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Abstract: One and two-sample Bayesian prediction intervals based on Type-I hybrid censored for a general class of
distribution 1-F(x)=[ah(x)+b]" are obtained. For the illustration of the developed results, the inverse Weibull distribution with
two unknown parameters and the inverted exponential distribution are used as examples. Using the importance sampling
technique and Markov Chain Monte Carlo (MCMC) to compute the approximation predictive survival functions. Finally, a real

life data set and a generated data set are used to illustrate the results derived here.
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1. Introduction

Prediction plays an important role in different areas of
applied statistics such as medical sciences and reliability
analysis. Bayesian prediction have more attention among
other issues of prediction. Discussion of the prediction
intervals (one-sample and two-sample prediction) for a future
sample is valuable in lifetime studies. Bayesian prediction
intervals for future observations have been discussed by
several authors, including Howlader [1], Geisser [2], Ragab
and Nagaraja [3], Al-Hussaini and Jaheen ([4]; [5]),
Abdel-Aty et al. [6], Kundu and Howlader [7], Mohie El-Din
et al. ([8]; [9]), Shafay and Balakrishnan [10], Mohie El-Din
and Shafay [11] and Shafay et al. [12]. In this article, we use a
general class of distribution (see; Khan and Abu-Salih [13],
Athar and Islam [14]) to derive general procedure for
determining the one- and two-sample Bayesian prediction
intervals based on Type-I hybrid censored data. In the rest of
this section, we derive the likelihood function and the
conditional density functions of Xs:n given the Type-I hybrid
censored data. In Section 2, we derive the one-sample
Bayesian predictive survival function and the one-sample
Bayesian predictions bounds for the s —th(r <s < n) ordered
lifetime from Type-I hybrid censored sample. Furthermore,

we derive the two-sample Bayesian predictive survival
function and the two sample Bayesian predictions bounds for

the s—th ordered lifetime from a future independent sample.
In Section 3, special cases of this general class such as the
inverse Weibull distribution when the two parameters are
unknown and the inverted exponential distribution are
considered as illustrative examples, wherein we adopt the
importance sampling technique to compute the approximation
predictive survival function in the one-sample case and the
Markov Chain Monte Carlo (MCMC) method to compute the
approximation predictive survival function in the two-sample
case. Finally, some numerical examples are conducted to
illustrate the prediction procedures.
Let the general form of distributions be
1-F(x)=[ah(x)+b]", a<xs<p, (1)
where a, b and c are constants (a; ¢ # 0) s.t
F(a)=0,F(f)=1 and h(x)=h(x;8) is a monotonic and
differentiable function of x in the interval [a,/f] and the

parameter 81O may be a real vector, then
() = ~cah'(x)[ah(x) +b] ", 0

where h'(x):dih(x) . The following table gives some
X

distributions with proper choice of a; b; ¢ and h(x) as examples
of the general class.
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Table 1. Some distributions derived from the general class.

Distributions  F(x) a b ¢ hQ
e—/lx
E tial 1 0 A =
xponentia £>0,4>0 e
o 1 _ 1 _ ~(=maAa
Generalized (I-e ) 11 | (1=t
Exponential x> ,A>0,a>0
Generalized ~(x-)ANa
1 —_
Inverted (1-e ) 11 a gl
Exponential x>p@A>0,a>0
-0(-p)”
Weibull e 1 0 6 guw
xz U
1-e®"
Inverse Weibull -1 1 1 O
0<x<oo
PP
Pareto e a 0 p x!
asx<o
1- _ B
Gumbel ¢ SIS B
B>0
(1+x)™*
Burr type XII 1 1 -k x°
x>0,c>0,k>0
_ P
f]?eta qf the (1-x) 11 P x
irst kind 0<x<l

Let X,, <X,, <---<X,, be the order statistics from a

random sample of size n from a distribution function F(x)

P(K—k)—[ZJ ", k=0,1,--,n, 3)

where p=F(T) and ¢g=1-p=1-F(T).
We have one of the two following types of observations:

Case L[ X, <X, <---<X., if X, <T with
r<kK<mn;
Case II: X, <X,, <-<X,, if T<X_, with
0<K<r-1.

The likelihood function of a Type-I hybrid censored sample
is as follows:

Case L.
L(6:X,)= = 'i)!!j—cah'(x,.)[ah(x,)+b]‘"[ah(x,_)+bj‘<”"'>, 4)
where X, = (x,,~--,x,) and x, <---<x, <T.
Case II:
k
LX) =" —— T -cah' (x)lah(x,) + ] [an(T) + 6]

(n—k)!a (5)

where X, =(x,,---,x,) and x, <---<x, T <x,,,.

When r <s<n, the conditional density function of X

given the Type-I hybrid censored data, is obtained as follows:
Case I.

given in (1) with density function f(x) given in (2). X)) = Sulx, 1 X)), x <x <T, ©)
Let K denote the number of X, ’s that are at most 7. D So(x, 1X,), x,>T,
Then K is a discrete random Varlable with support
{0,1,---,n} and probability density function as where
AR WZ‘/@ %, K =k)P(K = k)
_§_ koniRK=h) [Fx)-Fe)] " [F-F)]” f(x)
S (s=r =1k -5 PK = ) [F()=Fe]
n_s=r-lk=s A¢(XV’T)[“h(xr)+bfﬂ+q) (g rkmsmwiD)1 "
Z —cah'(x,) ah(x,) +b | [ah(T)+b]", 7)
5 (ah(x,) + ) = (ah(T) +B) |
and
B 1 s—1 _ _
S (x 1 X)) “Pr<K=n) ;f(xS | x,, K =k)P(K =k)
i (n—k)P(K = k) [Fe)-F@O] ™ [1-Fe)|™ f(x,)
(s —k=1)i(n—- s)'ZP(K ) [1-F@)]
s-1 sfl AZ ¢(xr ’T) ca h'(xx)[ah(xx) +b]<'(q+n1~+1)71 [ah(T) + b]c(rq*ﬂ*l) , (8)

k=r g=0

with
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(=)™ (k=)
L g —r—1—q)(k—s—-w)!"
(=)™ (n=k)!
gn=s)(s—k=1-¢)"

predicting samples. It makes use of ones prior knowledge
about the parameters and also takes into consideration the data
available. If ones prior knowledge about the parameter is
available, it is suitable to make use of an informative prior but
in a situation where one does not have any prior knowledge
about the parameter and cannot obtain vital information from

and experts to this regard, then a non-informative prior will be a
. suitable alternative to use, Guure et al. [15].
(" ][k ] -1y [ a(T)+ b]“"*"‘“ Let the prior distribution denoted by 7(8;0), where
__ =0 k)i @00 is the vector of parameters of the distribution under
o(x.,T) .
v n Z/: n\(j -1y [a (T)+ b]c(u+n— ) consideration and J is the vector of prior parameters. Then
=\ the posterior density function of &, can be written as:
Case L.
Case II: .
| L (0] X,)=C"L(6:X,)7(8;9), (10)
f‘Z(xg|Xk):P(OskSr_l)k:0 (x§|xk7K:k)P(K:k) where Xr:(.xl,"',xr) and xl<"'<erT; and
C =|L(6,X,)mb;0)db.
o (n=k)P(K = k) : L '
= o Case I1.
(s =k =D n=5)1> Pk = j) . B
J=0 (01 X,)=C, L(6;X,)m8;9), Q)
s—k-1 n-s
[F(xs)_F(T)] [I—F;()CS)] f(xs) where Xk:(-xp”'axk) and x1<---<kaT<xk+1, and
1-F(D)|"
[1=F ) C, = [ £.(6:X,)m6.8)d6.
-2 ; ALY eah()[ah(x)+b]"" [ah@ 6] O) 37 One-Sample Bayesian Prediction Intervals
where We simply obtain the predictive survival function of X
as follows:
n k X c(i+n— C I.
R e
i=0 1 —
Y. 1) = =3 (n)(j . o — Fu(x,|X,), x <x <T,
(_1)u [ah(T) +b]L(u+n*]) P‘1 (_xs | Xr) =4 (12)
Jj=0 u=0 J u Flz(xs‘Xr)a x5>Ta
. . h
2. Bayesian Analysis where
Bayesian approach has received a lot of attention for
estimating the parameters of statistical distributions and for
e T « B ¥
Fu X,)=[ [ G| X)) 8]x)dbdx, +["[ f,x, | X,)7 (6] x,)d0dx,, (13)
and
— X F (L, |X)=1-Zand F U, |X)==, (16)
Fu| X)) =[] _fulx, | X)7 @]x)d6dx,. (14) Hom 2 Hon 2
t JO0O
h
Case II. where

Fa| X =[x | X)7(0]x,)dbdx,.  (15)

The Bayesian predictive 100(1-))% interval for

X ,r<s<n, can be obtained by solving the following two

s

equations:

— ff(r\Xr), Casel,
F | X)=q_.

F2(t| X,), Casell,

and L, and U, denote the lower and upper bounds,

respectively.
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2.2. Two-Sample Bayesian Prediction Intervals

Let us consider a future sample {Y,,Y,,---,Y } of size m,
XZ)"'axn} and

<Y, . be the order statistics of the future

independent of the informative sample {X
let Yl:m S YZ:m S
sample. Suppose we are interested in the predictive density of
the order statistic Y, of the future sample, given the

,»"-*»X,} . The probability density
function of the s -th order statistic of the future sample of size
m from a continuous distribution with the distribution
function F(x) and the probability density function f(x) is

informative data set {X,, X

given by

ho (16)= [FOIT1=FOI™ £ (7).

(s 1)'( —s)!

where 1<s<m; (see, Arnold et al. [16]).
From (1) and (2), we simply obtain the probability density
function of the s-th order statistic from a general class as

follows:
s—1
fYy-m 6= ZClcah (y)(ah(y) +b) =,
N =0

(_1)1+1 m!
INm=s)(s—1-1)!
Bayesian predictive density function of Y,

Case .

where C, = , and we simply obtain the

as follows:

s-1
fy 1X,)= 3G [ cahl (»)(ah(y) + by "= (0] X,)d6, (17)
o 1=0
Case II.
s-1
fo 1 X) = Y C [ cahl ()(ah(y) + by """ 7(8] X,)d6. (18)
=0

From (17) and (18), we simply obtain the predictive
survival function of Y. as follows:

s:m
Case .

—_— B .«
FIYS:m (t ‘ Xr) = J‘t ﬁyy:m (y | X))dy

s—1 .
= (m+1- +1)J(ah(t)+b) m (8| X,)d6. (19)

Case I1.

—_— B .
Fzys:m (t | Xk) = -[‘ f‘ZYS:m (y | Xk)dy

c(m+l-s+1)
+1) j (ah(t) +b) TZ.(6] X,)d6. (20)

Then, the Bayesian predictive 100(1-))% interval for
Y,

sim?

1< s<m, can be obtained by solving the following two

equations:
— % L y — . y
F (L, |X)=1 3 and F (U, |X)_E’ 21
where
m(z|X) Casel,
\ m (t ‘ X)
FZY.Y;m (t1X,), Casell,
and L, and U, denote the lower and upper bounds,
respectively.
3. Examples

In this section, we discuss the Bayesian prediction of
observations from the inverse Weibull distribution when both
parameters are unknown and from the inverted exponential
distribution. To our knowledge, no one study these
distributions for determining the Bayesian prediction intervals
for future lifetimes based on an observed Type-I hybrid
censored data.

3.1. Inverse Weibull Distribution

In this subsection, we take a special case from this general
class, the inverse Weibull distribution, when
Wx)=e® " ,a=-1,b=1, and c=1,
posterior density function depend on the maximum likelihood

distribution given in (4) and (5). Here, we assumed that the
model parameters € and p follow the independent gamma

we provide the

prior density of the following forms:

g (B|u,v)0 g7, g>0,

* Us =1 —v.
& (pluy,v)Op? e Zpa p>0,

where u,,v,,u,, and v, are the hyper-parameters. Then, the
joint posterior density function of € and p, given the

Type-I hybrid censored data, can be written as:
Case L.

e—e[;ﬂ"’”l ]p"%] [Ij x;pfl:|€’vzp [1 e O }"" ’ (22)

where X, =(x,,---,x,) and x, <---<x, <T.

Therefore, the posterior density function of 8 and p

iy =1

7@.p|x)086

given X, can be written as

771:k(0’p|x1) D 77{9(0|pﬂXr)ITI-p(p|Xr)hl(eﬂp|Xr)9 (23)

where 77,(6| p,X,) is a gamma density function with the
shape and scale parameters as r+u, and (Z;lx,_” +vl),

respectively, 77,(p| X,) isa proper density function given by
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7, (P X) 0 p ™ ] e I ], (29)

and

—-6x
e

h(6,p|X,)= s (25)

Case II.

k
- Zr”l’u’l .
fr;(e,p|Xk>De“""‘eH[":‘ p[ﬂx}[l—”] + (26)

where X, =(x,,---,x,) and x, <---<x, T <x_,.

Similarly as above, we can write the posterior density
function of € and p given X, as

77;(9,}7 |x,) O 75,56 ank)ﬂzp(p | X)h(E,p] X,), (27)

where 77,,(6| p,X,) is a gamma density function with the
shape and scale parameters as k+u, and (Z;xi_” +v1) ,

respectively, 77,,(p| X,) is proper density function given by

ITZp(p | Xk) D prmz ! I_l x S 1 7‘}2” x*p +v *k u (28)
and
Similarly, From Eq. (8), we can obtain
s—1 _ 'B T o
12(X|X})= (n=Fk)'B,(T) ox,F
=r ( k 1)'(}1 S)'

(e s _e*GT_p )S*k*l (1_6_9*‘3_ )n spgx -p- 1 9 wr (1_

h(@,p| X,)=[1-e" "7 (29)
3.1.1. One-Sample Bayesian Prediction

The conditional density function of X given the Type-I
hybrid censored data, (from Egs (7), (8), (9)), can be written
as:

Case L.
-6x P -6x P

_x_ (k=n)'B/(T)
ulx [ X,) = ;(S_r_l)!(k_s)!

e*ﬁx‘;p (e—BT_p _ e—Bx‘;p )k—s (e—HT_/} _e’gxr_p )r—k

S D" (k=) B (T)e " =&y
Tms 420 =0 (s—r—g-D!q'(k—s—w)lw!

6

(e*GXr_l’ )q (e_gT—P )k —s—w pexS—p—l (e* xsip )w+x—r—q , (30)

where

[Z](e-sr‘l’ )k(l_e—ST_P Y
B(T)= .

Z(”.](e'”"’)f(l—e-”" -

J=r

e*GTip )kﬂl

_ s-1 sfln—s (_1)1*2 (i’l _k)'Bl (T)(l _ e*GT_p )kﬂz

-or7F -p-1 s—k=l+z
e Ox " (e % . 31
o= DNs—k-I-DWzi(n-s5s-2)! ( yp ( ) 1)
Case II.
The conditional density function of X, given the Type-I hybrid censored data, in this case, can be written as:
< -k)!B,(T —ox” 0P ke —0x7P e o —Ox —orP ie
fé(xle,.): (n k) 2() (egsp_eGTp)skl(l_egsl)nspngplessp(l_eGTp)kn
o —k-Dl(n-s)! ‘
r=ls—k=ln lw+u _ 'B T 1_ 61" P \k-n .
Z ( ) ( k) ( )( ) ( GTp)wpgx pl(e Xg )skn u’ (32)

—k=-w=-Dwlul(n—s-u)!

*GT P \n—k
)

k=0 w=0 u=0
where
n —or p
Bz (T) B r-l
()

Then, we obtain the predictive survival function of X

j( Y=y

as follows:

p— 00 @00 T * © @00 © *
Fu| X,)=["[ ([ £1:(x:6.p)dx )7 (8, p| X,)dOdp +[ [ ([ "f.(x,:6, p)dx )75 (6, p | X,)d bdp

(€ =y pl
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lk=s

2

n_s-r

=D (k~r)'B/(T)
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(e—BTip _ ’gx,_p )r—k

(e’gx,ip )q (e—HT_p )k —s=w

J‘O J‘O i=s 4=0 7 'w'(s r—q- l)l(k—s—w)l

P

[(e—HT_p )wt\'—r—q _ (e—ﬁt

sl s—

'S DT (n=k) s -k -DB(T)

wts—r—q

)" (8, p| X, )d Odp

_gr" P -
l1-e er k-n -
( ) e er p)l

0 oS k—
+
N S N (s—r =) (s—k—1-

(1= "y ™17 (8, p| X,)dBdp.

and similarly

1)!

(s—k-Il+z2)(n—-s-2z)!

(33)

Fu@|X)=[ [ "f.(x | X,)7 6, p| X,)dOdpdx,

s=1s—k=ln=s

(D™ (n=k)'B/(T)

(1 _ e—gl"_p )k—n

"y

222,

k=r =0 z=0

S 8
°8

N(s—k—1-1)lz!

(1-

e

-6 P )s—k —l+z

(n=s—-z2)(s—k—-1+z)

7, (6, p| x,)dGdp. (34)

Fat1 X)) = ["[[£(x, | X)7 (6, p| X,)d6dpdsx,

—1)"™ (n=k)!B,(T)

e—gr‘l’ )k—n

(-

—k=w=1)lwlu!

(I-

It does not seem to be possible to compute the probabilities
in Eqs (33), (34), (35) analytically. Hence, we use the
importance sampling technique, (see, Geweke [17]; Chen and
Shao ([18]; [19])) to construct the Bayesian prediction interval.
The details are explained below.

Importance Sampling technique

Firstly, we need to prove that the 77,(p|data) as given in

(24) and (28) has a log-concave density function: From (24),
the In7;,(p|X,) without the additive constant is

Inm,(plX,)=Inc+(r+u,-1)np

“Wp- (p+1)zlnx =(r+u, )ln[Zx P4y

i=1

2

d
it is easy to show that ?ln 77,(p| X,) <0, which implies
p

that 77, (p|data) has a log-concave density function.

Since 77,(p|data) has a log-concave density, using the

idea of Devroye [20], it is possible to generate sample from
7t ,(pldata) . Moreover, since 77,(6|p,data) follows
gamma, it is quite simple to generate sample from
7,(8| p,data) . Now we would like to provide the

importance sampling procedure to compute the probabilities
in Egs (33), (34), (35).
Algorithm:

&Y, p |, )d6dp.

(n=-s—-w)(s—k—-w+u) o
(33)

» Stepl: using the
method developed by Devroye [20].

* Step2: Generate 8 from 77,(8| p,data) .

Generate p from 77,(p|data)

* Step3: Repeat Step 1 and Step 2 and obtain
(P136),(P236,),+, (D3 6y)-
. Step4: The approximate value of

I:I:f(@,p)m*(ﬁ, p|X,)d8dp can be obtained as

1 &,
72]((9[’17[)}’1(9;9171‘ |‘Xr)
i=1

o oo . M =

[7], r6.07 6, p| X,)dbdp =——"—; :
— Y h@,p | X
M; l( i pz| r)

Similary, we can use the above algorithm to compute
[ [ r©.p7 6.0 x,)dbdp.

The 100(1-p)% interval for

X . ;r<s<mn; can be obtained by solving the two equations

sin?

given in (16).

Bayesian predictive

3.1.2. Two-Sample Bayesian Prediction

The predictive survival function of Y in this special case

is obtained as follows:
Case I.
Fuy

sim

@1 X)=["fy @1X)dy
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s—l

S ey g @ X, . (36)

Case II.
Fa, (1] X,) = Iff;m (| X)dy
:l(mﬂ s+1)J [Ca-eo"y 6, p) X, )d6dp, (37)
where C, = D"m!

N(m=s)(s—1-1)!"

By the same importance sample technique, the Bayesian
predictive 100(1—-))% interval for Y  ,1<s<m, can be
obtained by solving the two equations in (21).

3.2. Inverted Exponential Distribution

The inverted exponential distribution is a special case from
inverse Weibull distribution when the shape parameter is
known ( p=1). we provide the posterior density function

depend on the maximum likelihood distribution given in (4)
and (5), when the shape parameter is p =1. It is assumed that

the scale parameter has a gamma prior distribution with the
shape and scale parameters as u and Vv, respectively and it
has the probability density function

m@|u,v)d68 e, 6>0.

The posterior density function of &, given the Type-I
hybrid censored data, can be written as:

Case L.
i, N 1,
afnr) o B
(-1ygnte T
7(0)x)=—— a— , B8
1 +y —+v F(r+u)
T
where X, =(x,,---,x,) and x, <---<x <T.
Case II.
3]
6L+ 4y
n—k n— k T X
O P
77';(6'-"/:): L jiok / Z(k+u) (39)
Z(" ](—1)/{ +Z—+vj Mk +u)
o\ i=1 X
where X, =(x,,---,x,) and x, <---<x, T <x,,,.
In this case the predictive survival function of X, is the

same as above when we put p=1.

3.2.1. One-Sample Bayesian Prediction
To compute J.wa(ﬁ)f(H\X,)dH by using the MCMC

technique, we use the following procedure:
* Step 1. Generate Pl from ﬂf(@l X,);
1

« Step 2. Repeat Step 1 and obtain 6,6,,...,6, ;
* Step 3. The approximate value of Iowf(H)ﬁ(B\ X,)d8 is
then obtained as

N

- 2.1@)
[; 1@ @ x,)d0=——

Similarly, we can use the above algorithm to compute
[e@7 @] x,)d6.

The Bayesian predictive 100(1-))% interval for

X,,;¥ <s<n; can be obtained by solving the two equations

given in (16).

3.2.2. Two-Sample Bayesian Prediction

The predictive survival function of Y, in this special case

is obtained as follows:
Case 1.

Fu, (1 X)=[ /5 (| X,)dy

s—1

i (m+1- S+1)I -

-1
—Hz )m+/—x+1

(6] X,)d6. (40)

Case I1.

Fo, (1 X)=["fa (7] X,)dy
s—1

— _ Gt_l m+l=s+l ¥
;(m+l ) AU ACIE AT CY

Then, the Bayesian predictive interval for ¥, ,1<s<m,

can be obtained by the same manner.

4. Numerical Results

In this section we consider a real life data set which the
inverse Weibull distribution fits it well and another generated
data set from the inverted exponential distribution to illustrate
the methods proposed in the previous sections.

The real data set is given by Dumonceaux and Antle [21],
and it represents the maximum flood levels (in millions of
cubic feet per second) of the Susquehenna River at Harrisburg,
Pennsylvania over 20 four-year periods (1890-1969) as: 0.654,
0.613, 0.315, 0.449, 0.297, 0.402, 0.379, 0.423, 0.379,0.324,
0.269, 0.740, 0.418, 0.412, 0.494, 0.416, 0.338, 0.392, 0.484,
0.265. Maswadah [22] and Singh et al. [23] checked the
suitability of the inverse Weibull distribution to this real data
set and concluded that the inverse Weibull distribution fits the
data very well.

We consider two different Type-I hybrid censoring
schemes:

1. When n=20,r=15 and T =0.43 .

life-test would have terminated at T <Xx,,,,, and we have

obtained the folloing data: 0.265, 0.269, 0.297, 0.315, 0.324,

In this case, the
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0.338,0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418 and 0.423;

2. When n=20,r=15 and 7 =0.47 . In this case, the
life-test would have terminated at x,,,, = 0.449, and we have
obtained the following data: 0.265, 0.269, 0.297, 0.315, 0.324,
0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423
and 0.449.

By using the procedures presented earlier, we construct
95% one-sample Bayesian prediction intervals for order
statistics X, ,s=16,---,20 as well as 95% two-sample
Bayesian  prediction intervals for order statistics
Y ,s=1,510,20 from a future sample of size m =20. To
explore the sensitivity of the predictors with respect to the
hyperparameters (u,,v,,u,,v,) , we have considered the

(1,7,3,1),(1,7,3,2),
(1,8,3,1),(1,8,3,2). Table 2 presents the lower and upper

following four hyperparameters:

95%  one-sample Bayesian prediction bounds for
X,,,s=16,---,20 for these four choices of the
0.45175 0.84893 0.95595 1.33698 1.38886 1.42612
2.91384 3.34748 3.39207 3.49797 .41589 4.56534
0716 11.7103 13.3331 78.4651 135.999 848.432

The corresponding results for the one-sample and
two-sample prediction intervals are represented in Tables 4
and 5, respectively.

5. Concluding Remarks

In this paper, we obtained one and two sample prediction
bounds based on Type-I hybrid censored data under the
general class of distributions. We introduced two examples,
the inverse Weibull distribution with unknown two parameters
and the inverted exponential distribution, to illustrate the
developed results. Bayesian predictive survival function can
not be obtained in closed form and so importance sampling
technique and Markov Chain Monte Carlo samples, which are
then used to compute the approximate predictive survival
function. Finally, some numerical results are presented to

1.89285 2.0541
4.67023 5.94493 8.93186 9.01355 9.69029

hyperparameters. Similarly, the lower and upper 95%
two-sample Bayesian prediction bounds for
Y. ,s=1,510,20 for the different choices of the

hyperparameters are presented in Table 3.

Now we generate another data set to illustrate the
predictions results for the inverted exponential distribution,
we follow the steps

1. given the set of prior parameters, generate the parameter 8,

2. using the generated population parameter, generate an
inverted exponential random sample of size n,

3. follow the procedures presented in Section 2.2 to
construct one-sample and two-sample Bayesian prediction
intervals based on Type-I hybrid censored data.

Given the set of prior parameters (let u =30,v=11,), we
generated the parameter € from prior distribution, 8=2.7
then generated the inverted exponential random sample of size
n =130, the generated sample is listed as the following:

18509  2.60002 2.64192 2.8265

10.5754

illustrate the results and we observe the following remarks:

1. From Tables 2-5, we notice that the lengths of the
Bayesian prediction intervals are short when there are a large
number of observed values. It is clear that when we use the
same value of r but larger value of T, the Bayesian
prediction intervals become tighter.

2. It is observed that the prediction intervals tend be wider
when s increase. This is a natural, since the prediction of the
future order statistic that is far a way from the last observed
value has less accuracy than that of other future order
statistics.

3. It is evident from Tables 2 and 3 that the lower bounds of
Bayesian prediction are relatively insensitive to the
specification of the hyperparameters (u,,v,,u,,v,) while the

upper bounds are somewhat sensitive.

Table 2. 95% one-sample Bayesian prediction bounds for X ,,s =16,---,20 from inverse Weibull distribution.

r=15and T =043

(ul’quZ’vz) (1979391) (1979392) (1989391) (1’8’3’2)

S LXS"! UXS'” LXS"! sn LXS"! UXS"! LXS'” UXS"!
16 0.43907 0.63118 0.44275 0.68220 0.44132 0.66464 0.44615 0.79875
17 0.45561 0.78217 0.45847 0.78082 0.45652 0.82273 0.46265 0.85957
18 0.47628 0.96853 0.47105 0.81186 0.47338 0.91154 0.48197 0.97904
19 0.49904 1.19722 0.51241 1.34441 0.49287 1.02787 0.50513 1.17879
20 0.53634 1.80118 0.55875 2.22601 0.51996 1.14195 0.56461 2.81921
r=15and T = 0.47

(), v),1,,v,) 1,7,3,1) (1,7,3,2) (1,8,3,1) (1,8,3,2)

S LXSin UXSZ” LXSin ¥ LXSin UXSin LXSZ” UXSin

16 0.44205 0.53420 0.44617 0.57326 0.44310 0.56012 0.44717 0.59083
17 0.44273 0.54657 0.45013 0.65100 0.45077 0.65790 0.45082 0.66844
18 0.45028 0.67311 0.45330 0.77419 0.49619 0.74618 0.46506 0.80804
19 0.46014 0.84750 0.47350 1.10977 0.50554 0.99213 0.47699 1.07860
20 0.50359 1.70414 0.51569 1.19332 0.51248 1.04670 0.52939 2.33474
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Table 3. 95% two-sample Bayesian prediction bounds for Y, ,s=1,5,10,15,20;m =20 from inverse Weibull distribution.

r=15and T =043

(5015145, ,) ,7,3,1) 1,7,3,2) 1,8,3,1) 1,8,3,2)
& LYSZm UYSZ”I LYSZm UYSim LYSZm UYSZ”I LYSZm UYSZ”I
1 0.20628 0.32424 0.18440 0.31540 0.21846 0.33201 0.18620 0.32965
5 0.27808 0.40067 0.26681 0.39713 0.28045 0.39171 0.26439 0.39187
10 0.32206 0.48557 0.32817 0.50129 0.32436 0.46338 0.32665 0.52512
15 0.37542 0.59968 0.38940 0.71546 0.37992 0.62889 0.38733 0.71203
20 0.51570 2.12839 0.53647 2.34615 0.49280 1.73166 0.53828 2.52157
r=15and T = 047
(1,515, v,) 1,7,3,1) 1,7,3,2) 1,8,3,1) 1,8,3,2)
S L. U, L., U Ly, U, Ly, U,
1 0.21639 0.31731 0.20012 0.32035 0.21495 0.32431 0.19757 0.31722
5 0.28039 0.38947 0.26345 0.38254 0.27969 0.38454 0.27278 0.39054
10 0.32728 0.46743 0.32356 0.48846 0.32377 0.46018 0.32371 0.49926
15 0.37368 0.57193 0.38515 0.66518 0.37618 0.59236 0.38739 0.68362
20 0.51229 1.94013 0.53482 2.13999 0.49172 1.61468 0.53880 2.30696
undu, D. and Howlader, H., . Bayesian inference an
7] Kundu, D. and Howlader, H., 2010. Bayesian inf d
Table 4. 95% one-sample Bayesian prediction  bounds  for prediction of the inverse Weibull distribution for Type-II
X8 =26,---,30. from inverted exponential distribution. censored data. Comput Stat Data Anal. 54, 1547-1558.
r=25 and T=10.6 r=25 and T=11.5 [8] Mohie El-Din, M. M., Abdel-Aty, Y. and Shafay, A. R., 2011.
S Ly, Uy, Ly, Uy, Two sample Bayesian prediction intervals for order statistics
26 116371 52,0702 03644 209758 based on the inverse exponential-type dist.ributions using right
27 13.3179 80.5060 9.8224 36.2551 censored Sample. J. ofthe Egy. Math. Societ. 19, 102—105.
28 15.4181 138.939 11.3103 70.4118 . .
29 19.5173 371.245 12.4387 194.071 [9] Mohlg El-Dm,' M M., Abdel—Aty,. Y and Shafay, A. R., 2011.
30 28.6091 3685.73 16.8671 2019.12 Bayesian prediction for order statistics from a general class of
distributions based on left Type-II censored data. Int. j. math.
Table 5. 95%  two-sample Bayesian prediction bounds for comput. 13, 1-8.
Y,,s=1,5,10,20,30;m=30 from inverted exponential distribution. [10] Shafay, A. R. and Balakrishnan, N., 2010. One- and
two-sample Bayesian prediction intervals based on Type-I
r=25 and T= 10.6 r=25 and T= 11.5 hybrid censored data. Commun Stat Simul Comput. 41, 65-88.
S L, U, L, U, . .
i ki i b [11] Mohie El-Din, M. M. and Shafay, A. R., 2013. One- and
1 0.35180 1.28963 0.34616 1.25820 two-sample Bayesian prediction intervals based on
5 0.84871 238517 0.82808 2.25091 progressively Type-II censored data. Stat Pap. 54, 287-307.
10 1.37635 3.97899 1.36568 3.83175 .
20 328013 12.5604 322973 11.9778 [12] Shafay, A R., Balakrishnan, N and Abdel-Aty, Y., 2014.
10 20.5459 3083.74 20.1275 3016.79 Bayesian inference based on a jointly Type-II censored sample
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