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Abstract: Joint analysis of longitudinal and survival data has received increasing attention in the recent years, especially for 

AIDS. This study explores application of Bayesian joint modeling of HIV/AIDS data obtained from Bale Robe General 

Hospital, Ethiopia. The objective is to develop separate and joint statistical models in the Bayesian framework for longitudinal 

measurements and time to death event data of HIV/AIDS patients. A linear mixed effects model (LMEM), assuming 

homogenous and heterogeneous CD4 variances, is used for modeling the CD4 counts and a Weibull survival model is used for 

describing the time to death event. Then, both processes are linked using unobserved random effects through the use of a 

shared parameter model. The analysis of both the separate and the joint models reveal that the assumption of heterogeneous 

(patient-specific) CD4 variances brings improvement in the model fit. The Bayesian joint model is found to best fit to the data, 

and provided more precise estimates of parameters. The shared frailty is significant showing the association between the linear 

mixed effect (LME) and survival models. 
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1. Introduction 

The term joint modeling refers to the statistical analysis of 

the longitudinal and survival data while taking account of 

any association between the repeated measurement and time 

to event outcomes. The development of joint model has 

greatly expanded the scope of models to accommodate many 

data complexities, yet relatively little attention has been paid 

to these approaches properties and performance. 

The approach that this study used to build a joint model is 

simultaneously modeling the longitudinal CD4 

measurements and the time to death by linking them using 

unobserved random effects through the use of a shared 

parameter model. In the proposed model, to characterize the 

longitudinal CD4 measurements a linear mixed effects model 

(LMEM) that incorporates patient specific CD4 variability is 

used for the longitudinal sub-model while a Weibull model is 

used to describe the time-to-death data of survival sub-

model. Then, the two sub-models are linked through shared 

parameters or shared variables [1] with different forms, since 

these random effects characterize the subject specific 

longitudinal process. Alternatively, the two models are 

governed by the same underlying latent process (shared 

variables). 

In this study, we employ the joint modeling approach 

developed by [2]. We applied the Bayesian joint and separate 

modeling of the patterns of CD4 changes and time to death 

event to mainly characterize the relationship between the two 

data. The central research questions are: What are the factors 

for determining the longitudinal evolution of CD4 cell count 

of HIV/AIDS patient under ART follow up? What are the 

risk factors for the death of HIV/AIDS patient under ART? 

How strong is the association between the disease 

progression and the time to death of the HIV/AIDS patients? 
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The objective of the study was to jointly analyze and build 

joint model for CD4 progression and time to death of 

HIV/AIDS patients simultaneously linked with unobserved 

random effects through the use of shared parameters based on 

data from Hospital records. The results of this study will be 

very useful in the development of an effective HIV care and 

antiretroviral therapy (ART) patient monitoring system. 

2. Data and Methodology 

Data was obtained solely by reviewing medical records of 

400 representative sample of HIV patients diagnosed at the 

Bale Robe General Hospital, Ethiopia between January, 2008 

and March, 2015. The target population of our study was all 

adult (age ≥ 18 years) HIV/AIDS patients who had at least 

three CD4 measurement after the first report of HIV 

diagnosis regardless of clinical stage were eligible for the 

study. All patients who were below 18 years and those 

patients who started ART before January 2008 or after 

March, 2015 were not included in the study. So our study 

population consists 1214 patients who fulfilled the inclusion 

criteria. The ethical clearance was obtained from the 

Hospital. 

Response Variables 

Two outcome variables were considered in this study. The 

first response variable is longitudinal CD4 count per mm
3
 of 

blood. It is measured repeatedly for each HIV/AIDS patient 

under ART. The other response variable is the survival 

outcome variable. It is time to death event of the patient 

under ART follow up. 

Explanatory variables 

Predictors considered for the longitudinal response were 

observation time, sex of patient, Age, Weight and number of 

opportunistic infections (OIs); and those for survival 

response were Age, Weight, Functional status, Tobacco and 

condom use. 

Data collected from epidemiological studies such as 

clinical trials or observational cohort studies often include 

information for an event time of interest (e.g. survival times) 

and repeated measurements of one or more longitudinal 

processes that might be associated with patient prognosis. Let 

the sample in a longitudinal study be records of � subjects, 

and let the ��� subject have �� measurements over time. For 

� = 1,2, . . . , � and	
 = 1,2, . . . , ��, let the notation ���  denote 

the longitudinal measurement of the ��� subject at time	���. 

Let ��  denote the observed event time for the ��� subject, 

which is taken as the minimum of the true event time ��∗ and 

the censoring time	��, i.e. �� = ���(��∗, ��). We also define 

δ� = �(��∗ ≤ ��)  which takes value 0 for a right-censored 

event time and value 1 for an actual event time. Therefore, 

the observed time to event data consist of the 

pairs	(�� , δ�), � = 1,2, . . . , �. 

The baseline covariates predictive of the longitudinal and 

survival processes are denoted by ��  and ��  respectively, 

which may or may not be the same and let �� be a vector of 

person-specific latent variables. Separate models for the 

longitudinal and survival data, and the joint model are 

subsequently defined here below. The Bayesian joint model 

is then derived. 

2.1. Longitudinal Model 

Longitudinal studies typically involve following one or 

more cohorts of subjects or experimental units repeatedly 

over two or more time points. One of the major objectives of 

statistical analysis is to address variations in the data. For 

longitudinal data, there are two sources of variations: within-

subject variation; the variation in the measurements within 

each subject, and between-subject variation; the variation in 

the data between different subjects [3]. Modeling within-

subject variation allows studying changes over time, while 

modeling between-subject variation allows understanding 

differences between subjects [4]. 

Linear Mixed Effects Model 

Three classes of models are commonly used for analysis of 

longitudinal data; mixed effects model (or random effects 

model), marginal models (generalized estimating equations 

(GEE) models) and transition models [3]. Linear Mixed 

effects models (LMEM) are widely used in which random 

effects are introduced to incorporate the between subjects 

variation and within subject correlation in the data. In 

marginal models, the mean structure and the correlation 

(covariance) structure are modeled separately without 

distribution assumptions for the data while in the transitional 

models, the within subject correlation is modeled via Markov 

structures [5]. In linear mixed effects model, the sequence of 

the longitudinal measurements ���  at times ���  for � =
1,2, . . . , � and 
 = 1, . . . , �� is modeled as: 

��� = ��(���) + ���(���) +  ��                   (1) 

Where ��(�) = ���! (�)"�  is the mean response, ���(�) =
#��! (�)��  incorporates subject-specific random effects and 

 ��~%(0, '(�)  is a sequence of mutually independent 

measurement errors. ���(�)  can be viewed as the true 

individual level CD4 trajectories after they have been 

adjusted for the overall mean trajectory and other fixed 

effects. The vectors ���! (�)  and "�  represent possibly time 

varying explanatory variables and their corresponding 

regression coefficients, respectively. �� are vectors of random 

effects corresponding to the explanatory variables #��! (�) 
(which may be a subset of ���! (�) and are typically modeled 

as identically and independently distributed	%(0, )). 
2.2. Survival Model 

Survival Analysis typically focuses on time to event data. 

In the most general sense, it consists of techniques for 

positive valued random variables such as time to death, time 

to on set (or relapse) of a disease, length of stay in a hospital, 

duration of a strike etc. In order to define a survival time 

random variable, we need an unambiguous time origin or a 

time scale (e.g. real time (days, weeks, months, years) and 

definition of the event of interest. Survival time random 

variables are always non-negative, i.e. if we denote the 

survival time by, � then � ≥ 0 can either be discrete (taking 

a finite set of values) or continuous (defined on (0,∞)). We 



 American Journal of Theoretical and Applied Statistics 2017; 6(4): 182-190 184 

 

need statistical methods that use data on all subjects, whether 

their survival times are observed or we only observe time 

until censoring. There are several equivalent ways to 

characterize the probability distribution of a survival random 

variable. Non-parametric, semi parametric and parametric 

models are available to model survival data. Parametric 

models are used in this study [2]. 

Weibull Distribution 

Parametric models are models requiring the specification 

of a probability distribution for the survival times, i.e., 

parametric models assume that the survival data follow some 

probability distribution. The most commonly used parametric 

model is the Weibull model. In a Weibull model, the survival 

time for the ���  subject is assumed to follow a Weibull 

distribution: 

	��~�,�-.//(0, ��(�)), /12(��(�)) = ���! (�)"� and	0 > 0. 

The vectors ���! (�)  and "�  represent (possibly time-

dependent) explanatory variables and their corresponding 

regression coefficients. They may or may not have elements 

in common with ���! (�) and "� in the longitudinal model [2]. 

The event intensity (or hazard) at time � is given as 

4�(�) = 0�56���(�) = 0�56�,789���! (�)"�:          (2) 

which is monotone in �  (decreasing if 0 < 1, increasing if 

0 > 1) and reduces to the exponential (constant in �) hazard 

if 0 = 1. 

2.3. The Joint Model Structure 

The structure of the joint modeling requires a model for 

the longitudinal response and a model for the event time data. 

These two responses should be modeled simultaneously, 

therefore, a structure for considering the association between 

them is required. This study has used the joint modeling 

approach developed by [2] who investigated the approach 

proposed by [6] from a Bayesian perspective and relying on 

Markov Chain Monte Carlo (MCMC) algorithms. 

The association between the longitudinal outcomes and 

event times can arise in two ways. One way is through 

common explanatory variables and the other is through 

stochastic dependence between(��� ,���) . [6] proposed to 

jointly model the two processes via a latent zero-mean 

bivariate Gaussian process on 	(��� , ���) , which is 

independent across different subjects. The joint model 

consists of two linked sub models, which they refer to as the 

measurement model for the longitudinal process and the 

intensity model for the survival process. We can apply this 

joint modeling strategy to connect the classical models for 

longitudinal data and survival data with each other. When 

association between the two processes exists, we should 

obtain less biased and more efficient inferences by using this 

joint model. 

2.3.1. The Longitudinal Sub Model Specification 

The main goal, in this study, is to jointly model the 

longitudinal CD4 measurements and time to death, with a 

special attention to the effect of CD4 variability on the risk of 

death. In most joint models studied in the past decade, 

longitudinal data are delineated by a conventional linear 

mixed model assuming homogeneous within subject 

variance. However, such a homogeneity assumption 

automatically precludes the assessment of the research 

question "‘whether individuals with different levels of CD4 

variability have different susceptibility to die". In the 

proposed model, the CD4 trajectory is described by the 

LMEM that incorporates subject-specific variance [7]. Thus, 

the longitudinal sub model that incorporates subject specific 

variances is given as: 

��� = ��(���) + ���(���) +  ��                  (3) 

Where ε��~%(0, =�) , /12(=�)~%(μ? , σ?�) . This model 

incorporates subject-specific variances, i.e., the random 

errors, ε��  may not have homogeneous variance. Thus, here 

=�  represents the (true) within-subject variability, which 

follows a lognormal distribution with mean �?  and 

variance	'?�. 

2.3.2. The Survival Sub Model Specification 

After specifying the longitudinal sub model, the next aim 

is to associate the true and unobserved value of the 

longitudinal outcome at time � with the survival outcome via 

a latent zero mean (multivariate) Gaussian process on the 

random effects 	�� , which is independent across different 

subjects [6]. 

As shown before, both of the separate and joint models 

assume the longitudinal sub model has the form similar to the 

usual LMEM, while the survival model in the joint model 

includes a latent association function 	���(�) . Thus, the 

survival sub-model is specified in the form as: 

4�(�) = 0�56���(�) = 0�56�,789���! (�)"� + ���!(�):    (4) 

The form of the association function 	���(�) , is similar 

to	���(�), including subject specific covariate effects and an 

intercept (often called a frailty). When 	���(�) = 0 , the 

association induced is only via shared baseline covariates. 

Specifically, the joint model links the LMEM that 

incorporates subject specific variance and model by taking: 

���(�) = ��� + ��� ∗ �,                       (5) 

And 

���(�) = A���� + A���� + AB(��� + ���(�)) + �B�     (6) 

The longitudinal model (5) is of the usual [8] form, with 

each patient receiving random intercept and linear slope 

terms. The parameters, 	A� , A�  and AB  in the survival model 

(6) measure the association between the two sub models 

induced by the random intercepts and linear slope 

respectively. As mentioned before, the bi-variate latent 

variables �! = (��� , ���)  have a mean zero bivariate 

Gaussian distribution %(0, ))  and the subject specific 

variances =�  have a log-normal distribution log=�~(μ? , '?�) 
while the �B�  are independent frailty terms, modeled as iid 

%(0, 'B�) , independent of ( ��� , ���) . Regarding the 

association function, ���(�) , a variety of several latent 



185 Ahmed Hasan Dessiso and Ayele Taye Goshu:  Bayesian Joint Modelling of Longitudinal and Survival Data of  

HIV/AIDS Patients: A Case Study at Bale Robe General Hospital, Ethiopia 

processes are considered. Finally, the precise nature of the 

two sub models i.e., the exact form of ���(�) and ���(�) and 

their latent association are selected using Deviance 

Information Criteria (DIC). 

2.4. Bayesian Joint Model Parameter Estimation 

A main challenge in inference for joint models is the 

computational complexity, when the dimension of the 

random effects is not small. In our joint modeling, the 

longitudinal measurement and time to event process are 

shared some components of their multivariate Gaussian 

process. A simultaneous method of inference based on the 

joint likelihood of longitudinal measurements and times to 

event may be favored, but the computational problems can be 

extensive. A Bayesian approach can reduce the complexity of 

these problems. We assume that, conditional on components 

of a multivariate latent Gaussian process, each characteristic 

and event time are independent. In the proposed joint model, 

a Bayesian approach using Markov Chain Monte Carlo 

(MCMC) is implemented. One of the most important 

advantages of using a Bayesian approach to joint modeling 

may be the alleviation of the computational burdens. 

The standard maximum likelihood method involves 

integrating out latent variables from the log likelihood 

function, which is difficult when dealing with high-

dimensional variables [9]. As a result, the proposed joint 

models are estimated under a Bayesian framework using 

Markov chain Monte Carlo (MCMC) methods with Gibbs 

sampling using Win BUGS software. Various authors, 

including [10], [11], [12], [13], [14] and [15] have also 

studied Bayesian joint models. Joint models may contain 

many unknown parameters, which may lead to potential 

problems in inference. 

The other important advantage of Bayesian methods is that 

they can incorporate additional information from similar 

studies or from experts guess to the model in the forms of 

prior distributions. Thus, Bayesian methods can be very 

useful for inference of joint models. For Bayesian joint 

models, the model parameters are assumed to follow some 

prior distributions, and inference is then based on the 

posterior distribution given the observed data. Making use of 

the usual joint modeling assumption that the subject specific 

latent variable induce all of the association between 

longitudinal process F�  and survival outcome 	�� , so that F� 
and ��  are conditionally independent given random effects	�. 

2.4.1. Joint Model Likelihood 

Given the random effects, the longitudinal process is 

assumed to be independent of the event times. So that the full 

joint distribution of the longitudinal continuous response and 

time to event can be specified in the form of: 

G(F� , �, H|J�, J�) = K 	G(F�|J�, ��)G(�, H|F� , J�, ��)G(��)L�� 

With the corresponding likelihood function being 

M(F, �, H|J�, J�) = N	
O

�P�
K 	G(F|J�, ��)G(�, H|F, J�, ��)QR

× (1 − U(�, H|F, J�, ��))�6QRG(��)L�� 

where �� = 9��� , ���:  represents the shared underlying 

process, J� = 9"�, ), �V , 'V�: are the population parameters as 

given in the LMEM, J� = 9"�, A, 'B�:  are the population 

parameters as given in survival models, G(. ) and U(. ) denote 

density and distribution functions, respectively. 

2.4.2. Prior and Posterior Distributions 

In a Bayesian approach, model parameters are treated as 

random variables and assigns probability to each, which is 

the major difference to the likelihood approach. The assumed 

distributions for the parameters are called prior distributions. 

Bayesian estimation and inference is based on the posterior 

distribution which is the conditional distribution of 

unobserved quantities given the observed data. The joint 

posterior distribution for all unknown parameters θ  and 

random effects � is then given by 

G(θ, �|F, �) = X(Y,!|Z,[)\(Z)\([)
] 	X(Y,!|Z,[)\(Z)\([)^(Z)^([)            (7) 

where G(θ, �|F, �)  is the posterior probability distribution, 

G(F, �|θ, �) is the likelihood function and π(θ), π(�) is the 

prior probability distribution 

In the Bayesian framework, inference follows from the full 

posterior distribution. Bayesian joint model inference is then 

based on samples drawn from the posterior distribution using 

an MCMC algorithm such as the Gibbs sampler and 

Metropolis Hastings. For example, the posterior means and 

variances of the parameters can be estimated based on these 

samples, and Bayesian inference can then be based on these 

estimated posterior means and variances. This sampling can 

be done using Win BUGS software. We selected very vague 

prior distributions in our Win BUGS analysis. That is, we 

chose priors and hyper parameter values in such a way that, 

the priors will have minimal impact relative to the data. 

2.5. Diagnostics of Chain Convergence and Model 

Selection 

For assessing convergence, we have used multiple chains. 

If parallel chains with varying starting values give the same 

solution that will increase our confidence for convergence. A 

simple (informal) method of assessing chain convergence is 

to look at the history of iterations using a time series plot. If 

the chains show a reasonable degree of randomness between 

iterations, it signifies that the Markov chain has found an 

area of high likelihood and is integrating over the target 

density [16] and hence indicating that it has converged. 

Also, for model selection, we evaluate model fits by 

inspecting DIC [17], a hierarchical modeling generalization 

of the AIC (Akaike Information Criterion). The DIC 

approach mimics AIC by setting 	)�� = )̀ + 8) . The first 

term is the posterior expectation (mean) of the deviance 

function and measures the goodness-of-fit. The second term 
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8)  is the effective number of parameters and measures 

model complexity. Since a smaller )̀ indicates a better fit and 

a smaller 8) indicates a parsimonious model, small values of 

the sum (DIC) indicate preferred models. 

3. Results 

The objective of this study was to model the longitudinal 

measurements of CD4 counts per ��B  of blood and the 

associated time to death using the Bayesian joint modelling 

approach. The average number of baseline CD4 count is 

177.57  per ��B  of blood with standard deviation of 

104.808. The results of the analysis showed that from 400 

patients included in the study, 354(88.5%)  are censored 

while 46(11.5%) are dead. 

3.1. Results of Linear Mixed Effects Models 

Because of right skewness of the response variable, we 

have used the square root transformation for CD4 counts in 

our analysis. Taking advantage of the fact that the 

conventional LMEM (assumes homogeneous within-subject 

variances) described by [8]; and the LMEM that incorporates 

subject-specific (heterogeneous) variances, produce almost 

identical estimates for fixed effects [18], initially, the 

repeated CD4 measurements are analyzed using conventional 

LMEM (1). The results show that all the covariates included 

in the model, Observation time, Baseline Age, Baseline 

Weight and baseline number of opportunistic infections are 

statistically significant at 10% level of significance. This is 

based on whether or not the 90% posterior credible intervals 

for each estimate includes zeros. 

Let ��� denote the square root of 
�� CD4 count of the ��� 

patient at time 	��� , (� = 1,2, . . . ,400)  and 	(
 = 1,2, . . . , �� ≤11). Hence, the linear random effects model for square root 

of CD4 counts is specified as: 

��� = "�� + "����� + "�B���� + "�hi,7� + "�jk2,� +
	"�l�,�2ℎ�� + "�no�p� +���(���) +  ��          (8) 

Where���(���) = ��� + ���(�) . Here, ���(���)  includes the 

random effects for intercept and linear time slopes over time. 

Where, �� = (��� , ���)!~%�(0, )). This specification allows 

different subjects to have different baseline CD4 counts and 

different time trends for CD4 counts during treatment period. 

In order to examine whether the assumption of 

heterogeneous within-subject variance for the CD4 counts is 

supported, longitudinal model is fitted using Win BUGS. 

Table 1 below presents the posterior means and 90% credible 

intervals for the population parameters of the two models; for 

the conventional LMEM and for the model incorporating 

patient-specific variances. Here the results of the two models 

are nearly the same. In both models both the linear and 

quadratic time effects, Sex, baseline Age, Baseline Weight 

and baseline number of opportunistic infections are 

statistically significant at 0.1 level of significance. 

Table 1. Posterior Means and 90% Credible Intervals for the Population Parameters of the Convectional LMEM and for Model that incorporates Patient-

Specific Variances. 

Parameters 
Without Patient-Specific Variances With Patient-Specific Variances 

Posterior Mean rs% CI Posterior Mean rs% CI 

Fixed Effects - - - - 

Intercept ("t11) 13.92 (13.58, 14.26) 14.0 (13.66, 14.33) 

time ("t12) 3.125 (2.963, 3.288) 2.94 (2.787, 3.093) 

time2 ("t13) -0.2954 (-0.3241, -0.2662) -0.2617 (-0.2888, -0.2345) 

Sex ("t14) -0.9978 (-1.529, -0.4643) -1.047 (-1.579, -0.5097) 

Age ("t15) -0.5402 (-0.7912, -0.2884) -0.5414 (-0.7841, -0.2965) 

Weight ("t16) 0.7043 (0.4532, 0.9539) 0.7162 (0.4622, 0.9738) 

Ois ("t17) -0.6417 (-0.8841, -0.4014) -0.6802 (-0.9226, -0.4383) 

'u2
ε 9.8814 (9.3985, 10.4069) - - 

Random Effects     

var (�v1) 9.6993 (8.5543, 11.1074) 10.0402 (8.9126, 11.4181) 

var (�v2) 0.8190 (0.6689, 1.0241) 0.7037 (0.5750, 0.8779) 

�̂ν - - 2.039 (1.959, 2.119) 

'u2
ν - - 0.6549 (0.5452, 0.800) 

DIC 10322.600  9939.580  

 

The estimated average regression coefficients of the linear 

and quadratic time effects are 3.125 and -0.2954 for the usual 

mixed effects model and, 2.94 and -0.2617 for the LMEM 

incorporating subject-specific variances, both of which are 

significantly different from zero. 

In this table, the estimated subject-specific variance is 

σx?� = 0.6549  with 90% credible interval (0.5452, 0.800). 

Hence, it supports the assumption of heterogeneous variance 

for the repeated CD4 measurements. Also, the reduction in 

the DIC for the model incorporating subject-specific 

variances is an evident that subject-specific CD4 variances 

must be considered in the analysis. Hence, we use the LMEM 

that incorporate subject-specific variances for our joint model 

estimation. The estimated average regression coefficients of 

linear Time, baseline Age, baseline Weight and baseline Ois 

are 2.94, -0.5414, 0.7162 and -0.6802 respectively, which are 

significantly different from zero. These estimates shows that, 

on average the longitudinal CD4 measurement significantly 

increases with an increase in Time and Weight, but decrease 

with an increase of Age and Ois. 

3.2. Results of Weibull Model 

The survival data is analyzed with both Weibull and 

Exponential models using Win BUGS in which results are 
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presented in Table 2. Because none of the covariates is time 

varying, the regression equation for the log-relative hazard in 

the absence of random effects is: 

log(μ�) = β�� + β��k2,� + β�B�,�2ℎ�� + β�hU.�z�+ β�j�1-{z� + β�l�1�L�  

This is the parameterizations used in Win BUGS. From 

Table 2 below, it is easy to observe that the parameter 

estimates of both the Weibull and the Exponential models 

differ significantly. The estimated Weibull shape parameter 0u 

is 2.98 with 90% CI (2.833, 3.133) which is significantly 

greater than one indicating that death rates increase over 

time. 

Table 2. Posterior Means and 90% Credible Intervals for Population Parameters of the Survival Model using both Weibull and Exponential Distributions. 

Parameters 
Weibull Model Exponential Model 

Posterior Mean rs% CI Posterior Mean rs% CI 

Intercept ("t21) -11.44 (-12.09, -10.81) -3.66 (-3.825, -3.496) 

Age ("t22) 0.107 (0.0387, 0.1746) 0.0428 (-0.0232, 0.1088) 

Weight ("t23) -0.0904 (-0.157, -0.0222) -0.03812 (-0.1045, 0.0282) 

Functional Status ("t24) -0.2045 (-0.2908, -0.1169) -0.0767 (-0.1618, 0.0079) 

Tobacco addiction ("t25) 0.2573 (0.1835, 0.3314) 0.1125 (0.0393, 0.1844) 

Condom use ("t26) -0.7383 (-0.8698, -0.6048) -0.3344 (-0.4664, -0.2048) 

0u  2.98 (2.833, 3.133) 1.000 - 

DIC 3526.500 4003.210 

 

Finally, the smaller DIC for the Weibull model and the 

significance of the shape parameter assures that it is better to 

use the Weibull model than the Exponential model. Thus, 

subsequent analysis of the survival data are based on a 

Weibull model. In this model, among the five covariates 

included in the model, all of them, Baseline Age, Baseline 

Weight, Functional status, Tobacco addiction and Condom 

use are statistically significant at 0.1 significance level. 

The estimated average regression coefficients of Age, 

Weight, Functional status, Tobacco addiction and condom 

use effects are 0.107, -0.0904, -0.2045, 0.2573 and -0.7383, 

respectively. These estimates show that, an increase in age of 

the patients increases the hazard of death and an increase in 

weight of the patients reduces the hazard of death. Since the 

parameter of the covariate condom use have a negative sign 

implies the hazard decrease (survival improves). Which 

indicate condom use has a negative influence for the hazard 

of patients but positive influence on survival of patients. 

Those patients that use condom have fewer hazards but, 

better survival than patients that do not use condom. 

3.3. Joint Model Selection 

We have used LMEM that incorporate subject specific 

variance under longitudinal sub-model and Parametric Weibul 

model under survival sub-model, and then we explore several 

joint models with a variety of latent processes. In all cases, the 

results are based on three parallel MCMC sampling chains of 

75,000 iterations each, following a 25,000 iteration "burn-in"’ 

period. As mentioned above, we have chosen the precise 

nature of the two sub models; the longitudinal to be LMEM 

with subject-specific variances and the survival model to be 

Weibull. Hence, their association is selected via the	)��. By 

default, Win BUGS provides the components of DIC for the 

two sub-models (i.e., the terms in the log-likelihood arising 

from longitudinal and survival model components) to evaluate 

their relative contributions to the total DIC score. Table 3 

below reports 	)̀, 8) and )�� score for 12 joint models with 

different random effects and different forms of the latent 

processes ���(�)  and 	���(�) , where the LMEM that 

incorporates patient-specific CD4 variability is used for the 

longitudinal sub-model and Weibull model used for survival 

sub-model. The simple joint models I and II with no random 

effects for longitudinal sub-model is fitted first, which have a 

large (poor) total DIC. In Model II, we add a frailty term �B 

in	��(�), but this does not seem to improve the total DIC at 

all. A similar relationship exists between Models V and VI. 

Inclusion of frailty term �B  leads to improved total DIC of 

model IV. Of the model considered this is the only instance 

where we found frailty to have non-negligible effect. As such, 

we do not consider including �B in subsequent models. Next, 

random intercepts are introduced in the longitudinal sub-

model. The incorporation of random intercepts in the 

longitudinal sub-model improves the total	)��. 

Models III to VI include random intercepts in 	���(�) , 

which results in a dramatic improvement for the longitudinal 

sub-model and the total )��  scores. Then, different latent 

associations through the random intercepts and random 

variances are introduced. Models VII to XII have both random 

intercepts and slopes in the longitudinal sub-model, which 

results in a substantial decrement in total	)��. Because Model 

VIII emerges with the smallest total DIC among all other 

models, we select it as our final model for the HIV/AID 

patients data obtained from Bale Robe general hospital. 

Table 3. Joint Model Selection for a variety of candidate Joint Models when the LMEM that incorporates Patient-Specific Variances is used for the 

longitudinal sub-model and a Weibull Model is used for the Survival sub-model. 

Model W1i(t) W2i(t)) |̀ pD DIC 

No Random Effects - - - -  
I 0 0 14745.700 205.766 14951.400 

II 0 U3 14740.600 210.037 14950.600 

Random Intercepts - - - -  
III U1 0 13245.600 507.191 13752.800 

IV U1 U3 13241.900 511.169 13753.100 
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Model W1i(t) W2i(t)) |̀ pD DIC 

V U1 A�U1 13243.200 507.796 13750.900 

VI U1 A�U1 + U3 13239.500 512.034 13751.500 

Random Intercepts and Slopes - - - -  

VII U1 + U2(t) 0 12827.100 639.225 13466.400 

VIII U1 + U2(t) A�U1 12821.800 640.544 13462.400 

IX U1 + U2(t) A�U2 12829.800 637.778 13467.600 

X U1 + U2(t) A(U1 + U2) 12824.300 640.487 13464.800 

XI U1 + U2(t) A�U1 + A�U2 12823.000 639.544 13462.600 

XII U1 + U2(t) A�U1 + A�U2 + AB(W1i(t)) 12824.700 638.857 13463.500 

 

In the absence of the latent association, there is nothing to 

be gain by the joint analysis, unless the longitudinal 

measurement and the intensity sub model have parameters in 

common. Since A� is significant in this model, the data set 

used for this paper support the use of joint model to relate a 

patient’s survival time to the characteristics driving the 

patient’s longitudinal data pattern. This is clinically 

reasonable, since high CD4 count represents better health 

status; patients with CD4 counts that are low or more rapid 

decline would be expected to have poorer survival. As it is 

evident from the output of the joint model VIII, the use of 

joint model is apparently justified for these data, as indicated 

by the significance of the A�  parameter (90% posterior 

credible interval (-0.0560, -0.0069). 

3.4. Comparison of Separate and Joint Models 

After selecting the final model, the results obtained under 

the separate (i.e., ignoring any latent association introduced 

by	��) and joint models are compared. In all of the cases, the 

models have smaller total DIC scores when the patient-

specific CD4 variability’s are incorporated than those 

models, which do not incorporate patient-specific CD4 

variability. Hence, both the separate and final joint models to 

be compared incorporate patient-specific CD4 variability. 

Both of these assume the longitudinal model has form (3), 

while the survival model now takes the form: 

log(��) = "�� + "��k2,� + "�B�,�2ℎ�� + "�hU.�z�+ "�j�1-{z� + "�l�1�L�
+ } 0, (p,8{~{�,),���(�), (
1���). 

The posterior estimates of the regression coefficients	"� , 

"�  and their 90% confidence intervals are summarized in 

Table 4. Here the results in both separate and joint analysis 

are approximately the same for longitudinal and survival 

data, which are similar to the finding by [14]. In the 

longitudinal sub-model all covariates; linear and quadratic 

time, sex, Age, weight and Opportunistic infection (Ois) are 

statistically significant at level 0.1 while Age, weight, 

Functional status, Tobacco addiction and condom use are 

significant at this level in the survival sub-model. 

The association between the longitudinal outcomes and the 

time-to-event outcome can be explained by parameter	A�. We 

observe weak (but significant) negative association between 

the subject-specific random intercept of the longitudinal CD4 

count and the hazard of death. In the study by [14], the 

posterior estimates of the association parameter in the joint 

analysis is insignificant, indicating that the CD4 counts is not 

associated with the hazard of death. 

Table 4. Comparison of Separate and Joint Models of the Longitudinal CD4 Measurements and Time-to-death of HIV/patients. 

Parameters 
Separate Model Joint Model 

Posterior Mean rs% CI Posterior Mean rs% CI 

Longitudinal sub-model     

Fixed Effects - - - - 

Intercept ("t11) 13.99 (13.65, 14.33) 13.99 (13.65, 14.34) 

time ("t12) 2.941 (2.789, 3.096) 2.936 (2.785, 3.09) 

Time2 ("t13) -0.2617 (-0.2891, -0.2346) -0.2605 (-0.2877, -0.2337) 

Sex ("t14) -1.037 (-1.558, -0.5094) -1.048 (-1.571, -0.52) 

Age ("t15) -0.5428 (-0.7875, -0.295) -0.5395 (-0.787, -0.2951) 

Weight ("t16) 0.7172 (0.4646, 0.9727) 0.7172 (0.4605, 0.9707) 

Ois ("t17) 0.6775 (-0.9233, -0.4347) -0.6625 (-0.9032, -0.419) 

Random Effects     

var (�v1) 10.0321 (8.9127, 11.4194) 10.005 (8.8731, 11.3843) 

var (�v2) 0.7077 (0.5817, 0.8811) 0.7087 (0.5807, 0.8842) 

�̂ν 2.039 (1.958, 2.118) 2.037 (1.956, 2.116) 

'u2
ν 0.6536 (0.5449, 0.7987) 0.6575 (0.5495, 0.8013) 

Survival sub-model     

Intercept ("t21) -11.44 (-12.07, -10.81) -11.48 (-12.12, -10.84) 

Age ("t22) 0.1057 (0.03752, 0.1744) 0.1095 (0.04019, 0.1778) 

Weight ("t23) -0.08998 (-0.1577, -0.02203) -0.08824 (-0.1576, -0.01988) 

Functional Status ("t24) -0.2054 (-0.2932, -0.1188) -0.2029 (-0.2891, -0.1154) 

Tobacco addiction ("t25) 0.2568 (0.1843, 0.3288) 0.2617 (0.1879, 0.3358) 

Condom use ("t26) -0.7376 (-0.8709, -0.6058) -0.7346 (-0.8677, -0.6003) 

0u  2.979 (2.832, 3.129) 2.988 (2.84, 3.141) 

Au1   -0.0314 (-0.0560, -0.0069) 

DIC 13466.400 13462.400  
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When evaluating the overall performance of both the 

separate and joint models, the joint model performs better in 

terms of model goodness of fit. The effective number of 

parameters of the separate and joint models are 639.225 and 

640.544, respectively, while the posterior means of the 

deviance functions are 12827.100 and 12821.800. As a result, 

the corresponding )��p for the separate and joint models are 

13466.400 and 13462.400. Therefore, the Joint model fits the 

data better than the separate models. 

In general, the Joint model is preferred as it has a smaller 

total )��  than the separate models. In the study by [14], 

when we evaluate the overall performance of both the 

separate and joint models in terms of model goodness of fit, 

the separate model performs better. 

The estimated average regression coefficients of linear 

Time, baseline Age, baseline Weight and baseline Ois are 

2.936, -0.5395, 0.7172 and -0.6625 respectively, which are 

significantly different from zero. These estimates shows that, 

on average the longitudinal CD4 measurement significantly 

increases with an increase in Time and Weight, but decrease 

with an increase of Age and Ois. 

The estimated average regression coefficients of Age, 

Weight, Functional status, Tobacco addiction and condom 

use effects are 0.1095, -0.0882, -0.2029, 0.2617 and -0.7346, 

respectively for the joint survival sub-model. These estimates 

shows that, an increase in age of the patients increases the 

hazard of death and an increase in weight of the patients 

reduces the hazard of death. Since the posterior estimates of 

the covariate condom use have a negative sign implies the 

hazard decrease (survival improves). Which indicate condom 

use have a negative influence for the hazard of patients but 

positive influence on survival of patients. Those patients that 

use condom have fewer hazards but, better survival than 

patients that do not use condom. 

The estimated average regression coefficient of random 

effects due to the square root of CD4 measure is -0.0314, 

which is negative. This estimate shows that, an increase in 

random effect decreases hazard of death. 

3.5. Assessing Gibbs Sampler Convergence 

In the Bayesian method, three parallel MCMC chains are 

run with different initial values for 75,000 iterations each. 

Then, we have discarded the first 25,000 iterations as pre-

convergence burn-in, thinning of 10 and retained 15,000 for 

the posterior inference. For checking convergence of the 

MCMC chains, we have used time series plot of the history 

of iterations of the final joint model and separate model, 

which shows a reasonable degree of randomness between 

iterations and the overlaps of the three chains indicates that 

the same solutions are obtained for each initial values. 

Therefore, the Gibbs sampler has converged to the target 

density. 

4. Conclusions 

In this study, we have used Bayesian approach to joint 

modeling of longitudinal CD4 measurements and survival 

time responses of HIV/AIDS patients under ART follow up at 

Bale Robe General Hospital. 

In the separate analysis of the longitudinal data, the square 

root transformation of CD4 measurements were used to meet 

the normality assumption. The data were analyzed using the 

LMEM incorporating patient specific variability. The patient 

specific variability was significant which supported the 

assumption of heterogeneous variances. The predictors: 

linear and quadratic observation time, sex, baseline age, 

weight and baseline number of opportunistic infection were 

found statistically significant at 0.1 level of significance. All 

the covariates included in the survival sub-model: Baseline 

Age, baseline weight, functional status, tobacco addiction 

and condom use were found to be significantly associated 

with time to death at 0.1 level of significance. 

On average, the longitudinal CD4 measurement significantly 

increases with an increase in Time and Weight, but decrease 

with an increase of Age and Ois. On the other hand, an increase 

in age of the patients increases the hazard of death and an 

increase in weight of the patients reduces the hazard of death. 

The parameter of the covariate condom use have a negative sign 

implying the hazard decrease (survival improves). This indicates 

condom use have a negative influence for the hazard of patients 

but positive influence on survival of patients. Those patients that 

use condom have fewer hazards but, better survival than patients 

that do not use condom. 

Separate analysis of the longitudinal CD4 measurements 

proves that incorporation of patient specific CD4 variances 

brings an improvement in the model fit. Specifically, the 

assumption of heterogeneous CD4 variances among patients 

resulted in a reduction in the posterior mean of the deviance 

function of the model. The results of both the separate and 

joint analysis were approximately the same. However, joint 

model has a smaller posterior mean of the deviance function, 

which indicates that it fits the data better than the separate 

models. After the separate analyses of each data, joint models 

with a variety of latent processes were investigated. First, a 

simple joint model with no random effects in both sub-

models was fitted and then several models with different 

random effects and various latent associations of the two sub-

models were investigated. The Bayesian joint model is found 

to best fit to the data, and provided more precise estimates of 

parameters. The shared frailty is significant showing the 

association between the LME and survival models. 
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