4): 191-197 192 
 

change in the level of the series, and the temporary change 

(TC), which is a change in the level of the series that 

decreases exponentially. 

However, the problems of interest associated with the 

modeling of outliers in discrete-stochastic series are to 

identify the locations and types of outliers and estimating 

the effects of outliers. Outliers detection methods have been 

proposed by different authors. For instances, Fox (1972) 

proposed the use of likelihood ratio test statistics for testing 

for outliers in autoregressive models (see also Galeano and 

Pena, 2013), Box and Tiao (1975) used intervention models 

to accommodate the effects of outliers. Tsay (1986) 

proposed an iterative procedure for identifying outliers, 

removing their effects and specifying a linear model for the 

stochastic series. However, Kaya (2010) noted that prior 

outliers detection methods are powerful when the data 

contain only one outlier but these methods decrease 

drastically if more than one outliers are present in the data 

(see also Hadi, 1992). In addition, there could be difficulties 

due to masking effects when the series has multiple outliers 

that occur in patches, especially when they are in the form 

of additive and level effect. Chen and Liu (1993) proposed 

a modified iterative procedure to reduce masking effects by 

jointly estimating the model parameters and the magnitudes 

of outlier effects (see also Luceno, 1998; Sanchez and Pena, 

2010). This modified iterative procedure, according to 

Battaglia and Orfei (2002) identifies outliers sequentially 

by searching for the most relevant anomaly, estimating its 

effect and removing it from the data, estimating again the 

model parameters on the corrected series, and iterating the 

process until no significant perturbation is found. Hence, 

this study focuses on the use of Chen and Liu (1993) 

approach to detect and model outliers effects in joint 

estimation with model parameters. 

2. Methodology 

A stochastic process is a family of random variables {�����: � = 1,2, … , �} where �� ∈ �  for (� = 1,2, … , ��	and � 
is a number index. Therefore, it is the random variables 
sequentially ordered in time. Meanwhile, the realization of a 
stochastic process is considered as time series (see for 

example, Ebong, 1998; Moffat, 2007; Akpan, 2016). 

Autoregressive Moving Average (ARMA) Process 

A natural extension of pure autoregressive and pure 
moving average processes is the mixed autoregressive 

moving average ������  processes, which includes the 
autoregressive and moving average as special cases (Wei, 
2006). 

A stochastic process {��} is an �����	�, �� process if {��} 
is stationary and if for every	�, 

������ = ������                        (1) 

���� = 1 − ��� − � � −⋯− �"�"  is the 

autoregressive coefficient polynomial. ���� = 1 − ��� − � � −⋯− �#�#  is the moving 

average coefficient polynomial. 

Autoregressive Integrated Moving Average (ARIMA) 

Model 

Box, Jenkins, and Reinsel (2008) considered the extension 
of ARMA model in (1) to deal with homogenous non-

stationary time series in which ��	  is non-stationary but its $�%  difference is a stationary ARMA model. Denoting the $�% difference of �� by 

���� = &���∇(�� = ������                (2) 

where ���� is the nonstationary autoregressive operator such 

that d of the roots of ���� 	= 0 are unity and the remainder 

lie outside the unit circle. &��� is a stationary autoregressive 
operator. 

Therefore, (2) is called an autoregressive integrated 
moving average model and can be referred to as an ��*����, $, �� model (see also Akpan and Moffat, 2016). 

Model Selection Criteria 

For a given data set, when there are multiple adequate 

models, the selection criterion is normally based on summary 

statistics from residuals of a fitted model (Wei, 2006). There 

are several model selection criteria based on residuals (see 

Wei, 2006). For the purpose of this study, we consider the 

well-known Akaike’s information criterion (AIC), (Akaike, 

1973) defined as 

AIC = −2+��likelihood� + 	2�number	of	parameters� 
where the likelihood function is evaluated at the maximum 

likelihood estimates. The optimal order of the model is 

chosen by the value of the number of parameters, so that AIC 

is minimum (Wei, 2006; Akpan and Moffat, 2016). 

Additive Outlier (AO) Model 

A time series, �� , …, �> , affected by the presence of an 

additive outlier at t = T is given by 

�� =	 ? �� , � ≠ A	�� + 	B, � = A	 = �� + 	B*��>� 	= 	 C�D�E�D� F� 	+ 	B*��>� (3) 

for t = 1, …,T, where *��>� = G1, � = A,0, � ≠ A, is the indicator 

variable representing the presence or absence of an outlier at 

time T, ��  follows an ARIMA model, B  is an outlier size. 
Hence, an additive outlier affects only a single observation 
(see also Box, Jenkins and Reinsel, 2008; Wei, 2006; 
Sanchez and Pena, 2010) 

Innovative Outlier (IO) Model 

A time series, �� , …, �> , affected by the presence of an 
innovative outlier at t = T is given by 

�� = �� +	 C�D�E�D�B*��>� =	 C�D�E�D� �F� 	+ 	B*��>�)          (4) 

hence, an innovative outlier affects all observations �� , ��H�,…, beyond time T through the memory of the system 

described by I	(B) = 
���� ����J , such that �� = �� +

	ψ�B�B*��>�. 
Meanwhile, according to Sanchez and Pena (2010), the 

innovation of a time series ��, …, �> is affected by 
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�� = M� + 	B*��>�                             (5) 

where M�are the innovations of the uncontaminated series ��. 
Level Shift (LS) Model 

A time series ��, …, �> affected by the presence of a level 
shift at t = T is given by 

�� = �� + 	BN��>�                                  (6) 

where N��>�= (1	 − ��O�*��>�. Note that level shift affects all 

the observation of the series after t = T. Hence, according to 
Sanchez and Pena (2010), level shift serially affects the 
innovations as follows: 

F� = M� + 	π�B�BN��>�	                            (7) 

where Q��� 	= 	 �1 −	Q��	 −	Q � 	− ⋯ � 
Temporary Changes 

A time series �� , …, �>  affected by the presence of a 
temporary changes at t = T is given by 

�� = �� + ��ORD 	B*��>�                           (8) 

where S  is an exponential decay parameter such that 0 

<	S < 1. If S tends to zero, the temporary change reduces to 

an additive outlier, whereas if S  tends to 1, the temporary 
change reduces to a level shift. The temporary change affects 
the innovations as follows: 

F� = M� + U�D��ORD 	B*��>�                            (9) 

If Q��� is close to 1 − S�, the effect of temporary change 
on the innovations is very close to the effect of an innovative 
outliers. Otherwise, the temporary change can affect several 
observations with a decreasing effect after t = T (Sanchez and 
Pena, 2010). 

Generally, a time series might contain several, say k 

outliers of different types and we have the following general 

outlier model; 

�� = ∑ BWXWY� ZW(B)*��>� + ��,                     (10) 

where �� = ������ ⁄ ������	F� , ZW (B) =  1 for an AO, and ZW(B) =	 C�D�E�D� for an IO at t = AW, ZW(B) = �1	– 	��O� for a LS 

and ZW(B) = �1	– S	��O� for an TC. 

Estimation of the Outlier Effect with known Timing 

To activate the procedure for detecting AO, IO, LS, and 

TC, we consider a simpler case when T and all parameters 

are known. Letting 

Q(B) =	 C�D�E�D� = �1 −	Q��	 −	Q � 	− ⋯ � 
Defining M� 	= 	Q(B)��, 

AO: M̂� = 	BQ(B)*��>� +	F�                         (11) 

IO:	M̂� 	= 	B	*��>� +	F�                                 (12) 

LS: M̂� 	= 	B	 G U�D���OD�^ *��>� +	F�                     (13) 

TC: M̂� 	= 	B	 G U�D���ORD�^ *��>� +	F�                    (14) 

The outlier effect B_ at t = T is estimated using the least 

squares method. The least squares estimates for B_`a , B_b> , B_cd and B_>e  are respectively given by: 

AO: B_`a 	= 	∑ fghi,jklmgino pi,jk∑ pi,jkqlmgino                    (15) 

where �W,`a = −QW 
IO: B_b> 	= 	 M�                             (16) 

LS: B_cd 	= 	∑ fghi,rslmgino pi,rs∑ pi,rsqlmgino                         (17) 

where 

�W,cd =	t 	1, �u	v	 = 0	
1	 −w Q� ,W

� 	�u	v	 = 1,2, … , � − �	 
TC: B_>e 	= 	∑ fghi,gxlmgino pi,gx∑ pi,gxqlmgino                  (18) 

where 

�W,>e =	t 	1, �u	v	 = 0	
SW 	−w SWO�Q� −W

� QW,	�u	v	 = 1,2, … , � − �	 
As found in Chang, Tiao and Chen (1988), one way of 

detecting outliers is to cross check the maximum value of the 

standardized statistics of the outlier effects whose estimates 

are as follows: 

ŷ`a 	= 	 Gz_jk{_| ^ }∑ �W,`a ~O>WY� ��  �                       (19) 

ŷba 	= 	z_ �k{_|                                 (20) 

ŷcd 	= 	 Gz_rs{_| ^ }∑ �W,cd ~O>WY� ��  �                (21) 

ŷ>e 	= 	 Gz_gx{_| ^ }∑ �W,>e ~O>WY� ��  �                (22) 

where ���  = 1.483 × {|M̂� 	− 	 M̃|} , M̃  is the median of the 
estimated residuals Chen and Liu (1993). 

Data Analysis and Discussion 

The realization considered in this paper is the credit to 

private sector (CPS) denoted as ��. The period of realization 

spans from January, 1981 to December, 2014. The plot in 

Figure 1 indicates that the series is not stationary. 
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Figure 1. Plot of ��. 
To achieve stationarity, we take the first difference of �� as shown in Figure 2. 

 

Figure 2. Plot of ��. 
ARIMA Modeling 

Without taking the presence of outliers into consideration, 

we tentatively fit ARIMA(1, 1, 0), ARIMA(0, 1, 1) and 

ARIMA(1, 1, 1) to��. From the Akaike information criteria 

(AIC) in Tables 1, 2 and 3, the ARIMA(1, 1, 1) model 

appears to have the smallest AIC. Also, the acf and pacf of 

the residuals of ARIMA(1, 1, 1) in Figure 3 are all within the 

significance bound, i,e, the coefficients of acf and pacf are all 

zeros, which in turn imply that the model is adequate. 
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Table 1. Output of ARIMA (1, 1, 0). 

Call: 

arima(x = CPS, order = c(1, 1, 0)) 

Coefficients: 

ar1 

-0.7674 

s.e. 0.0903 

sigma^2 estimated as 76686: log likelihood = -310.32, aic = 624.64 

Table 2. Output of ARIMA (0, 1, 1). 

Call: 

arima(x = CPS, order = c(0, 1, 1)) 

Coefficients: 

ma1 

-0.7873 

s.e. 0.0967 

sigma^2 estimated as 97811: log likelihood = -315.71, aic = 635.43 

Table 3. Output of ARIMA (1, 1, 1). 

Call: 

arima(x = CPS, order = c(1, 1, 1)) 

Coefficients: 

ar1 ma1 

-0.9145 0.4253 

s.e. 0.0997 0.3141 

sigma^2 estimated as 73886: log likelihood = -309.57, aic = 625.14 

 

Figure 3. ACF and PACF of residuals of ARIMA(1, 1, 1). 

Hence, the estimated ARIMA(1, 1, 1) model is presented 

in equation (23) 

�1 + 0.9145B�∇�� 	= 	0.4253F�                    (23) 

s.e:(0.0997)             (0.3141) 

[Excerpts from Table 3] 

Detecting and Adjusting the Effects of Outliers 

To examine and detect the presence of outliers in ��, we 

iterate through the residuals obtained from the model in 

equation (23). The following outliers were found to be 

present in ��; IO, AO and TC. The three (3) outliers detected 

and their estimated effects are presented in Table 4. 
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Table 4. Outlier Detection. 

Type Time Estimatet - value 

1 IO 24 -1029.5179 -5.590462 

2 AO 33 554.9145 4.103435 

4 TC 22 624.0677 4.039611 

Joint Estimation of Model Parameters and Outlier Effects 

After adjusting for the outlier effects in the series with the 

parameters of ARIMA(1,1,1) model are jointly estimated, 

ARIMA(2,0,1) model with AO (t = 33) and TC (t = 22) is 

found to fit well to the series. The effect of the IO is not 

significant and is being removed from the set of detected 

outliers. Therefore, the adjusted outlier model is presented in 

equation (24) below: 

�1	 + 0.3556�	 − 0.5459� ���∗ 
s.e: (0.1742)           (0.1383) 

= 0.5029F� 	+ 555.6608*��33� 	+ 699.4872�1 − 0.7��O�*��22�                                    (24) 

(0.5029)             (171.9376)           (177.4872) 

where ��∗ = ��� 	− 171.0734� 
[Excerpts from Table 5] 

Table 5. Output of Joint Estimation of Model Parameters and Outlier Effects. 

Series: CPS 

ARIMA(2,0,1) with non-zero mean 

Coefficients: 

 ar1 ar2 ma1 Intercept AO33 TC22 

 -0.3556 0.5459 0.5029 171.0734 555.6608 699.4872 

s.e. 0.1742 0.1383 0.1992 54.5550 171.9376 177.4413 

sigma^2 estimated as 44525: log likelihood=-302.06 

AIC=618.12 AICc=621.15 BIC=630.77     

$outliers       

type time Estimate t-value     

8 AO 33 555.6608 3.231759     

10 TC 22 699.4872 3.942077     

 
From the results, we found that ARIMA(1, 1, 1) model fit 

well to the original data when the outliers were not 

considered. Iterating through the residuals of ARIMA(1, 1, 1) 

model, IO (t = 24), AO (33) and TC (22) outliers were 

identified. Also, adjusting the series for outliers and carrying 

out the joint estimation of ARIMA(1, 1, 1) model parameters 

and outlier effects, it is found that ARIMA(2, 0, 1) model fit 

well to the adjusted series with effects of AO (33) and TC 

(22). Therefore, it is clear that the presence of outliers in the 

series affects the model specification. When the outliers were 

not considered, ARIMA(1, 1, 1) model was fitted to the 

series but when the series was adjusted for outliers, 

ARIMA(2, 0, 1) model was fitted to the series. Moreover, 

comparing the information criteria, we found that the AIC 

pertaining to ARIMA(2, 0, 1) model is 618.12 which is less 

than 625.14, being the AIC pertaining to ARIMA(1, 1, 1) 

model. This shows that the adjusted outlier model, 

ARIMA(2, 0, 1) model, fit the series well. Therefore, the fact 

that ARIMA(2, 0, 1) model is a better model than ARIMA(1, 

1, 1) indicates that ARIMA(1, 1, 1) model is mispecified due 

to the presence of outliers. The implication is that the 

presence of outliers in discrete- time stochastic series could 

result in model misspecification, wrong order of integration, 

substantial biases in parameter estimation, misleading 

autocorrelation and partial autocorrelation functions, etc. 

Furthermore, the results of this work are in tandem with 

the evidence that the presence of outliers in times series leads 

to model misspecification, misleading autocorrelation 

function, partial autocorrelation function and biases in model 

parameters estimation (Tsay, 2010; Kaya, 2010; Box, Jenkins 

and Reinsel, 2008). 

3. Conclusion 

The importance of detecting and estimating the effects of 

outliers can never be overemphasized. According to Battaglia 

and Orfei (2002), outliers may have a significant impact on 

the results of standard methodology for time series. Also, the 

presence of outliers can result in model misspecification, 

misleading autocorrelation and partial autocorrelation 

functions, and biases in parameter estimation. Meanwhile, 

when two or more outliers occur in patches, there is a 

resultant masking effect that leads to spurious outlier 

detection. However, Chen and Liu (1993) proposed an 

iterative procedure method to cushion this masking effect. 

In relation to the data considered in this paper, we found 

that ARIMA(1, 1, 1) model fit well to the original series 

when outliers were not considered. Using the iterative 

procedure method, IO (t = 24), AO (t = 33) and TC (t = 22) 

outliers were detected and the series adjusted. However, 

ARIMA (2, 0, 1) model was found to fit well to the outlier 

adjusted series in joint estimation with AO (t = 33) and TC (t 

= 22) outliers. Therefore, we can deduce that the presence of 

outliers in the employed series results model 
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misspecification, wrong order of integration, misleading 

autocorrelation and partial autocorrelation functions, and 

biases in parameter estimation. Hence, there is need to detect 

outliers before modeling and analyzing discrete-time 

stochastic series. Moreover, this study could be extended to 

cover the effects of outliers on time series forecasting. 
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