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Abstract: In this paper, two models of forecasting are used the Box-Jenkins procedure employing the SARIMA and the 

Holt-Winters triple exponential smoothing. Published Consumer Price Index Data from Kenya National Bureau of Statistics 

(KNBS) for the period November 2011 to October 2016 was used. This paper we equate the forecasted values of both the models 

and we choose the best model based on the least mean Absolute square error (MASE), mean absolute error (MAE) and mean 

absolute percentage error (MAPE). The three step model building for Box-Jenkins was first employed, followed by the 

Hold-Winters triple exponential smoothing. The study found the SARIMA Model was a better model than the Holt-winters triple 

exponential smoothing as per the obtained results using MASE, MAE and MAPE. 
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1. Introduction and Motivation 

Inflation is the rate at which the general level of prices for 

goods and services in an economy rises and consequently 

affecting the purchasing power of currency to fall. In Kenya 

Consumer Price Index is used in calculation of Inflation rates 

on yearly basis even though data is collected and computed 

monthly basis by the KNBS. KNBS, defines Consumer Price 

Index (CPI) is defined as a measure of the weighted aggregate 

change in retail prices paid by consumers for a given basket of 

goods and services. Price changes are measured by re-pricing 

the same basket of goods and services at regular intervals, and 

comparing aggregate costs with the costs of the same basket in 

a selected base period Price data for constructing the indices 

are collected by Kenya National Bureau of Statistics through a 

survey of retail prices for consumption of goods and services. 

The percentage change of the CPI over a one-year period is 

what is usually referred to as inflation. 

In 2016 the rate has been almost stable with the highest 

being in January at 7.78% and the lowest being in May at 

5.01%. November 2016, inflation was 6.68% which was the 

highest since February 2016 (7.08%). According to Otu, A. O, 

et al [1], The effect of inflation is highly considered as a 

crucial issue for a country. Inflation problems could cause 

living conditions in a country much harder to lot of people. 

People who are living on fixed income suffer most as when 

prices of commodities rise, since these people cannot buy as 

much as they could previously. Monetary policy consists of 

decisions and actions taken by the Central Bank of Kenya 

(CBK) to ensure that the supply of money in the economy is 

consistent with growth and price objectives set by the 

government. The objective of monetary policy is to maintain 

price stability in the economy. Price stability refers to 

maintenance of a low and stable inflation. 

Inflation is caused by many factors including micro 

economic factors and even natural factors like rain and 

drought. According to CBK [16], periods of drought or 

excessive rain, can cause the prices of food to increase, 

leading to an increase in the inflation rate. International factors 

like increases or decreases in oil prices can also lead to 

changes in inflation reflecting movements in energy and 

transport costs. Depreciation in the exchange rate against the 

major currencies can also cause inflation since Kenya is a net 

importer of goods. Inflation can also be caused by factors that 

influence the demand for goods and services, like the amount 

of money ordinary people have available to spend. 

The Central Bank’s monetary policy decisions are made to 

maintain a low and stable inflation rate over time, which is an 

indication of price stability. Inflation is a general increase in 

price levels over time. It is based on the prices of various 
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consumer goods and services, which are evaluated and 

statistically represented in the Consumer Price Index (CPI). 

The month-on-month (or year-on-year) inflation rate is 

determined by comparing the CPI for a particular month to the 

CPI of that same month in the previous year. 

Inflation is a key factor in helping people make sound 

decsions on financial matters. Deflation on the other hand can 

affect the economy by impacting on profitability of companies 

and hamper investor confidence. If there is a general decrease 

of prices over time due to a collapse in demand or increased 

supply of goods and services, then there is deflation. Hence 

there is need for the inflationary rates to be stable to enable a 

more stable economy through price stability that will drive 

economic growth. 

In Kenya inflation, is controlled through the Monetary 

policy whose objective is to spur economic growth. Monetary 

policy decisions are made by the Monetary Policy Committee 

(MPC). The MPC meets at least once every two months and 

reviews data and analysis from various sources including the 

Central Bank Departments enabling it to decide on any action 

to maintain or vary its stance. 

1.1. Justification of the Study 

Not only have many Forecasting methods been developed 

in the past but equally many methods of measuring forecasting 

accuracy have been developed. Hyndman R. J. and Koehler A. 

B. [2], for example studied and compared all measures 

accuracy and settled on mean Absolute Scaled Error (MASE) 

as the best measure of accuracy on forecasting. 

Time series researchers have also compared several models 

of forecasting with a view of determine which is a better 

model for forecasting depending on the nature of data and 

industry. For example, Virginia Gathingi [3] modelled 

inflation in Kenya using ARIMA and VAR. Equally Ingabire. 

J and Mung’atu. J. K.[4] compared ARIMA and VAR models 

in forecasting inflation rate in Rwanda. In the IMF Working 

paper series, Tim, C. and Dongkoo, C.[5] studied modelling 

and forecasting inflation in India using Bivariate VAR. They 

found out that broad money supply, exchange rate and import 

prices are relevant indicators that affect inflation especially in 

the manufacturing sector in India. 

Other studies that concentrated on inflation include Otu et 

al [1], who discussed the application of SARIMA Models in 

Modelling and Forecasting Nigeria’s Inflation Rates. while, 

Uwilingiyimana C., Mungatu. J and Harerimana J. [6] 

conducted a study on forecasting inflation in Kenya using two 

models, the ARIMA (1, 1, 12) and GARCH (1, 2) and a 

combination of the two model ARIMA(1, 1, 12)-GARCH(1, 

2). 

Despite having many researcher compare models and use 

different modelsin forecasting most researches have 

concentrated on other industries like Motor vehicle, 

telecommunication, medical and biological fields. Few 

researches that modelled inflation did not compare 

Box-Jenkins Seasonal ARIMA and Holt-Winters Triple 

Exponential Smoothing in Kenya. 

The objective of this research is to use a 60-month CPI data 

from Kenya National Bureau of Statistics to test which 

between SARIMA and Holt-Winters Triple Exponential 

Smoothing is best suited to forecast inflation in Kenya in its 

forecast of variables by use of three measures of Accuracy 

MASE, MAE and MAPE. 

The rest of the study is structured as follows: Section 2 

highlights the empirical literature whereas, Section 3 presents 

the methodology. Section 4 will report the results of the 

empirical analysis and section 5 will discuss and conclude the 

study. 

1.2. Research Objective 

This paper aims to predict the value of CPI in Kenya twelve 

months ahead and to establish the best forecasting method for 

forecasting inflation to help in proper economic and financial 

management. 

1.3. Scope of the Study 

This research uses secondary data based on facts and 

figures collected and by the Kenya National Bureau of 

Statistics (KNBS) on their website to forecast CPI data which 

is the measure of inflation in Kenya. The data from November 

2011 to October 2016 was used. 

2. Literature Review 

Otu et al [1], discussed the application of SARIMA Models 

in Modeling and Forecasting Nigeria’s Inflation Rates. They 

employed Box and Jenkins to build the Autoregressive 

Integrated Moving Average (ARIMA) monthly inflation rates 

for the period November 2003 to October 2013 with a total of 

120 data points. They found that the Seasonal ARIMA 

12
(1,1,1)(0,0,1)  was the best model to forecast Nigeria’s 

inflation rate. 

Gathingi, V. [3] modelled inflation in Kenya using ARIMA 

and VAR models using data from January 2005 to June 2013. 

When the author compared the two models, VAR was a better 

model than the ARIMA (1, 1, 0) due to the smaller errors for 

RMSE, MAE and MAPE. However, she concluded that 

despite ARIMA using univariate historical consumer pricing 

data to model inflation, ARIMA model (1, 1, 0) resulted as the 

best model showing strong evidence of substantial inflation 

inertia even with the exclusion of independent variables 

Ingabire. J and Mung’atu. J. K. [4] compared ARIMA and 

VAR models in forecasting inflation rate in Rwanda. After 

carrying out all the necessary diagnostic checks, the study 

indicated that ARIMA (3, 1, 4) model was better than VAR 

model in predicting inflation in Rwanda. However, thy further 

stated that ARIMA model may be efficient in forecasting short 

term periods. 

Uwilingiyimana, C et al. [6], conducted a study on 

forecasting inflation in Kenya using two models, the ARIMA (1, 

1, 12) and GARCH (1, 2) and a combination of the two model 

ARIMA (1, 1, 12)-GARCH (1, 2). The study revealed the 

combination between ARIMA (1, 1, 12)-GARCH (1, 2) model 

provided the best and improved results for estimating and 
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forecasting accuracy compared to the other forecasting models. 

Jere, S. and Siyanga, M. [7], studied forecasting of inflation 

rate in Zambia using Holts exponential smoothing. In this 

paper, the use of Exponential smoothing uses a linear 

combination of the previous values of the given data to model 

and predict future values. Even though both models gave 

almost similar results ARIMA model (12, 1, 0) was adequate 

enough than holts exponential smoothing. They further 

concluded that Holt’s exponential smoothing is as good as an 

ARIMA model due to the smaller deviations in the MAPE and 

RMSE but the Holt’s exponential smoothing model is less 

complicated since you do not require specialised software to 

implement it as is the case for ARIMA models. 

Hamidreza M. and Leila S.[8] examined a seasonal long 

memory process, denoted as the SARFIMA to study and 

predict the Iran’s oil supply. They fitted both SARIMA and 

SARFIMA models, and estimated the parameters using CSS 

method. The results of their analysis indicated that the best 

model was SARFIMA 
12

(0,1,1)(0, 0.199,0)−  which was used 

to predict the quantity of oil supply in Iran. 

Puthran et al [9], studied and forecasted Indian Motor Cycle 

industry by comparing SARIMA and Holt Winters models. 

They found out that even though both models were good, 

Holt-Winters method was a better model than SARIMA model 

due to the minimum MSE, MAE, and MAPE values when 

compared with SARIMA. 

Udom. P and Phumchusri. N [10], compared the application of 

three forecasting methods on the amount of the sales volume for 

plastic distributor in Thailand for the period between January 

2004 and December 2012. They compared, the ARIMA method, 

Moving average method and Holt’s and Winter exponential 

method. They employed five data sets of raw material from 

plastic distributor and their results showed that the ARIMA 

model was a better model when compare with other methods by 

using MAPE (Mean Absolute Percentage Error). 

Hyndman R. J. and Koehler A. B. [2], in their paper titled 

"Another look at measures of forecast accuracy" analysed and 

compared measures of accuracy of univariate time series 

forecasts. They analysed Scale-dependent measures, 

Measures based on percentage errors, Measures based on 

relative errors, Relative measures, and Scaled errors. They 

concluded and proposed that scaled errors become the 

standard measure for forecast accuracy The Mean Absolute 

Scaled Error (MASE). They however, stated that depending 

on the type of data mean absolute error (MAE) and Mean 

Absolute Percentage Error (MAPE) could be used. In this 

Paper we shall employ all the three methods for testing the 

model accuracy. They argued that MAE should be used if the 

data series are on the same scale on the other hand MAPE 

should be used when the data is all postive and much greater 

than zero since its very simple to use and interprete. 

3. Methodology 

3.1. The Box-Jenkins Procedure 

The Box-Jenkins procedure is concerned with fitting an 

ARIMA model to data. It has four parts: identification, 

estimation, verification or diagnostic checking and forecasting. 

3.1.1. Model Identification 

Normally we assume the data series is stationary. The initial 

model Identification is to estimate the sample autocorrelations 

function (ACF) and partial autocorrelations function (PACF) 

and compare the resulting ACF and PACF with expected or 

theoretical ACF and PACF derived already. 

It can also be detected from an autocorrelation plot. 

Specifically, non-stationarity is often indicated by an 

autocorrelation plot with very slow decay. 

Box and Jenkins recommend the differencing approach to 

achieve stationarity. In our data the series was not stationary 

and therefore we had to differntiae once to make it stationary. 

This was mainly done in order to Straighten out trends and to 

reduce heteroscedasticity (produce approximately uniform 

variability in the series over the sample range. If on plotting 

the data is not stationary on variance, the series has to be 

transformed through with the objective of making the series 

stationary on both mean and variance. 

3.1.2. Model Estimation 

Estimating the parameters for Box-Jenkins models involves 

numerically approximating the solutions of nonlinear 

equations. In our Case we employ R software to estmaite our 

model by using Maximum likelihood estimation. 

3.1.3. Diagnostic Checks 

The model having been identified and the parameters 

estimated, diagnostic checks are then applied to the fitted 

model, Box G. E. P et al [11]. In this paper we shall use the 

residuals methods in our diagnostic checks. 

3.1.4. Forecasting 

We evaluate forecasts using both subjective and objective 

means. The subjective examination looks for large errors 

and/or failures to detect turning points The analyst may be 

able to explain such problems by unusual unforeseen or 

unprovided for events Great care should be taken to avoid 

explaining too many of the errors by strikes etc In an objective 

evaluation of a forecast we may use various standard measures 

If i
x  is the actual datum for period {i} and{fi} is the forecast 

then the error is defined as. 

In this study, the selected SARIMA model was used to 

forecast the mean monthly CPI for the period November-2016 

to October-2018 by using the observed data of the period 

November-2011 to October-2016. 

3.1.5. General ARIMA Process 

The autoregressive moving average process, ARMA(p, q), 

is defined by  

=1 =0

=
p q

t r t r s t s

r s

X Xϕ θ ε− −−∑ ∑              (1) 

where again 
t

ε  is white noise. This process is stationary 

for appropriate ϕ ,θ .  
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if we consider two models  

1
=

t t t
X Xϕ ε− +                    (2) 

=
t t t

Y X η+                     (3) 

where 
t

X  is unobserved, 
t

Y  is observed and 
t

ϕ  and 
t

η  

are independent white noise sequences. Note that 
t

X  is 

AR(1). We can write 

1

1 1

1 1

1

=

= ( ) ( )

= ( ( ) ( )

=

t t t

t t t t

t t t t t

t t t t

Y Y

X X

X X

−

− −

− −

−

ε − ϕ
+ η − ϕ − η
− ϕ + η − ϕ η

ε + η − ϕ η
 

Now 
t

ξ  is stationary and ( , ) = 0
t t k

cov ξ ξ + , 2k ≥ . As 

such, 
t

ξ  can be modelled as a MA(1) process and Yt as 

ARMA(1, 1). 

In our Case, if the CPI data denoted by 
t

Y  is process is not 

stationary, we will look at the first order difference process  

1
= =

t t t t
X Y Y Y −∇ −                      (4) 

or the second order differences  

2

1 2= = ( ) = 2t t t t t tX Y Y Y Y Y− −∇ ∇ ∇ − +             (5) 

This can continue until we find the difference with the 

expected outcome. 

If we ever find that the differenced process is a stationary 

process we can look for a ARMA model of that. The process 

t
Y  is said to be an autoregressive integrated moving average 

process, ARIMA(p, d, q), if =
t t

X Y  is an ARMA(p, q) 

process. The general ARIMA(p, d, q) is denoted by  

( )(1 ) = ( )d

t tB B X B Zθ−                  (6) 

3.1.6. The SARIMA Process 

Chatfield, C. [12], states that If the series is seasonal, with s 

time periods per year, then a seasonal ARIMA (abbreviated 

SARIMA) model may be obtained as a generalization of an 

ARIMA. Let sB  denote the operator such that  

=s

t t sB X X −                     (7) 

Then the seasonal differencing will be written as  

(1 ) = ( )s

t t t
s

B X X X− −                    (8) 

Given that our data is monthly with 12 months per 

year(s=12) the seasonal difference will be;  

12

12(1 ) = ( )t t tB X X X −− −                   (9) 

The main objective of seasonal differencing will be to 

remove seasonal trend and season random walks in our data. 

Chatfiled C. [12], further elaborates that A seasonal 

autoregressive term, for example, is one which depends 

linearly on. A SARIMA model with non-seasonal terms of 

order (p, d, q) and seasonal terms of order (P, D, Q) is 

abbreviated a SARIMA(p, d, q)(P, D, Q)s model and may be 

written  

( ) (1 ) (1 ) = ( ) ( )d s D s

t tB B B X B B Zϕ θΦ − − Θ        (10) 

where ϕ  and Θ  denote polynomials in sB  of order P, Q 

respectively. One model, which is particularly useful for 

seasonal data, is the SARIMA model of order 
12

(0,1,1)(0,1,1) . 

Shumway R. H and Stoffer D. S [13], confirm that The 

multiplicative seasonal autoregressive integrated moving 

average model, or SARIMA model, of Box and Jenkins (1970) 

is given by;  

( ) ( ) = ( ) ( )s D d s

p s t Q tB B x B B Zϕ φ α θ∇ ∇ + Θ        (11) 

where tZ  is the usual Gaussian white noise process. The 

general model is denoted as ARIMA ( , , ( , , )sp d q P D Q . The 

ordinary autoregressive and moving average components are 

represented by polynomials ( )Bφ  and ( )Bθ  of orders p and 

q, respectively and the seasonal autoregressive and moving 

average components by ( s

p BΦ  and ( )s

Q BΘ  of orders P 

and Q and ordinary and seasonal difference components by 

= (1 )d DB∇ −  and = (1 )D s D

s B∇ −   

Since our data for CPI is monthly data, s = 12, hence our 

equation will be written as.  

12 12(1 )(1 ) = (1 ) ( )t tB B X B B Zθ− − + Θ         (12) 

Under this method we shall employ monthly CPI data with 

12 seasons per year ( = 12)s , where the first order AR(1) 

model will use 
12tX −  to predict tX , while the seasonal first 

order MA(1) will use 
12tZ −  as its predictor. 

3.2. Holt-Winters Tripple Exponential Mmoothing 

Triple exponential smoothing takes into account seasonal 

changes as well as trends. This was and extension of Holt’s 

method to capture seasonality. The Holt-Winters seasonal 

method comprises the forecast equation and three smoothing 

equations - one for the level l t , one for trend b t , and one for 

the seasonal component denoted by s t , with smoothing 

parameters α , *β  and γ . Holt-Winter’s exponential 

smoothing model is used for data that exhibit both trend and 

seasonality. Seasonality is the tendency of time-series data to 

exhibit behavior that repeats itself every t periods. The term 

season is used to represent the period of time before behavior 

begins to repeat itself. The Holt-Winters method has two 

versions, additive and multiplicative, the use of which 

depends on the characteristics of the particular time series.  

3.2.1. Holt-Winters Additive Method 

1 1
= ( (1 )( )t t t m t tl y s l bα α− − −− + − +           (13) 

Level 
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* *

1 1= ( ) (1 )t t t tb l l bβ β− −− + −         (14) 

Growth 

1 1
= ( ) (1 )

t t t t t m
s y l b sγ γ− − −− − + −       (15) 

Seasonal 

|
ˆ =t h t t t t m h

m

y l hb s+ +− +
+ +            (16) 

Forecast 

where m is the length of seasonality in months,
t

l  represents 

the level of the series 
t

b  denotes growth, 
t

s  is the seasonal 

component, 
|

ˆ
t h ty +  is the forecast for h periods ahead, and 

= [( 1) ] 1mh h modm+ − + . The parameters *( , )andα β γ  are 

usually restricted to lie between 0 and 1. 

* *= ( ) (1 )t t t t ms y l sγ γ −− + −             (17) 

if we substitute for 
t

l  from the seasonal smoothing equation 

(15) for the equation for the level of the component form we 

get  

* *

1 1= (1 )( ) [1 (1 )]t t t t t ms y l b sγ α γ α− − −− − − + − −     (18) 

which is identical to the smoothing equation for the seasonal 

component *= (1 )γ γ α− . 

The Error correction term of the smoothing equation is 

given by  

1 1
=

t t t t
l l b eα− −+ +  

1
=

t t t
b b eαβ− +  

=
t t m t

s s eα− +                  (19) 

where 
1 1 | 1

ˆ= ( ) =t t t t t m t t te y l b s y y− − − −− + + −  are one-step 

training forecast errors. 

 

 

 

3.2.2. Holt-Winters Multiplicative Method 

1 1
= (1 )( ) 1t

t t t

t m

y
l l b t

s
α α − −

−

+ − + −        (20) 

Level 

* *

1 1= ( ) (1 )t t t tb l l bβ β− −− + −            (21) 

Growth 

1 1

= (1 )t

t t m

t t

y
s s

l b
γ γ −

− −

+ −
+

            (22) 

Seasonal 

|
ˆ = ( )t h t t t t m my l hb s h +

+ −+ +           (23) 

Forecast 

See (23). and the error correction component is given by;  

1 1= t

t t t

t m

e
l l b

s
α− −

−

+ +            (24) 

*

1= t

t t

t m

e
b

s
β αβ−

−

+             (25) 

1 1

= t

t t

t t

e
s s

l b
γ

− −

+
+

            (26) 

where 1 1= ( )t t t t t me y l b s− − −− +  and α , β , and γ  are 

constants that must be estimated in such a way that the MASE 

of the error is minimized. 

4. Data Analysis 

Our analysis will use two methods Box-Jenkins which is 

sometimes referred to as ARIMA model and the Holt-Winters 

Triple Exponential smoothing. Firstly, the plot of the monhtly 

CPI data (from November 2011 to October 2016) done and 

observed the presence of trend and check for stationarity. The 

data collected is shown in table 1 below. 

Table 1. CPI data, Source KNBS. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2012 130.82 130.76 132.51 133.74 134.09 133.06 131.92 131.51 131.89 132.46 133.33 134.25 

2013 135.62 136.57 137.96 139.25 139.52 139.59 139.87 140.29 142.82 142.75 143.14 143.85 

2014 145.40 145.95 146.61 148.20 149.70 149.91 150.60 152.02 152.24 151.92 151.85 152.51 

2015 153.43 154.14 155.86 158.70 159.98 160.46 160.57 160.90 161.33 162.13 162.97 164.72 

2016 165.37 165.06 165.92 167.07 167.99 169.76 170.84 170.97 171.56 172.62 173.85 175.18 

4.1. Box-Jenkins/SARIMA Model 

4.1.1. Model Identification 

From Fig. 1 (a), we can clearly see that the data has the 

presence of trend since its increasingly moving updward.  
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(a) Plot of Monthly CPI in Kenya 

 

(b) Plot of Time Series CPI Data 

Figure 1. (a)Non-stationary and (b)Stationary plots. 

Our data exhibited trend but seasonality and hence no 

seasonal difference but transformed the data by taking log and 

first difference and re-evaluated the trend and Fig. 1(b) clearly 

indicates no presence of trend. We confirmed stationarity 

through Augmented Dikey Fuller (ADF) test and the results 

indicated stationarity as per the results below. 

The hypothesis of the Augmented Dickey-Fuller t-test is: 

0
H : The data needs to be differenced to make it stationary 

1
H : The data is stationary and doesn’t need to be differenced  

Test regression trend 

Call: lm(formula = z. diff z. lag. 1 + 1 + tt) 

Table 2. ADF results. 

 Estimate  Std. Error t value Pr(>|t|) 

(Intercept) 2.827e-03 1.369e-03 2.064 0.0437* 

z. lag. 1 -6.609e-01 1.260e-01 -5.24 2.57e-06*** 

tt 1.874e-05 3.803e-05 0.493 0.6242 

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1 

Table 3. Critical values for test statistics. 

 1pct 5pct 10pct 

tau3 -4.04 -3.45 -3.15 

z. lag. 1 6.50 4.88 4.16 

tt 8.73 6.49 5.47  

4.1.2. Model Estimation and Selection 

From Fig. 2. we can see that ACF and PACF The seasonal 

spikes at ACF and PACF after 1 lag (11, 12, 16) is observed 

which indicates that it is not taking seasonal difference of the 

series. This also indicates the seasonal model of SAR (1) and 

SMA(0). Therefore, model (1, 0, 0) will form the (P, D, Q) 

part. The non-seasonal part the PACF shows that there is a 

spike at lag 1 and no spike till lag 11, 12, 15 16 and then a 

discontinuation. This indicates AR (1) and since we 

differentiated our data once the model (p, d, q) will be (1, 1, 0). 

From this estimation we see that = 0D  implying that the 

data does not have seasonality and hence there is no need for 

seasonal differencing. This means that the appropriate 

SARIMA model for forecasting Monthly CPI and hence 

inflation will be 
12

(1,1,0)(1,0,0) . Plot ACF and PACF to 

identify potential AR and MA model is shown below. 

  
Figure 2. Plot of differenced Tranformed Monthly CPI. 

4.1.3. Diagnostics Checks 

After identification and estimation of the model, diagnostic 

checks was analysed using the residuals of the model. Figure 4 

shows the standardized residuals, using the Normal QQ Plot of 

Standardd Residuals, ACF plot of the residuals and p-values 

for the Ljung-Box statistic. From Figure 4, the Standardized 

Residuals indicate that there’s no trend in the residuals and no 

changing variance with time. The ACF of the residuals shows 

no significant autocorrelations and hence the estimated model 

is good and the Normal QQ Plot of Std Residuals portray a 

normal distribution which are independent and identically 

distributed sequence with a mean of zero and a constant 

variance. We confirmed the plot results with The 

Shapiro-Wilk test for normality where the null hypothesis for 

this test is that the residual are normally distributed. Our 

p-value was found to be 0.1019 which greater than 0.05, hence 

we fail to reject the null hypothesis and conclude that the 

residuals are normally distributed. From the plot of p-values 

for the Ljung-Box-Pierce statistics, the presented statistics 

consider the accumulated residual autocorrelation from lag 1 

up to and including the lag on the horizontal axis. The dashed 

blue line is at.05. we can clearly see that All p-values are 

above it which means that the results are very good. We can 

also see that the calculated p-value of Ljung-Box-Pierce 
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statistics at lag 24 is = 0.5168p value− . This confirms 

non-significant values for this statistic when looking at 

residuals. The diagnostic results confirm that we cannot reject 

the null hypothesis of independence in this residual results. 

Hence we conclude that our Sarima 
12

(1,1,0)(1,0,0)  model 

is best for our forecasting inflation. 

 
Figure 3. Residual Diagnostics. 

4.1.4. Forecasting 

Forecasted Values for January, February and March are, 176.0305, 176.5741 and 177.3643 respectively.  

 
Figure 4. Plot of Actual and forecasted Values  

4.2. Triple Exponential Smoothing (Holt-Winters Method) 

4.2.1. Model Estimation and Selection 

Hyndman et al [14] coined the three components of 

smoothing triplet (E, T, S) as error, trend and seasonality. In 

this paper we emloyed ETS in R for automatic selection of our 

model in a similar manner as used by Hyndman et al [15] in 

Application of the automatic forecasting Strategy to the 

M-competition data and IJF-M3 competition data. The 

selected model was then tested for accuracy based on errors. 

Figure 5 below indicates that the model space selected is the 

model ETS(A, A, N). This means that our model has additive 

errors, additive trend and no seasonality which is an indicator of 

Holt’s linear method with additive errors. This confirms lack of 

seasonality just hence confirming our SARIMA model results. 
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Figure 5. Decomposition by ETS. 

4.2.2. Determination of Smooth Parameters 

From the results above we see that = 0.9999α  which is 

very close to 1. This indicates that more weight is on the recent 

value of the independent variable and less on the previous data. 

Our = 0.0001β  which is very close to zero. This means less 

weight on recent data. We do not have the γ  which confirms 

the non existence of seasonality component in our model. 

4.2.3. Diagnostic Check 

Forecasted Values for January, February and March 2017 

are 177.4458, 178.2016 and 178.9574 respectively 

4.3. Discussion 

The two prediction models were compared using MASE, 

MAE and MAPE. From Table 4 below, the values for the 

SARIMA model 
12

(1,1,0)(1,0,0)  were 0.059, 0.0036 and 

0.073 for MASE, MAE and MAPE respectively, while the 

Holt-winters Triple exponential Smoothing model gave value 

of 0.643, 0.595 and 0.400 as values for MASE, MAE and 

MAPE respectively. This result imply that SARIMA model is 

better than Holt-Winters method based on the accuracy 

parameters chosen. This result contradict results by Puthran et 

al [9] whose results in the study of Indian Motor Cycle 

industry found that Holt Winters was more precise than 

SARIMA Model. On model selection, our result agree with 

Udom. P and Phumchusri. N (2014). who confirmed that 

ARIMA 
12

(1,0,1)(1,0,1)  was a better model compared to 

Holt-winters based on mean Absolute Percentage Error. 

Considering that MAPE if one of the accuracy parameters 

proposed by Hyndman R. J. and Koehler A. B. (2006), this 

paper is confident to make the comparison. 

Table 4. Mean Errors for the two models. 

Model MASE  MAE  MAPE 

SARIMA  0.059  0.004  0.073 

Holt-Winters  0.643  0.595  0.400 

Finally, we compared the Actual CPI values for the month 

of January and February 2017 against the forecasted values 

with SARIMA and Holt-Winters using Analysis of variance 

with a view of finding out if they are significantly different. 

we got the rsults below. 

4.4. ANOVA for Actual vs Forecasted Values 

Here we test if the forecasted values between the two 

models are different and also test against the actual values for 

the months of January and February 2017 

0
H : The values are not significantly different 

1
H : The Values are significantly different 

Studying the output of the ANOVA Table 5 above, we see 

that the F-statistic is 1.38 with a p-value equal to 0.3745. We 

clearly fail reject the null hypothesis of the data set are not 

signficantly different. 

Table 5. Anova results. 

 Df Sum Sq Mean Sq F value Pr( > F) 

Type  2  4.70  2.35  1.38  0.3752  

Residuals  3  5.10  1.70      

5. Conclusion 

The main objective of this research paper has forecast 

Inflation in Kenya using SARIMA and Holt-winters (Triple 
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exponential Smoothing). The study results indicates that both 

models gives almost similar results but when MASE, MAE, 

and MAPE was compared SARIMA model seemed more 

accurate since it had has the minimum MASE, MAE, and 

MAPE values. This research employed univariate approach to 

forecast inflation. More research can be done using 

multivariate analysis to forecast CPI using factors that affect 

the component used in calculating CPI e.g exchange rates, Oil 

prices, Weather conditions etc. The results will be helpful for 

better financial planning and budgeting. The Forecasted CPI 

for January 2017 is 176.04 meaning that the Forecasted 

Inflation rate for January and February 2017 is 6.45% and 7.1% 

respectively while the actual inflation rate for January and 

February 2017 from KNBS website is 6.99% and 7.9%. 
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