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Abstract: By using the kernel-type density estimation and empirical distribution function in the case of identically 

distributed and negatively associated samples, the empirical Bayes one-sided test rules for the parameter of inverse exponential 

distribution are constructed based on negative associate sample under weighted linear loss function, and the asymptotically 

optimal property is obtained . It is shown that the convergence rates of the proposed empirical Bayes test rules can arbitrarily 

close to 
1/2( )−Ο n  under suitable conditions. 
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1. Introduction 

Empirical Bayes method, first proposed by Robbins [1], is 

a very important method in statistical inference field, and it 

has many applications in the field of reliability, lifetime 

prediction, medical research, ect. [2-6]. Empirical Bayes 

hypothesis test problem is a hot topic, which attracts many 

scholars' attention. 

For example, Karunamuni [7] discussed the optimal 

convergence rate of empirical Bayes tests for uniform 

distributions. Xu et al. [8] investigated the convergence rates 

of empirical Bayes tests of parameters in one-side truncated 

distribution families under an asymmetric loss function. Qian 

and Wei [9] studied the two-sided empirical Bayes test for a 

class of scale exponential model under a weighed loss 

function. Chen et al. [10] studied the two-sided empirical 

Bayes test problem for the continuous one-parameter 

exponential model with contaminated data by a kernel 

probability density method. Under Type-II censored samples. 

Wang et al. [11] studied the empirical Bayes test problem for 

two-parameter exponential distribution. However, in many 

situations, such as penetration theory, reliability analysis and 

multivariable analysis, random samples are probably not 

independent identical distribution but negatively associated 

(NA) samples [12, 13]. For instance, Wei [14] developed a 

empirical Bayes test of parameter for exponential distribution 

in the case of NA samples using the linear weighted loss 

functions. Shi et al. [15] developed a two-sided empirical 

Bayes test for the parameter of the truncated distribution 

family in the case of NA samples. Wang and Shi [16] studied 

the Bayes test problem for a special exponential family under 

NA samples. 

The definition of the NA sequence was first introduced by 

Esary in [17] as follows: 

Definition 1. A sequence of random variables 

1 2, ,..., nX X X  is said to be a NA sample, if for every pair of 

disjoint non-empty subsets 1A  and 2A  of set {1,2,..., }n , 

1 1 2 2( ( , ), ( , )) 0∈ ∈ ≤i iCov f X i A f X i A  

Where 1f  and 2f  are increasing or decreasing for every 

independent variable, and their covariance exists. Random 

variable sequence { , }∈jX j N  are said to be NA, if for every 

natural number 2≥n , 1 2, ,..., nX X X  is negatively 

associated. 

Assume X  is a random variable drawn form inverse 

exponential distribution with the probability density function 

is 
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( ) 2
exp , 0

 = − > 
 

f x x
xx

θ θθ                  (1) 

Here 0>θ  is the unknown shape parameter, 

{ }0Ω = >x x  is the sample space, and 

( )0 1
Ω

  Θ = > = 
  

∫ f x dxθ θ  is the parameters space. 

Remark 2. It is easily shown that if the random variable X  

is distributed with exponential distribution, then 1−X  is 

distributed with inverse exponential distribution. 

The inverse exponential distribution is one of the most 

important lifetime distributions [18], and the applications in 

life test, reliability and statistical inference attract many 

authors’ attention. For example, Prakash [19] discussed the 

Bayes estimation of the inverse exponential model under 

symmetric and asymmetric loss functions. Rao [20] studied 

the reliability estimation for the stress-strength model, which 

the stress and strength are both distributed with inverse 

exponential distribution. Singh et al. [21] developed a two-

stage group acceptance sampling plan for a generalized 

inverse exponential distribution under truncated life test.  

In this paper, we will first construct the empirical Bayes 

test function for testing Eq. (2) in inverse exponential model. 

Then, we will prove that the proposed test is asymptotically 

optimal and its convergence rate will also be derived under 

certain suitable conditions. The remains of this paper is 

organized as follows: Section 2 will establish a Bayes 

decision rule for one-side hypothesis test problem. Then 

Section 3 will put forward a new empirical Bayes decision 

rule combining the kernel-type density function with 

empirical distribution function. Finally, Section 4 will give 

the conclusion of this paper. 

2. Bayes Test 

Given the inverse exponential distribution with probability 

density function (1), the hypothesis needed to be tested is 

0 0 1 0: :≤ ↔ >H Hθ θ θ θ                      (2) 

Here 0θ  is a given constant. This section will construct a 

new Bayes test rule for hypothesis test problem (2) under the 

following weighted linear loss functions: 

0

0 0 0( , ) ( )
−

= >L d I
θ θθ θ θ

θ
                 (3) 

0

1 1 0( , ) ( )
−

= ≤L d I
θ θθ θ θ

θ
                     (4) 

Here { }0 1,=d d d  is the action space, 0d  indicates 

accepting 0H , 1d  indicates refusing 0H .  

Remark 1. The weighted linear loss function has many 

advantages: it is invariant and makes the expression of Bayes 

test function more concise and makes the empirical Bayes 

test function easy to construct.  

Suppose that X  has conditional probability density in Eq. 

(1) and parameter θ  has the unknown prior distribution 

function ( )G θ , ( )g θ  is the corresponding prior probability 

density function. Then the marginal probability density 

function of X  is:  

( )( ) ( )
Θ

= ∫Gf x f x dGθ θ                      (5) 

Let 0( ) ( | )= =x P accept H X xδ  be the randomized 

decision rule. The Bayes risk function of ( )xδ  is  

( )
( )

0 0

1 1

( ( ), ( )) [ ( , ) ( )

( , ) (1 ( ))] ( )

Θ Ω

=

+ −

∫ ∫R x G L d f x x

L d f x x dxdG

δ θ θ θ δ

θ θ δ θ
 

Then 

( ( ), ( )) ) ( )
Ω

+∫ GR x G x x dx Cδ θ β δ= （               (6) 

Where 1 1( , ) ( )
Θ

= ∫GC L d dGθ θ , and 

( )0) ( )
Θ

−
= ∫x f x dG

θ θβ θ θ
θ

（                  (7)  

According to equation (5), we can get 

( ) ( )0

1
( ) ( ) ( )

Θ Θ

= −∫ ∫x f x dG f x dGβ θ θ θ θ θ
θ

 

( )0

1
( ) ( )

Θ

= − ∫G
f x f x dGθ θ θ

θ
 

Define 

2

( ) ( )
−

Θ

= ∫ x
GP x e dG

θ

θ ,                             (8) 

then 

2

0( ) ( ) ( )−= −G Gx f x x P xβ θ                       (9) 

A test is said to be a Bayes test with respect to ( )G θ  if 

inf ( ( ), ( ))=GR R x G
δ

δ θ .  

Define 

1, ) 0
( )

0, ) 0

≤
=  >

G

x
x

x

β
δ

β
（

（
                       (10) 

It is easy to show that ( )G xδ  is a Bayes test with respect 

to ( )G θ . 

The Bayes risk function is: 
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) ( )
Ω

= +∫G G GR x x dx Cβ δ（                    (11) 

Remark 1. If the prior distribution ( )G θ  is known, ( )xδ  

equals to ( )G xδ , we can get GR . Unfortunately the ( )G θ  is 

unknown, we need to use the empirical Bayes approach.  

3. Empirical Bayes Test Function 

This section we will construct the empirical Bayes test 

function. Suppose that 1 2, ,..., nX X X , 1+nX  are identically 

distributed and weakly stationary NA sequence. The same 

probability density function is ( )Gf x . 1 2, ,..., nX X X  are the 

historical sample, 1+nX  is the current sample. In this paper, 

we assume 

(A1) 
1

,( ) ,∈ ∈G sf x C x Rα ,where ,sC α  denotes a family of 

probability density function with s  order derivatives and its 

absolute value not exceeding α , α  is a positive integer.
2≥s  is a positive integer. 

(A2) Suppose s ≥ 2 is an arbitrarily certain natural number, 

( )( 0,1,... 1)= −rK x r s  is a bounded function of Borel 

measurable function. When outside of the interval (0,1) , 

their value are zero, and they satisfy the following 

conditions: 

1

0

1,1
( )

0, , 0,1, 2,..., 1!

=
=  ≠ = −

∫
t

r

t r
y K y dy

t r t st
 

Define the Kernel density estimation of ( )Gf x  as:  

1
( ) (

∞ −
= ∑ j

n r

n n

x X
f x K

nb bj=1

)                     (12) 

Where { nb } is positive integer sequence, and lim 0
→∞

=n
n

b . 

(A3) The covariance of { | 2≥nX n  } satisfies condition: 

j=1

, )
∞

≤ < ∞∑ 1 j
cov X X c(  

By equations (1) and (8), we can get 

2
[ ( )] [ ( )]

−

−∞ Θ
< = ∫ ∫

x
x

i
E I X x e dG dx

x

θθ θ  

2

20

0

[ ] ( )

[ ] ( )

[ ] ( )

( )

−

Θ −∞

−

Θ

−

Θ

=

=

=

=

∫ ∫

∫ ∫

∫

x
x

x
x

xx

G

e dx dG
x

e dx dG
x

e dG

P x

θ

θ

θ

θ θ

θ θ

θ

 

Hence, the unbiased estimator of ( )GP x  can be constructed 

as 

1

1
( ) ( )

=

= <∑
n

n i

i

P x I X x
n

                           (13) 

Therefore, the estimator of ( )xβ  is  

2

0
( ) ( ) ( )−= −

n n n
x f x x P xβ θ                 (14) 

Finally, the empirical Bayes test function could be defined 

as follows: 

1, ( ) 0
( )

0, ( ) 0

≤
=  >

n

n

n

x
x

x

β
δ

β
                   (15) 

Assume nE  represents the mean value of the joint 

distribution of 1 2, ,..., nX X X , hence the comprehensive risk 

of ( )n xδ  is 

( ( ), ( )) ( ) [ ( )]
Ω

= +∫n n n GR x G x E x dx Cδ θ β δ     (16) 

Definition 1. If lim ( ( ), ( ))
→∞

=n G
n

R x G Rδ θ , then the random 

variable sequence { ( )n xδ } is called asymptotic optimality 

empirical Bayes test functions. 

Definition 2. If ( ( ), ( ))nR x Gδ θ - GR = ( ), 0−Ο >qn q ,  

Then we say the convergence rate of the test function 

sequence { ( )}n xδ  is ( )−Ο qn . 

By Definitions 1 and 2, we conclude that the optimal 

evaluation of the empirical Bayes test functions depends on 

the degree of its risk approximation Bayes risk. 

In this paper, we let 1 2, , ,...c c c  denote different positive 

constants in different cases even in the same expression. In 

order to prove Theorems 1 and 2, which will be illustrated in 

Section 4, we need to present the following lemmas: 

Lemma 1[22] Suppose GR  and ( ( ), ( ))nR x Gδ θ  definite in 

equation (11) and equation (16) separately, then  

0 ( ( ), )

( ) ( ( ) ( )  ( ) )
Ω

≤ −

≤ − ≥∫
n G

n

R x G R

x P x x x dx

δ

β β β β        (18) 

Lemma 2 [23] Suppose ( )nf x  definite as (13), where 

1 2, ,...X X are identically distributed and weakly stationary 

NA sequence. Assume both (A1)- (A3) hold, for ∀ ∈ Ωx  

(1) If ( )Gf x  is continuous for x , when lim 0
→∞

=n
n

b  and

lim
→∞

= ∞n
n

nb hold, then 

2
lim ( ) ( ) 0

→∞
− =

n n G
n

E f x f x                (19) 

(2) If ,
( ) ∈

G s
f x C α , let 

1

4 2
−

+= s
nb n ,for 0 1< ≤λ , we have 
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2
2( ) ( )

−
+− ≤ ⋅
s

s
n n GE f x f x c n

λ
λ             (20) 

Lemma 3 Suppose ( )GP x and ( )nP x definite in equation (8) 

and equation (13) separately, 1 2, ,...X X are identically 

distributed and weakly stationary NA sequence, for 

0 1< ≤λ , we have 

2
( ) ( ) −− ≤

n n G
E P x P x n

λ λ .               (21) 

Proof. According to equation (14), we have  

2

2

( ( ) ( ))

{[ ( ) ( )] }

[ ( ( ))]

−

= −

≤

n G

n G

n

E P x P x

E P x P x

Var P x

λ

λ

λ

 

Where  

2

1

1
( ( )) { [ ( ) ( )]}

=

= < −∑
n

n i G

i

Var P x E I X x P x
n  

2
1

2
1

1 2

1
[ ( )]

2
( ( ), ( ))

=

≤ < ≤

= <

+ < <

= +

∑

∑

n

i

i

i j

i j n

Var I X x
n

Cov I X x I X x
n

Q Q
 

Because ( )<iI X x is a decreasing about iX , and

1 2, ,...X X are identically distributed and weakly stationary 

NA sequence. 

Then  

2
1

2
( ( ), ( )) 0

≤ < ≤

< < ≤∑ i j

i j n

Cov I X x I X x
n

. 

Thus we have 

1 2

1

2
1

1

( ( ))

1
[ ( )]

1
[ ( )]

=

= +
≤

= <

= <

∑

n

n

i

i

Var P x Q Q

Q

Var I X x
n

Var I X x
n  

2 2

1 1

1
{ [ ( )] [ ( ( ))] }

1

= < − <

≤

E I X x E I X x
n

n  

Hence, we have 

2

2

( ) ( )

{ [ ( ) ( )] }

−

−

≤ −

≤

n n G

n n G

E P x P x

E P x P x

n

λ

λ

λ
 

for any 0 1< ≤λ . The proof of Lemma 3 is completed. 

4. Asymptotic Optimality of Empirical 

Bayes Test 

Theorem 1. Suppose ( )n xδ be the empirical Bayes test 

function defined in equation (16), 1 2, ,...X X are identically 

distributed and weakly stationary NA sequence, when (A1)- 

(A3) hold, if 

(1) { nb } is a positive sequence, and satisfy lim 0
→∞

=n
n

b , 

lim
→∞

= ∞n
n

nb  

(2) 
1

( )
Θ

< ∞∫ dG θ
θ  

(3) ( )Gf x  is continuous about x  

Then lim
→∞n

( ( ), ( ))nR x Gδ θ = GR  

Proof. Let ( ) ( ) ( ( ) ( )  ( ) )= − ≥n nQ x x P x x xβ β β β , 

Then ( ) ( )≤nQ x xβ . 

Apply (5) and Fubini theorem, we have 

( )0

1
( ) ( ) | | ( )

Ω
Ω Ω Θ

≤ +∫ ∫ ∫ ∫Gx dx f x dx f x dG dxβ θ θ θ
θ

 

( )0

0

1
1 | | ( )

1
1 ( )

Θ Ω

Θ

≤ +

= + < ∞

∫ ∫

∫

f x dxdG

dG

θ θ θ
θ

θ θ
θ

 

Then by Lemma 1 and dominated convergence theorem, 

we have  

0 lim ( ( ), ( )) lim ( )
→∞ →∞

Ω

≤ − ≤ ∫n G n
n n

R x G R Q x dxδ θ      (22) 

According to formulas (8) and (13), then by Markov and 

Jensen inequality, we have 

( ) ( ) ( )≤ −n n nQ x E x xβ β
 

2

0

( ) ( )

( ) ( )−

≤ −

+ −
n n G

n n G

E f x f x

x E P x P xθ
 

1
2

2

1
22 2

0

[ ( ) ( ) ]

[ ( ) ( ) ]−

≤ −

+ −

n n G

n n G

E f x f x

x E P x P xθ
 

Then by lemma 2 and lemma 3, for ∀ ∈ Ωx ,we have 
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1
2

2lim ( ) [lim ( ) ( ) ]
→∞ →∞

≤ ≤ −n n n G
n n

Q x E f x f x0

1
22 2

0 [lim ( ) ( ) ] 0−

→∞
+ − =n n G

n
x E P x P xθ  

Combining (19) with (20), the theorem is proved. 

Theorem 2 Suppose ( )n xδ  be the empirical Bayes test 

function defined in equation (16), 1 2, ,...X X are identically 

distributed and weakly stationary NA sequence. Assume 

(A1) -(A3) hold, ,( ) ∈G sf x C α , 0 1< <λ  and 2≥s  is the 

positive integer, and it satisfies the following conditions: 

1
( 1) ( )

−

Ω

< ∞∫B x dx
λβ  

1 2
( 2) ( ) | |

− −

Ω

< ∞∫B x x dx
λ λβ  

Then with the choice of 
1

2 1
−

+= s
nb n , we have 

2 1( , ) ( )
−

+− =
s

s
n GR G R O n

λ

δ  

Proof.  First, we can easily get the following result: 

( ) ( )  ( )

( ) ( )  ( )

( ( ) ( )  ( ) )

( | ) ( )

( ) ( )
( | ) ( )

( )

( ) ( )
( | ) ( )

( )

( ) ( ) ( )

− ≥

− ≥

Ω

−

− ≥

=

−
≤

−
≤

= −

∫

∫

∫

n

n

n

x x x

n

x x x

n

n

P x x x

f x dG

x x
f x dG

x

x x
f x dG

x

x E x x

β β β

λ

λβ β β

λ

λ

λ λ

β β β

θ θ

β β
θ θ

β

β β
θ θ

β

β β β

 

Apply lemma 1 and Markov inequality, we conclude that 

1

0 ( , )

( ) ( ( ) ( )  ( ) )

( ) ( ) ( )

Ω

−

Ω

≤ −

≤ − ≥

≤ −

∫

∫

n G

n

n n G

R G R

x P x x x dx

x E x x dx
λ λ

δ

β β β β

β β β

1

1

1
2

2

( ) ( ) ( )

( ) | | ( ) ( )

−

Ω
− −

Ω

≤ −

+ −

∫

∫

n n G

n n G

c x E f x f x dx

c x x E P x P x dx

λ λ

λ λλ

β

β
 

= +n nA B  

Where 
1

1 ( ) ( ) ( )
−

Ω

= −∫n n n GA c x E f x f x dx
λ λβ , 

1
3

2 ( ) | | ( ) ( )
− −

Ω

= −∫n n n GB c x x E P x P x dx
λ λλβ  

By Lemma 2 and Lemma 3 and condition (B1),we have  

2 1
1

−
+≤
s

s
nA c n

λ 1

0( )
−

Ω
∫ x dx

λ λβ θ ≤ 2 1
3

−
+
s

sc n
λ

       (23) 

2
2

−
≤nB c n

λ 1 2 2
4( ) | |

−− −

Ω

≤∫ x x dx c n
λ

λ λβ           (24) 

Then 2 1 2
3 40 ( , )

− −
+≤ − ≤ +
s

s
n GR G R c n c n

λ λ

δ  

Finally it shows that 

2 1( , ) ( )
−

+− =
s

s
n GR G R O n

λ

δ . 

Remark 2. From Theorems 1 to 2, we know that the new 

established empirical Bayes test function is asymptotically 

optimal and its convergence rates 2 1( )
−

+Ο
s

sn
λ

 can arbitrarily 

close to 
1/2

( )
−Ο n  under suitable conditions. For positive 

associate (PA) random variables sequences, we can also use 

the similar method to construct the empirical Bayes test 

function and prove the asymptotic performance of the 

empirical Bayes test function. 
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