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Abstract: The most important assumptions about econometrics and time series data is stationarity, This study therefore 

suggests that, in trying to decide by classical methods whether economic data are stationary or not, it would be useful to 

perform tests of the null hypothesis of stationarity as well as tests of the null hypothesis of a unit root. The study compared 

power and type I error of Augmented Dickey-Fuller (ADF), Kwiatkowski, Phillips, Schmidt and Shin (KPSS) and Phillips and 

Perron (PP) to test the null hypothesis of stationarity against the alternative of a unit root at different order of autoregressive 

and moving average and various sample sizes. Simulation studies were conducted using R statistical package to investigate the 

performance of the tests of stationarity and unit root at sample size 20, 40, ..., 200 at first, second and third orders of 

autoregressive (AR), moving average (MA) and mixed autoregressive and moving average (ARMA) models. The relative 

performance of the tests was examined by their percentage of their powers and type I errors. The study concluded that PP is the 

best over all the conditions considered for the models, sample sizes and orders. However, in terms of type 1 error rate PP still is 

the best. 

Keywords: ADF, KPSS, Stationarity, Simulation 

 

1. Introduction 

The most important methods for dealing with 

econometrics and time series data, in the case of model 

fitting includes autoregressive (AR) models, moving average 

(MA) models, and mixed autoregressive moving average 

(ARMA) models. The basic assumption of these models is 

stationarity, that the data being fitted to them should be 

stationary. 

Autoregressive and moving average models are 

mathematical models of the persistence, or autocorrelation, in 

a time series. The models are widely used in, econometrics, 

hydrology, engineering and other fields. There are several 

possible reasons for fitting AR, MA and ARMA models to 

data. Modeling can contribute to understanding the physical 

system by revealing something about the physical process 

that builds persistence into the series. The models can also be 

used to predict behavior of a time series or econometric data 

from past values. Such a prediction can be used as a baseline 

to evaluate the possible importance of other variables to the 

system. They are widely used for prediction of economic and 

industrial time series. Another use of AR, MA and ARMA 

models is simulation, in which synthetic series with the same 

persistence structure as an observed series can be generated. 

Simulations can be especially useful for established 

confidence intervals for statistics and estimated econometrics 

quantities. 

These studies suggest that, in trying to decide by classical 

methods whether economic data are stationary or integrated, 

it would be useful to perform tests of the null hypothesis of 

stationarity as well as tests of the null hypothesis of a unit 

root. This paper provides a straight forward test of the null 
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hypothesis of stationarity against the alternative of a unit root 

at different order of autoregressive and moving average and 

various sample sizes. There have been surprisingly few 

previous attempts to test the null hypothesis of stationarity. 

[1] Consider a test statistic which is essentially the F statistic 

for ‘superfluous’ deterministic trend variables; this statistic 

should be close to zero under the stationary null but not 

under the alternative of a unit root. [2] considers the Dickey-

Fuller test statistics, but estimates both trend-stationary and 

difference-stationary models and then uses the bootstrap to 

evaluate the distribution of these statistics. 

The outcomes of this research will assist a researcher to 

understand which of the tests of stationarity can be used for a 

particular order of autoregressive and moving average 

models and at what sample size is reliable. 

1.1. Autoregressive Processes 

An autoregressive model is simply a linear regression of 

the current value of the series against one or more prior 

values of the series. The value of (p) is called the order of the 

AR model. AR models can be analyzed with one of various 

methods, including standard linear least squares techniques. 

Assume that a current value of the series is linearly 

dependent upon its previous value, with some error. Then we 

could have the linear relationship 

X� =∝� X��� +∝� X��� + ⋯ +∝
 X��� + e
    (1) 

Where, ∝�, ∝�, …  ∝� are autoregressive parameters and et 

is a white noise process with zero mean and variance  ( ��). 

Autoregressive processes are as their name suggests 

regressions on themselves. Specifically, a pth-order 

autoregressive process {Xt} satisfies the equation 1. The 

current value of the series Yt is a linear combination of the p 

most recent past values of itself plus an “innovation” term et 

that incorporates everything new in the series at time t that is 

not explained by the past values. Thus, for every t, we 

assume that et is independent of Xt−1, Xt−2, Xt−3,.... [3] carried 

out the original work on autoregressive processes. 

1.2. Moving Average Model 

The general moving average model can be given as 

follows; 

X� = ���
�� + ���
�� + ⋯ + ���
�� + �
           (2) 

We call such a series a moving average of order q and 

generally represented by MA(q). The terminology moving 

average arises from the fact that Xt is obtained by applying 

the weight ��,��,. .., ��  to the variable �
 , �
��, … , �
�� . 
Moving average model was first considered by [4] and later 

by [5]. 

1.3. Autoregressive Moving Average Model (ARMA) 

In some application, the autoregressive or moving average 

model discussed in previous sections becomes cumbersome 

because we may need a higher order model with many 

parameters to adequately describe the dynamic structure of 

the data. To overcome these, Autoregressive Moving Average 

Model (ARMA) models are introduced [6]. Basically an 

ARMA model combines the ideas of autoregressive and 

moving average models into a compact form so that the 

number of parameter used is kept small. The concept of 

ARMA model is highly relevant in volatility modeling [7]. 

If we assume that the series is partly autoregressive and 

partly moving average, we obtained a quite general time 

series model (ARMA). 

X� =∝� �
�� +∝� �
�� + ⋯ +∝
 �
�
 + ���
�� 

+���
�� + ⋯ + ���
�� + �
                (3) 

We say that Xt, is an autoregressive and moving average of 

order p and q respectively. Symbolically, the model is 

represented by ARMA(p, q). 

1.4. Stationarity 

In Statistics, a stationary process is a stochastic process 

whose joint probability distribution does not change when 

shifted in time. Consequently, parameters such as the mean 

and variance, if they are present, also do not change over 

time. 

The most important assumption made about time series 

data is that of stationarity. The basic idea of stationarity is 

that the probability laws that govern the behavior of the 

process do not change over time. In indeed, the process is 

statistically equilibrium. Specifically, a process {Yt} is said to 

be strictly stationary if the joint distribution of Yt is the same 

as that of Yt−k for all t and k; 

t = 1, 2, … k. In other words, the Y’s are (marginally) 

identically distributed [8, 9]. It then follows that E(Yt) = 

E(Yt−k) for all t and k so that the mean function is constant for 

all time. Additionally, Var(Yt) = Var(Yt−k) for all t and k so 

that the variance is also constant over time. Also, the basic 

assumption of stationary time series is white noise, i.e the 

error term of the model must be normally distributed with 

mean zero and variance σ
2
. 

Based on these, the parameter of autoregressive model 

fixed for our simulation were derived as p 

��(�): �
 = ���
�� + ���
�� +  … �
�
�
 + �
   (4) 

�
� = � !
��∝"!�∝!!�… ∝#!

                                (5) 

The first order autoregressive is stationary when |�| < 1 

obtained from the characteristic equation  1 − �(�) = 0. 

For the second order autoregressive we introduced the 

autoregressive characteristic polynomial 

�(�) = 1 − ��(�) − ��(��) 

and the corresponding AR characteristic equation 

1 − ��� − ���� = 0                             (6) 

It may be shown that, subject to the condition that et is 
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independent of Yt−1, Yt−2, Yt−3,..., a stationary solution to 

Equation (4) exists if and only if the roots of the AR 

characteristic equation exceed 1 in absolute value (modulus). 

We sometimes say that the roots should lie outside the unit 

circle in the complex plane. This statement will generalize to 

the pth-order case without change 

In the second-order case, the roots of the quadratic 

characteristic equation (6) are easily found to be 

)"±+()"!,-)!)
��)!                                       (7) 

The AR(2) is stationary if the absolute value of (7) exceed 

1 (Jonathan and Kung-Sik, 2008 and Akeyede et al, 2015) 

2. Methodology 

Simulation studies were conducted to investigate the 

performance of Tests of stationarity in different order of 

autoregressive and moving average. Several data sets were 

simulated following assumption of stationarity earlier 

mentioned at different sample sizes and orders of 

autoregressive (AR) models, moving average (MA) models, 

and mixed autoregressive moving average (ARMA) models. 

Effect of sample size, order of autoregressive and the 

stationarity of the two models were examined on the power 

of stationarity tests. The tests that were considered in this 

study are augmented Dickey–Fuller test (ADF), 

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) and Philip 

Perron (PP) tests 

To illustrate the important statistical issues associated with 

autoregressive unit root tests, consider the simple AR(1) 

model 

.
 = �.
�� + �
 , �
~01(0, ��) 

H0: � = 1 23 4�: |�| < 1 

The test statistic is 

5)6� = �7 − 1
89(�7) 

Where �7  is the least square estimate and SE(:;) is usual 

standard error estimate The test is a one-sided left tail test. If 

yt is stationary (i.e. |�| < 1), then it can be shown by [10] 

that 

5)6�~1(0,1) 

2.1. Augmented Dickey–Fuller Test 

In statistics and econometrics, an augmented Dickey–

Fuller test (ADF) is a test for a unit root in a time series 

sample. It is an augmented version of the Dickey–Fuller test 

for a larger and more complicated set of time series models. 

The augmented Dickey–Fuller (ADF) statistic, used in the 

test, is a negative number. The more negative it is, the 

stronger the rejection of the hypothesis that there is a unit 

roots at some level of confidence. 

2.2. Testing Procedure 

The testing procedure for the ADF test is the same as for 

the Dickey–Fuller test but it is applied to the model 

∝� �
�� +∝� �
�� + ⋯ +∝
 �
�
 + �
         (8) 

By including lags of the order p the ADF formulation 

allows for higher-order autoregressive processes. This means 

that the lag length p has to be determined when applying the 

test. One possible approach is to test down from high orders 

and examine the t-values on coefficients. An alternative 

approach is to examine information criteria such as the 

Akaike information criterion, Bayesian information criterion 

or the Hannan–Quinn information criterion. 

The unit root test is then carried out under the null 

hypothesis α = 0 against the alternative hypothesis of α <0 

Once a value for the test statistic 

<= = α;
89(α;) 

is computed it can be compared to the relevant critical value 

for the Dickey–Fuller Test. If the test statistic is less (this test is 

non symmetrical so we do not consider an absolute value) than 

the (larger negative) critical value, then the null hypothesis of 

α = 0 is rejected and no unit root is present. [11] 

2.3. Kwiatkowski, Phillips, Schmidt and Shin (KPSS) 

[12] proposed an LM test for testing trend and/or level 

stationarity (the KPSS test). That is, now the null hypothesis is a 

stationary process. Taking the null hypothesis as a stationary 

process and the unit root as an alternative is in accordance with a 

conservative testing strategy. Hence, if we then reject the null 

hypothesis, we can be pretty confident that the series indeed has 

a unit root. Therefore, if the results of the tests above indicate a 

unit root but the result of the KPSS test indicates a stationary 

process, one should be cautious and opt for the latter result 

Null hypothesis 

4?: �@� = 0 

Under the null hypothesis of �
~1AA<(0, �@�),  the test 

statistic is 

BC = ∑ 8
�E
6�
�7@�

 

�7@� = ∑ �
�E
6�
F  

8
 = G �H, 5 = 1, … , F



H6�
 

where et are the residuals from the regression of yt on a 

constant and a time trend 

2.4. Phillips Perron Test 

The Phillips perron test (named after Peter C.B. Phillips 
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and perron) is a unit root test. That is, it is used in time series 

analysis to test the null hypothesis that a time series is 

integrated of order 1. It builds on the Dickey–Fuller test of 

the null hypothesis in where the first difference operator. 

Like augmented Dickey–Fuller test, the Phillips Perron test 

addresses the issue that the process generating data for might 

have a higher order of autocorrelation than is admitted in the 

test equation making endogenous and thus invalidating the 

Dickey–Fuller test. Whilst the augmented Dickey–Fuller test 

addresses this issue by introducing lags of as regression in 

the test equation, the Phillips Perron test makes a non –

parametric correlation to the t- test statistics. The test is 

robust with request to unspecified autocorrelation and 

heteroscedasticity in the disturbance process of the test 

equation. [13] report that the Phillips Perron test performs 

worse in finite samples than the augmented Dickey–Fuller 

test. And the advantage of the Phillips Perron test is that it is 

non–parametric, i.e it does not require to select the level of 

serial correlation as in ADF. It rather takes the same 

estimation scheme as in DF test, but corrects the statistic to 

conduct for autocorrelations and heteroscedasticity [14, 15]. 

2.5. Methods of Simulations and Analyses 

A set of replication of data sets are generated from first, 

second and third orders from autoregressive, moving 

average, and autoregressive moving average stated in 1, 2 

and 3. 

Where, �
H  are present responses simulated from random 

samples of normal distribution and 

�
H�I, J = 1, 2, … ,5000 MNO P = 1, 2, 3 are past responses of 

first and second order respectively.  �
H  is a random error 

which is known as white noise which is also distributed from 

normal distributions as follows: 

�
H~1(0,1) MNO �
H ~1(0,1) 

For the simulation study, the choice of parameters 

considered by [9] was considered to ensure stationarity of the 

data generated for AR, MA and ARMA models. These are 

fixed as fixed as 0.1, 0.2, 0.3 and 0.5. The sample sizes 

simulated from each models are; 20, 40, 80, 130, … 200. At a 

particular choice of sample size, the simulation study was 

performed 5000 times for different models. 

Different methods of stationarity/ unit root tests were used 

to analyze each set of data simulated. The test statistic are 

ADF, KPSS and PP, the comparison were made by counting 

the number of times each test accepted the stationarity of the 

data simulated in 5000 replication. The percentages of their 

acceptance were recorded in table 1-6 for each case of the 

models, orders of autoregressive and moving average and 

sample sizes. The test with higher acceptance was considered 

as the best. 

The variation in comparison of three stationarity/unit root 

tests will provide an indication of the sensitivity of the 

methods. Thus, the best method(s) were recommended for 

the research with various sample sizes, models and orders of 

autoregressive and moving average. 

The outcomes of this research will assist a researcher to 

understand which of the tests of stationarity can be used for a 

particular order of autoregressive and moving average 

models and at what sample size is reliable. 

2.6. Data Analyses 

The results of the three methods of stationarity tests were 

presented in table 1 – 6 for the first, second and third orders 

of AR, MA and ARMA models. Data were simulated using R 

software package, to investigate the performances ADF, 

KPSS and PP on the simulated data at sample size 20, 40, 60, 

80, 100, 120, 140, 160, 180 and 200. The relative 

performance of the tests were observed at order (p) = 1, 2 and 

3 for data generated from different forms of autoregressive 

(AR) moving average (MA) and autoregressive moving 

average models (ARMA). The assumptions of stationarity 

were observed for cases of data generated. The relative 

performance of the stationarity tests was examined. The 

experiments were repeated 5000 times for the three Statistics 

and each sample size. The percentages of their acceptance 

were recorded in table 1-6 

Table 1. Percentage of correctly Identifying Stationarity in Stationary Autoregressive Models (AR). 

 ADF KPSS PP 

Order 
1 2 3 1 2 3 1 2 3 

Sample Size 

20 99.98 56.76 95.94 92.10 49.30 76.92 100 100 100 

40 99.98 57.74 96.16 92.46 49.98 76.20 100 100 100 

60 99.98 57.94 95.92 92.86 51.40 76.86 100 100 100 

80 99.98 57.04 95.90 92.96 50.76 75.44 100 100 100 

100 99.98 57.34 95.90 92.24 50.66 76.04 100 100 100 

120 99.98 58.72 96.04 92.04 49.02 76.18 100 100 100 

140 99.98 58.32 95.76 92.42 50.48 76.96 100 100 100 

160 99.98 57.88 95.12 92.70 51,64 76.30 100 100 100 

180 99.94 57.56 95.98 92.32 50.98 76.40 100 100 100 

200 99.98 57.20 95.76 92.46 49.60 76.10 100 100 100 
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Fig. 1. Power of Stationarity Test in AR models of Different Orders. 

Table 2. Percentage of correctly Identifying Stationarity in Stationary Moving Average Models (MA). 

 ADF KPSS PP 

Order 
1 2 3 1 2 3 1 2 3 

Sample Size 

20 100.00 99.72 99.96 93.50 91.08 90.84 100 100 100 

40 100.00 99.84 99.96 94.30 91.34 91.10 100 100 100 

60 100.00 99.78 99.94 93.66 90.44 91.46 100 100 100 

80 100.00 99.84 99.90 93.98 90.48 91.06 100 100 100 

100 100.00 99.90 99.98 94.18 91.08 91.52 100 100 100 

120 100.00 99.88 99.98 93.98 91.32 91.46 100 100 100 

140 100.00 99.78 99.96 93.62 90.78 91.06 100 100 100 

160 100.00 99.78 99.96 94.24 91.48 92.00 100 100 100 

180 99.98 99.88 99.96 94.54 90.58 91.04 100 100 100 

200 100.00 99.60 99.96 93.98 91.36 91.14 100 100 100 

 
Fig. 2. Power of Stationarity Test in MA models of Different Orders. 
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Table 3. Percentage of correctly Identifying Stationarity in Stationary Autoregressive and Moving Average (ARMA) Models. 

 ADF KPSS PP 

Order 
1 2 3 1 2 3 1 2 3 

Sample Size 

20 99.92 97.68 75.64 92.52 83.52 61.08 100 100 99.92 

40 99.96 97.50 77.10 92.00 82.58 61.20 100 100 99.92 

60 99.98 97.56 76.12 92.54 82.16 61.58 100 100 92.88 

80 99.96 97.70 76.82 92.78 82.18 61.72 100 100 99.90 

100 99.98 97.62 76.54 91.98 83.10 61.28 100 100 99.84 

120 99.94 97.40 77.44 92.70 83.58 60.74 100 100 99.84 

140 100.00 98.00 75.18 92.86 82.04 62.16 100 100 99.92 

160 99.98 97.62 76.02 92.92 82.34 60.84 100 100 99.88 

180 100.00 97.48 76.42 92.66 81.70 62.60 100 100 99.88 

200 99.96 97.80 76.60 91.78 82.30 60.80 100 100 99.90 

 
Fig. 3. Power of Stationarity Test in ARMA models of Different Orders. 

Table 4. Percentage of wrongly Identifying Stationarity in Non Stationary Autoregressive Models. 

 ADF KPSS PP 

Order 
1 2 3 1 2 3 1 2 3 

Sample Size 

20 4.44 5.08 5.04 3.38 1.40 2.36 1.84 0.00 0.04 

40 4.38 5.52 4.90 3.22 1.74 2.26 2.14 0.00 0.14 

60 4.60 5.28 4.48 3.10 1.68 2.16 2.10 0.00 0.00 

80 5.12 5.24 4.70 3.40 1.54 2.42 1.90 0.02 0.08 

100 4.72 4.96 4.68 3.36 1.48 2.34 1.80 0.00 0.08 

120 4.68 5.18 4.34 2.78 1.54 4.96 1.88 0.02 0.08 

140 5.04 5.42 4.78 3.26 1.44 2.62 1.78 0.00 0.04 

160 4.70 5.44 5.02 3.48 1.82 2.46 1.84 0.00 0.16 

180 5.20 4.44 5.16 3.32 1.40 2.34 2.04 0.00 0.10 

200 4.92 4.98 4.92 2.36 1.70 2.12 1.90 0.02 0.10 

 

Fig. 4. Type I error of Stationarity Test in AR models of Different Orders. 
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Table 5. Percentage of wrongly Identifying Stationarity in Non Stationary Moving Average Models (MA). 

 ADF KPSS PP 

Order 
1 2 3 1 2 3 1 2 3 

Sample Size 

20 4.86 6.60 4.54 3.26 3.18 3.04 2.72 1.18 1.56 

40 4.66 6.60 4.82 3.14 3.18 3.18 2.78 1.36 1.62 

60 4.92 6.42 4.38 3.00 3.98 3.12 3.14 1.32 1.38 

80 4.72 6.08 4.56 3.34 2.84 2.78 2.90 1.18 1.60 

100 4.36 5.88 4.08 3.28 3.10 2.94 2.68 1.62 1.30 

120 4.60 5.92 4.42 3.02 2.92 2.88 2.74 1.46 1.16 

140 4.80 6.18 4.90 3.38 3.32 3.40 3.14 1.28 1.40 

160 4.42 6.10 4.48 2.94 3.18 3.06 2.98 1.20 1.40 

180 4.92 5.96 4.10 3.36 2.78 3.08 3.36 1.16 1.44 

200 4.60 6.28 4.92 3.56 2.80 2.96 3.24 1.36 1.46 

 

Fig. 5. Type I Error of Stationarity Test in MA models of Different Orders. 

Table 6. Percentage of wrongly Identifying Stationarity in Non Stationary Autoregressive and Moving Average (ARMA) Models. 

 ADF KPSS PP 

Order 
1 2 3 1 2 3 1 2 3 

Sample Size 

20 4.34 7.66 4.74 3.06 2.82 1.96 1.98 0.30 0.02 

40 5.34 8.90 4.00 3.40 2.36 1.56 1.88 0.14 0.02 

60 5.04 7.94 4.34 3.36 2.40 2.04 2.14 0.34 0.02 

80 4.70 8.72 4.48 2.94 2.50 2.06 1.72 0.24 0.00 

100 4.82 8.34 4.90 3.00 2.74 1.94 1.82 0.14 0.02 

120 4.86 7.54 4.48 3.52 2.74 2.08 1.86 0.24 0.04 

140 4.42 7.16 4.94 2.92 2.64 1.92 1.74 0.06 0.00 

160 4.44 8.08 4.68 3.24 3.06 1.78 1.48 0.28 0.00 

180 4.68 8.48 4.90 3.06 2.86 2.28 1.80 0.24 0.00 

200 4.80 8.82 4.64 3.36 2.54 2.18 1.82 0.34 0.00 

 
Fig. 6. Type I Error of Stationarity Test in AR MA models of Different Orders. 
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3. Conclusion 

Table 1 presents the result of the power for all the test 

procedure when the underlying time series model is 

stationary AR. All the procedures produced a reasonably 

high power over all the sample sizes and order considered 

except at order 2 where ADF (Augmented Dickey Fuller) and 

KPSS produced extremely low power compared to PP. Under 

this condition, Philip-Peron (PP) has the highest power over 

all the sample sizes and AR orders considered. Table 2 

presents similar analysis on stationary MA, the power of the 

tests are extremely high over all the sample sizes and orders 

considered. Similar conclusion as in AR was also observed 

here. Table 3 presents the power of the mixed model 

(Stationary ARMA), all the test procedures produced high 

power over all the sample sizes at order 1 but ADF and KPSS 

produced low power over all the sample size at order 2 & 3. 

Table 4 presents the empirical percentage type 1 error rate 

of the test over the sample sizes and order for Non-stationary 

AR models, the main focus here is to compare the empirical 

type 1 error rate with the nominal 5%. Out of all the test 

procedures only PP produced a reasonably closer estimate to 

the nominal 5% level with considerably improvement as the 

order increases. The worst of all the test procedure is ADF 

under this condition. Table 5 also presents the result under 

Non-stationary MA models, PP seem to produced the best 

estimate but not as in table 4 them followed by KPSS and 

ADF is the worst. Finally, table 6 presents ARMA results on 

empirical percentage type 1 error rate, PP test is still to be the 

best procedure under this condition but the performance 

seems to be poor at order 1. 

Also, from Fig 1—6 have the same results as stated in 

table 1—6 above. 

Generally speaking, in terms of validity of the test based 

on percentage power, PP is the best over all the conditions 

considered which are models, sample sizes and order. But in 

terms of usability of the test that is based on type 1 error rate 

PP still is the best. 

Recommendation 

The PP is better applied since it produced reasonably high 

power and closer estimate of type 1 error to the nominal 

value. The above conclusion implies that pp test correctly 

rejects and at the same time identifies when not to reject. 
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