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Abstract: We develop an adjusted Product Limit estimator for estimating survival probabilities in the presence of ties that 
incorporates censored individuals using the proportion of failing for uncensored individuals. We also develop a variance 
estimator of the adjusted Product Limit estimator for calculating confidence intervals. Simulation studies are carried out to 
assess the performance of the developed estimator in comparison to the performance of Kaplan-Meier and modified Kaplan-
Meier estimators. Some simulation results are presented and one real data is used for illustration. The results indicate that the 
proposed estimator out performs the other estimators in estimating survival probabilities in presence of ties. 

Keywords: Survival Analysis, Censored Data, Product Limit Estimator, Modified Kaplan-Meier 

 

1. Introduction 

Survival analysis is the phrase used to describe the 
analysis of data that correspond to time from a well-defined 
time origin until the occurrence of some particular event of 
interest or end point as in [1]. Its techniques play increasing 
important roles in biostatistics, modern medical research, 
engineering, demography, among others. References to these 
applications may be found, among others, in [2, 3]. 

Kaplan and Meier [4] introduced Product Limit (PL) 
estimator, also known as Kaplan-Meier (KM) estimator, 
which has been in use since then as the standard estimator for 
estimating survival probabilities for censored data. The major 
limitation of PL estimator is that it ignores censored 
individuals incase ties between event and censoring times are 
observed. Because of this limitation, modified Kaplan-Meier 
(MKM) estimator discussed in [5] was suggested based on 
the arithmetic mean of the censored individuals and the 
survival probability for reduced sample size, considering this 
probability to be a single observation. The problem with 
MKM estimator is that the survival probabilities obtained are 
greater than survival probabilities obtained when censored 
individuals are ignored: this is unrealistic since some of 
censored individuals might fail leading to a decrease in 

survival probabilities and if none of the censored individuals 
fails then the survival probabilities ought to remain 
unchanged. Consequently, KM estimator overestimate 
survival probabilities [6-8] and this might be due to ignoring 
censored individuals in the presence of ties. Due to these 
drawbacks, in this article we propose an adjusted Product 
Limit estimator (APLE) that incorporates censored 
individuals in the presence of ties using the proportion of 
failing for uncensored individuals. The proposed estimator 
works consistently for all possible situations, that is, from 
light to heavy censoring and for small as well as large sample 
sizes. The rest of the paper is organized as follows: the 
proposed estimator is derived in section 2; simulation study 
is carried out in section 3 to evaluate the performance of the 
proposed estimator and to compare it with other estimators 
suggested in the literature. In section 4 the estimators are 
applied to real data and lastly in section 5 we conclude and 
give some recommendations. 

2. Estimation 

The idea of incorporating censored individuals when 
estimating survival probabilities in the presence of ties is to 
make full use of the information contained in these censored 
individuals because some of them might fail, though not 
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observed, leading to a decrease in survival probabilities. 
Thus, ignoring them might lead to an overestimation of 
survival probabilities and this can be of severe consequences 
in some situations like duration for failure of a machine, 
relapse of a disease or occurrence of a strike, among others. 

2.1. Kaplan-Meier and Modified Kaplan-Meier Survival 

Functions 

Let r�, d� and c� be the number of individuals at risk, that 
fail, and that were censored at time tj respectively, then 
conventional Kaplan-Meier estimate of the survival function 
as in [4], is defined as 

Ŝ
t� = ∏ �1 − ���� ����                            (1) 

While the MKM estimator in the presence of ties, as in [5], 
is given as 

Ŝ∗
t� = ∏ �������������������������������� ����                (2) 

In case of ties, both KM and MKM estimators overestimate 
the true survival probabilities. To overcome this, in the next 
subsection we develop an adjusted PL estimator. 

2.2. Adjusted Product Limit Estimator 

Considering d�  and cj to occur together at time tj, we 
develop the APLE in the following steps: first, we ignore the 
censored units to get the estimated probability of failing for 

uncensored ones as 
�������. 

In order to incorporate the censored units in presence of 
ties, we use this estimated probability of failing for fully 
observed units to estimate the expected number of units that 
fail out of the censored units at time tj; we have made the 
assumption that the two sets, censored and uncensored, are 
from same random sample, thus assumed to be positively 
correlated: the rate of failing in an unobserved set is likely to 
be similar to that in the observed one. ������� ∗ c�  Expected number of units that fails out of the 

censored ones ���� Estimated probability of being censored �������  Estimated probability of not being censored 

Now, we get the estimated probability of a unit failing at 
time tj by summing the probabilities of it failing when it is 
censored or failing when it is not censored 

�r� − c�r�  ∗ � d�r� − c�  + �c�r�   ∗ "
# d�r� − c� ∗ c�r� − d� $

% 

Where &������� ' ∗ & ������� ' represent the estimated probability 

of a unit not being censored and failing while &���� ' ∗

( )�*�+,�∗������� - is the estimated probability of it being censored 

and failing. 
The expression simplifies to: d�[�r� − d���r� − c�� + c�/]r��r� − d���r� − c��  

To get the probability of surviving ( p� ) at time tj, we 
subtract the probability of failing at this time from one. 

p� = 1 − ��2�����������������34����������������                  (3) 

Using the concept of Product Limit probability, we derive 
the Adjusted Product Limit survival function as follows: Ŝ∗
t� = p� ∗ p/ ∗ p5 … ∗ p� ∗ … ∗ p7             (4) 

It implies that Ŝ∗
t� = ∏ p����                                  (5) 

Replacing (3) in (5), we get the Adjusted Product Limit 
Estimator as: 

Ŝ∗
t� = ∏ �1 − ��[�����������������3]���������������� ����         (6) 

2.3. Variance Estimator of Adjusted Product Limit 

Estimator 

We derive the variance estimator for the proposed survival 
function using the delta method in [1]. Considering Equation 
(5), taking log and variance both sides, we obtain var9log�Ŝ∗
t��= = ∑ var9log�p��= ���              (7) 

Applying the delta method on the r.h.s of (7) we get 

var9log�p��= ≈ & �@�' ∗ &��@��� '                    (8) 

From (7) and (8), it follows that: 

var9log�Ŝ∗
t��= ≈ ∑ & �@�' ∗ &��@��� '���             (9) 

A further application of delta method on the l.h.s of (7), we 
have: 

var9log�Ŝ∗
t��= ≈ A �Ŝ∗
��B/ ∗ var�Ŝ∗
t��         (10) 

Equating the r.h.s of (9) and (10) gives, 

A �Ŝ∗
��B/ var�Ŝ∗
t�� = ∑ & �@�' ∗ &��@��� '���         (11) 

On rearranging we get 

var�Ŝ∗
t�� = �Ŝ∗
t��/ ∑ & �@�' ∗ &��@��� '���         (12) 
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Substituting for p�  in (12) and simplifying, we get the 
variance of the Adjusted Product Limit Estimator as 

var�Ŝ∗
t�� = �Ŝ∗
t��/ ∑ C �
��D *�A*�+)�BA*�+,�B)�[A*�+)�BA*�+,�BE,�3]��FG���   (13) 

The standard error of the Adjusted Product Limit estimate 
of the survival function is the square root of the estimated 
variance of the estimate. 

In the absence of ties Ŝ∗
t�= Ŝ
t� , likewise, the estimated 
standard error for the adjusted Product Limit estimator equals to 
the standard error of the Greenwood’s formula in absence of ties. 

3. Simulation Study 

In this section we have carried out a simulation study to 
evaluate the performance of the proposed survivor function 
estimator and to compare it with other estimators suggested in 
the literature. Though time has been considered to be discrete 
in this study, we have used continuous survival distributions to 
draw survival and censoring times in R statistical package [9]. 
Thereafter, we have converted the continuous times into 
discrete times by choosing one and/or zero decimal points: 
Both decimal points allow for inclusion of tie-case, thus, there 
is no difference of considering either one or zero. 

We have simulated data of different sample size drawn 
from Weibull, W[α, λ] and Log-logistic, Log-L[α, λ] survival 
distribution. Censoring, random censoring, was done using 
the uniform distribution ranging from 0 to b (for b=0.5, 0.8, 
1.2, 1.5, 2 and 20). We have used different values of α, λ and 
b, different sample sizes with different percentages of 
censoring and simulated data using Weibull and Log-logistic 
distributions functions so as to assess the performance of the 
proposed estimator in different situations. Our simulated 
results are summarized in Tables 1-6, which gives the 
survival probabilities and standard errors for the estimators 
and also Survival curves for the three estimators are 
presented; since the results are similar, we have only 
presented some for illustration. 

Tables 1 and 2 give estimated survival probabilities and 
standard errors for the three estimators for small samples 
with light censoring; for two different survival distributions 
considered in the two tables, it can be seen that both 
estimators give similar results: APLE estimates are the 
smallest while MKM estimates are the highest and estimates 
differs only as from the time a tie is observed. 

Survival probability of zero may be preferred at the last 
observation time since no individual is expected to survive 
indefinite period of time. In Tables 1 and 5 estimates for all the 
three estimators go to zero since an event is observed at the last 
observation time, if last observation is censoring all the three 
estimators do not give survival probability, see Tables 3 and 6. 
But APLE estimates go to zero also when a tie is observed at the 
last observation time, see Tables 2 and 4, this shows that APLE 
is generally a better estimator than the other two estimators. 

As was mentioned in section 1, MKM overestimate survival 

probabilities in the presence of ties: In Table 3 at time 0.0, 40 
individuals were at risk, 2 failed and 1 was censored; using 
probability theorem, estimated probability of failing at this time 
is 2/40=0.05 (assuming that censored individual survived) and 
that of surviving is 1-0.05=0.95 (as obtained by KM estimator). 
Suppose the censored individual fail, then the estimated 
probability of failing is 3/40=0.075 and that of surviving is 1-
0.075=0.925 which is a decrease. There is no justifiable 
reason(s) that will cause an increase in survival probability when 
censored individuals in the presence of ties are incorporated: this 
is so because censored individuals can either survive or fail 
though not observed. From this example, we see that MKM 
estimator overestimate survival probabilities in the presence of 
ties. On the other hand, one cannot simply ignore the censored 
individuals when estimating survival probabilities in the 
presence of ties yet they are also at risk and can either fail or 
survive just like the uncensored ones. It will be necessary to 
assume that both sets, censored and uncensored, are positively 
correlated. For instance, in Table 6 at observation time 7, 5 
individuals failed while 4 were censored: ignoring these 
censored individuals, the way KM estimator does, is like 
assuming that all of them survived; an assumption which cannot 
hold all the time. It follows that KM estimator also to some 
extend overestimate survival probabilities in the presence of ties. 
Thus, KM is not an appropriate estimator in case ties between 
event and censoring times are present. 

As discussed in [10], KM is unbiased estimator of the 
survivor function for large sample size and as in [4]; KM 
estimates approaches the true value for the population sampled 
as sample size tends to infinity. Comparing survival curves in 
Figures 1 to 6 for the three estimators MKM still give biased 
results even for large sample sizes; See for instance Figures 4 
and 5 where the samples are large. It can be seen in Figure 6 
that survival curves of KM and APLE tends to overlap an 
indication that also APLE estimates approaches the true value 
for the population sampled as sample size tends to infinity, 
from this we may say that APLE is unbiased and a consistent 
estimator just like KM estimator. Lastly, comparing standard 
errors for the three estimators, the standard errors for the 
proposed estimator and for the conventional KM estimator are 
in a close agreement while MKM estimator underestimate 
standard errors on the left and overestimate on the right, see for 
instance Table 3 in column 8, 9 and 10 for standard errors of 
APLE, KM and MKM estimators respectively. 

4. Application to Real Data 

We use Leukaemia data set given in [11] to demonstrate the 
application of the proposed estimator. The data set consists of 
weeks in maintenance of remission, ignoring the placebo 
controls, is as follows: 6, 6, 6, 6+, 7, 9+, 10, 10+, 11+, 13, 16, 
17+, 19+, 20+, 22, 23, 25+, 32+, 32+, 34+, and 35+. Where (+) 
denotes a censored observation. The results of Leukaemia data 
are reported in Table 7 and in Figure 7. From the results it can 
be seen that the three estimators still give estimates similar to 
ones obtained in simulation study such that MKM estimates 
are highest while APLE estimates are the smallest. In Table 7 
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at week 6, 3 individuals failed and 1 was censored; estimated 
probability of failing at that time is 3/21=0.1429 and that of 
surviving is 1-0.1429=0.8571 which is equal to KM estimate at 
that time. Suppose the censored individual fail, though not 
observed, then estimated probability of failing will be 
4/21=0.1905 and surviving will be 1-0.1905=0.8095 which is a 
decrease. Since we are not sure about the status of the censored 
individual, we can only estimate his survivorship and the 
overall estimated probability of surviving at that week must be 
within the interval [0.8095, 0.8571] as obtained by APLE. We 
respectively obtain 0.85, 0.8537 and 0.8534 using reduced 
sample (RS), Actuarial and Joint risk estimators; see [4] for 
details on these other estimators. From this example, it is clear 
that our proposed survivor function estimator works better than 
KM and MKM estimators in terms of estimating survival 

probabilities in the presence of ties. 
In respect to standard errors, it can be seen in Table 7 that 

standard errors obtained using Greenwood variance 
estimator, discussed in [12], and that obtained using our 
proposed variance estimator are in a close agreement. In 
addition, if the results in Table 7 are rounded off, say to two 
decimal places, we notice that APLE and KM estimates are 
equal: It is justifiable to obtain such results because there are 
only two ties, at week 6 and 10, with one censored individual 
in each case, such a small number of ties and of the censored 
individual can’t cause much difference in the estimated 
survival probabilities. Therefore, MKM estimator 
overestimate survival probabilities in the presence of ties 
right from the start see also Figure 7 for details. 

Table 1. Survival Probabilities and Standard Errors for APLE, KM and MKM for n=20 & 20% censoring; W [2, 1.5]. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

0.2 20 2 0 0.900000 0.900000 0.900000 0.067082 0.067082 0.067082 

0.4 18 2 0 0.800000 0.800000 0.800000 0.089443 0.089443 0.089443 

0.5 16 1 1 0.749778 0.750000 0.773333 0.096853 0.096825 0.093619 

0.6 14 1 0 0.696222 0.696429 0.718095 0.103690 0.103675 0.101933 

0.7 13 3 0 0.535556 0.535714 0.552381 0.113934 0.113942 0.114846 

1.0 9 1 0 0.476049 0.476190 0.491005 0.115776 0.115791 0.117345 

1.4 6 1 0 0.396708 0.396825 0.409171 0.120641 0.120664 0.123057 

1.5 5 1 0 0.317366 0.317460 0.327337 0.119795 0.119822 0.122674 

1.8 4 2 0 0.158683 0.158730 0.163668 0.099412 0.099439 0.102270 

2.3 2 1 0 0.079342 0.079365 0.081834 0.074955 0.074976 0.077222 

3.1 1 1 0 0.000000 0.000000 0.000000 N/A N/A N/A 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively; N/A means not applicable. 

Table 2. Survival Probabilities and Standard Errors for APLE, KM and MKM for n=10 & 20% censoring; Log L [1, 0.2]. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

0.7 10 2 0 0.80000 0.800000 0.800000 0.126491 0.126491 0.126491 

0.8 8 1 0 0.70000 0.700000 0.700000 0.144914 0.144914 0.144914 

0.9 7 1 0 0.60000 0.600000 0.600000 0.154919 0.154919 0.154919 

1.0 6 1 0 0.50000 0.500000 0.500000 0.158114 0.158114 0.158114 

1.1 5 1 1 0.39375 0.400000 0.437500 0.154503 0.154919 0.156874 

1.2 3 1 0 0.26250 0.266667 0.291667 0.148640 0.150062 0.158479 

1.3 2 1 1 0.00000 0.133333 0.145833 N/A 0.120493 0.130049 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively; N/A means not applicable. 

Table 3. Survival Probabilities and Standard Errors for APLE, KM and MKM for n=40 & 25% censoring; w [1.2, 0.5]. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

0.0 40 2 1 0.949966 0.950000 0.974359 0.034471 0.034460 0.024992 

0.1 37 2 4 0.897905 0.898649 0.962549 0.048218 0.048060 0.030278 

0.2 31 6 1 0.723886 0.724717 0.866294 0.074664 0.074622 0.058587 

0.3 24 3 0 0.633400 0.634127 0.758007 0.081585 0.081590 0.077769 

0.4 21 5 0 0.482590 0.483144 0.577529 0.085613 0.085662 0.092056 

0.5 16 3 0 0.392105 0.392555 0.469242 0.084001 0.084064 0.093649 

0.6 13 2 0 0.331781 0.332162 0.397051 0.081189 0.081257 0.092109 

0.7 11 1 0 0.301619 0.301965 0.360956 0.079213 0.079283 0.090532 

0.8 10 1 0 0.271457 0.271769 0.324860 0.076819 0.076890 0.088382 

0.9 9 2 1 0.210056 0.211376 0.284253 0.070474 0.070674 0.085224 

1.0 6 1 1 0.173646 0.176146 0.255827 0.066692 0.067104 0.084233 

1.1 4 2 1 0.072353 0.088073 0.170552 0.051033 0.055362 0.082398 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively. 
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Table 4. Survival Probabilities and Standard Errors for APLE, KM and MKM for n=30 & 40% censoring; W [1.5, 3]. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

0.0 30 3 0 0.900000 0.900000 0.900000 0.054772 0.054772 0.054772 
0.1 27 5 2 0.732121 0.733333 0.840000 0.080854 0.080737 0.066933 
0.3 17 6 2 0.467461 0.474510 0.728000 0.099713 0.099768 0.090339 
0.4 9 1 2 0.411811 0.421786 0.693333 0.101305 0.101663 0.100365 
0.5 6 1 1 0.340431 0.351489 0.624000 0.105182 0.106280 0.123975 
0.6 4 1 0 0.255323 0.263617 0.468000 0.107961 0.110204 0.164005 
0.7 3 1 2 0.000000 0.175744 0.312000 N/A 0.102691 0.167864 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively; N/A means not applicable. 

Table 5. Survival Probabilities and Standard Errors for APLE, KM and MKM for n=30 & 23.3% censoring; Log-L [1.2, 2]. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

0.4 27 1 1 0.962908 0.962963 0.980769 0.036371 0.036345 0.026430 
0.5 25 1 0 0.924392 0.924444 0.941538 0.051413 0.051398 0.046057 
0.7 24 4 0 0.770327 0.770370 0.784615 0.082345 0.082341 0.081261 
0.8 20 1 1 0.731704 0.731852 0.763968 0.086780 0.086767 0.083959 
0.9 18 1 0 0.691053 0.691193 0.721525 0.090983 0.090975 0.089380 
1.0 17 6 1 0.445766 0.447243 0.586239 0.099379 0.099414 0.099695 
1.1 10 4 0 0.267460 0.268346 0.351743 0.091238 0.091425 0.108749 
1.2 6 1 1 0.221100 0.223621 0.316569 0.086006 0.086438 0.106935 
1.3 4 2 0 0.110550 0.111811 0.158285 0.070033 0.070663 0.095511 
1.4 2 1 0 0.055275 0.055905 0.079142 0.052477 0.053019 0.073568 
1.5 1 1 0 0.000000 0.000000 0.000000 N/A N/A N/A 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively; N/A means not applicable. 

Table 6. Survival Probabilities and Standard Errors for APLE, KM and MKM for n=60 & 53.3% censoring; Log-L [10, 1.2]. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

4 60 1 0 0.983333 0.983333 0.983333 0.016527 0.016527 0.016527 
7 48 5 4 0.880037 0.880903 0.960985 0.045963 0.045815 0.026614 
8 39 1 3 0.857323 0.858316 0.954311 0.050043 0.049899 0.029356 
9 35 3 7 0.779820 0.784746 0.941530 0.061634 0.061081 0.034390 
10 25 11 0 0.436699 0.439458 0.527257 0.084764 0.085086 0.095436 
11 14 4 2 0.307769 0.313898 0.468673 0.080019 0.080678 0.095696 
12 8 2 2 0.222277 0.235424 0.416598 0.075599 0.077270 0.099737 
13 4 1 2 0.129662 0.176568 0.347165 0.070334 0.077178 0.113728 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively. 

Table 7. Survival Probabilities and Standard Errors for APLE, KM and MKM for Leukaemia data set with n=21 & 57% censoring. 

tj rj dj cj APLE KM MKM se.APLE se.KM se.MKM 

6 21 3 1 0.856746 0.857143 0.925000 0.076449 0.076360 0.057477 
7 17 1 0 0.806349 0.806723 0.870588 0.086991 0.086935 0.075583 
10 15 1 1 0.752318 0.752941 0.839496 0.096422 0.096350 0.083977 
13 12 1 0 0.689625 0.690196 0.769538 0.106842 0.106815 0.102040 
16 11 1 0 0.626932 0.627451 0.699580 0.114049 0.114054 0.114255 
22 7 1 0 0.537370 0.537815 0.599640 0.128186 0.128234 0.134729 
23 6 1 0 0.447809 0.448179 0.499700 0.134519 0.134591 0.144668 

NOTE: se.APLE, se.KM and se.MKM are standard error for APLE, KM and MKM respectively. 

 

Fig. 1. Survival curves for APLE, KM and MKM for n=10 & 20% 

censoring; W [0.5, 1.5]. 

 

Fig. 2. Survival curves for APLE, KM and MKM for n=10 & 40% 

censoring; W[0.5. 1.5]. 
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Fig. 3. Survival curves for APLE, KM and MKM for n=15 & 53.3% 

censoring; Log-L [1, 0.2]. 

 

Fig. 4. Survival curves for APLE, KM and MKM for n=80 & 74% 

censoring; W [0.5, 5]. 

 

Fig. 5. Survival curves for APLE, KM and MKM for n=80, 94% censoring; 

log-L [1, 0.2]. 

 

Fig. 6. Survival curves for APLE, KM and MKM for n=400 & 51.5% 

censoring; W [2, 0.5]. 

 

Fig. 7. Survival curves for APLE, KM and MKM for Leukaemia data set 

with n=21 & 57% censoring. 

5. Conclusion and Recommendation 

This article considered the problem of incorporating 
censored individuals in calculating survival probabilities in 
the presence of ties. We developed an adjusted PL estimator 
and also a variance estimator for the developed estimator for 
calculating confidence intervals. The performance of the 
developed estimator, KM and MKM estimator were 
compared using both simulated and real data and it is 
observed that the performance of the proposed estimator is 
quite satisfactory. Our main conclusion is that MKM 
estimator overestimate survival probabilities while KM is not 
appropriate in case of ties between censoring and event 
times. 

In calculating KM estimates in the presence of ties, 
censored individuals are ignored, and thus the information 
contained in the censored individuals is not utilized while in 
calculating APLE estimates, both censored and uncensored 
individuals are considered. So in this way, APLE estimates 
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use all data and may be preferable to KM estimates. We 
therefore, recommend using the proposed estimator in 
calculating survival probabilities in the presence of ties. 

Lastly, in this article ungrouped survival data drawn from 
Weibull and Log-logistic survival distributions were 
considered and observed that the results are similar. Extending 
the proposed estimator to grouped data and to data drawn from 
other survival distributions like lognormal, exponential, among 
others might be fruitful areas of future research. 
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