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Abstract: Mathematical studies about the likelihood of failures of software systems have been advanced by various 

researchers. These studies have modeled the behavior of software systems by using failure times and time between failures in 

the past. The Goel-Okumoto software reliability model is amongst the many software reliability models proposed to model the 

failure behavior of software systems. To be able to use the model in software reliability assessment, it is important to estimate 

its parameters α and β and the intensity function λ(t). In this paper, classical parametric regression methods have been utilized 

in the estimation of the parameters α and β, the intensity function and the mean time between failures of the Goel-Okumoto 

software reliability model. The parameters α and β and the mean time between failures (MTBF) of the Goel-Okumoto software 

model have been estimated using the maximum likelihood estimation (MLE) method, regression approach applied to the model 

and simple linear regression model without assuming the Goel-Okumoto model. When these three estimation methods were 

validated using root mean squared error (RMSE) and mean absolute value difference (MAVD), which are the common error 

measurement criteria, regression approach applied to the Goel-Okumoto model outperformed MLE and simple linear 

regression estimation methods. 

Keywords: Goel-Okumoto model, Regression Approach, Maximum Likelihood Estimation 

 

1. Introduction 

Various software reliability growth models have been 

proposed in the last three decades. The models enable 

software vendors to predict the behavior of software systems 

before a decision is made to release or to ship the software to 

users. Amongst the many software reliability growth models 

is the Goel – Okumoto software reliability model, a Non-

Homogeneous Poisson process (NHPP) with intensity 

function 

( ) tt e βλ αβ −=                                (1) 

where  and α β  are parameters and t  is the failure time. The 

software reliability model with intensity function given in 

Equation (1) was proposed by [1] in 1979 hence the name 

Goel-Okumoto (1979) software reliability model. The model 

is also called an exponential software reliability model. The 

reliability and the behavior of the software systems are 

studied by estimating the parameters of the software growth 

models. Various parameter estimation criteria have been 

advanced by different researchers in the past. These methods 

include but are not limited to, maximum likelihood 

estimation (MLE) method, least squares method, interval 

estimation and particle swam optimization method. Most 

researchers, for instance, [2], [3] and [4] have considered 

estimation of the parameters of Goel-Okumoto (1979) 

software reliability model whose intensity function is given 

in Equation (1) using MLE criteria. Literature from various 

research, for instance, [5, 6] and [7] have indicated that the 

Goel-Okumoto software reliability model is a good model to 

represent TBF of software systems. 

In this work, based on the Goel-Okumoto software 

reliability growth model, predictive properties of mean time 
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to failure (MTTF) and thus the estimators of the parameters 

 and α β  are computed using three methods; MLE method, 

regression approach using logarithm of the software failure 

data with Goel-Okumoto software reliability model 

assumption and simple linear regression applied directly to 

the software failuredata. The performance of the three 

methods of estimation is evaluated using RMSE and MAVD, 

which are the commonly used performance error 

measurement criteria in predictive analyses. 

Reference [8] considered the point estimation of the power 

law process using regression approaches and the results were 

comparable to the traditional methods of estimation. 

1.1. Methodology 

What follows in this section is the methodology upon 

which this paper is based. We define mean time to failure 

(MTTF) and mean time between failures (MTBF) as is 

frequently used in reliability studies. We also provide 

software reliability data that will be used in illustrating the 

derived methods and procedures in section 2. 

1.1.1. Mean Time to Failure 

Mean time to failure (MTTF) is the average interval of time 

expected to the next failure time. In other words, given the 

reliability function ( )R t , MTTF is a measure of the average 

time to failure for system with life distribution ( )F t . 

1.1.2. Mean Time Between Failure 

The Mean Time Between Failures (MTBF) is the expected 

interval length from the current failure time, say, 
n n

T t=  to 

the next failure time 
1 1n n

T t+ += . Let ( )1 2, ,... nf t t t t  denote 

the conditional distribution of failure time 
1n

T + given 

1 1 2 2
, ,...,

n n
T t T t T t= = = , then the MTBF is defined by 

( )1 2, ,...

n

n n

t

MTBF f t t t t dt t

∞

= −∫  

The reciprocal of the intensity function 
( )
1

tλ
 is used to 

represent the expected time to the next failure time, given 

that the thn  failure time occurred at time t , that is, 
( )
1

tλ
 is 

considered as the MTBF. Under special conditions, MTBF 

can be approximated by 
( )
1

tλ
. That is, 

( )
1ˆMTBF
tλ

=                           (2) 

1.1.3. Mean Residual Time 

Let T be a continuous random variable denoting failure 

time and in the interval ( )0,∞ . The mean residual time 

(MRT) is the average time to the next failure given that no 

failure occurs up to time t  and is defined by 

( ) ( )m t E T t T t= − >  

The theorem under section 2.2.2 shows the relationship 

between MRT and reliability. 

1.1.4. Software Failure Data 

The following software failure data obtained from [4] has 

been used for the purposes of estimation and analysis in this 

study. The data is given in form of TBF, failure times 

(cumulative time between failure) and the failure number. 

Table 1.Time between failures data. 

Failure No. Time between failures Cumulative time between failures Failure No. Time between failures Cumulative time between failures 

1 30.02 30.02 16 15.53 151.78 

2 1.44 31.46 17 25.72 177.50 

3 22.47 53.93 18 2.79 180.29 

4 1.36 55.29 19 1.92 182.21 

5 3.43 58.72 20 4.13 186.34 

6 13.2 71.92 21 70.47 256.81 

7 5.15 77.07 22 17.07 273.88 

8 3.83 80.90 23 3.99 277.83 

9 21 101.90 24 176.06 453.93 

10 12.97 114.87 25 81.07 535.00 

11 0.47 115.34 26 2.27 537.27 

12 6.23 121.57 27 15.63 552.90 

13 3.39 124.96 28 120.78 673.68 

14 9.11 134.07 29 30.81 704.49 

15 2.18 136.25 30 34.19 738.68 
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Reference [7] argued that the software failure data given in 

Table 1 follow the Goel-Okumoto (1979) software reliability 

model. 

1.2. Performance Error Measurement 

In this section, we establish the metrics that will be used to 

evaluate the performance of the estimation models. There are 

various performance error measurement tools including but 

not limited to root mean squared error (RMSE) and mean 

absolute value difference (MAVD). Since we will use RMSE 

and MAVD in evaluating the performance of the three 

estimation models, it suffices to define them. These 

performance error measurement criteria are defined and 

explained in sections 1.2.1 and 1.2.2 respectively. 

1.2.1. Root Mean Squared Error 

Root mean squared error (RMSE) is the criteria most 

commonly used in error measurement, especially in 

prediction. The mean squared error (MSE) of an estimator 

1 2
( , ,..., )

n
T T x x x=  of an observable parameter θ  is defined 

by 

( ) ( )2
MSE T E T θ = −

 
 

Let TBF be the actual time between failures and ˆMTBF be 

the predicted mean time between failures. The RMSE used in 

this paper is defined as 

( )2

1

1 ˆ
n

i

i

RMSE TBF MTBF
n =

= −∑                   (3) 

1.2.2. Mean Absolute Value Difference 

Mean absolute value difference (MAVD) is defined as the 

average of the absolute difference between predicted mean 

time between failures and actual times between failure 

values. The MAVD is defined as 

1

1 ˆ
n

i

i

MAVD TBF MTBF
n =

= −∑                          (4) 

2. Derivation of the Methods 

In this section, we derive the three methods of estimation 

of the Goel-Okumoto software reliability parameters and its 

MTBF. In section 2.1, we consider the MLE method while 

the regression model and the resulting intensity function is 

derived in section 2.2. Finally, simple linear regression 

model and the resulting intensity function is considered in 

section 2.3. 

2.1. Maximum Likelihood Estimation 

The joint probability distribution function of the failure 

times 
1 2
, ,...,

n
T T T  from a Non-Homogeneous Poisson process 

with intensity function ( )tλ  is given as; [9] 

( ) ( ) ( )1 2

1 0

, ,..., exp

Tn

n i

i

f t t t t t dtλ λ
=

  = −  
   
∏ ∫           (5) 

Under the assumption that the failure times follow the 

Goel-Okumoto software reliability model with intensity 

function as in Equation (1), the joint probability distribution 

function of the failure times is given as 

( ) ( )1
1

1 2, ,...,

n

i

ni

t
e tn n

nf t t t e e
β

α βα β =
−

− − −∑
=                (6) 

Taking the log-likelihood function of Equation (6) gives 

( )
1

ln ln 1 n

n
t

i

i

L n n t e βα β β α −

=
= + − − −∑           (7) 

Differentiating L  partially with respect to  and α β  and 

equating to zero gives 

( )1 0nt
L n

e
β

α α
−∂ = − − =

∂
                           (8) 

1

0n

n
t

i n

i

L n
t t e βα

β β
−

=

∂ = − − =
∂ ∑                     (9) 

Solving Equations (8) and (9) for  and α β , we obtain the 

ML estimators denoted by ˆˆ  and mle mleα β  as 

ˆ
ˆ

1 mle n
mle t

n

e
β

α
−

=
−

                                (10) 

ˆ

ˆ
1

ˆ 1

mle n

mle n

tn
n

i t
imle

nt en
t

e

β

ββ

−

−
=

= +
−

∑                            (11) 

It has been shown [10] that the necessary and sufficient 

condition for Equations (10) and (11) to have a unique and 

positive solutions ˆˆ  and mle mleα β  is if and only if

1

2
n

i

i
n

t

t
n

=

 
 

< 
 
 
 

∑
. 

A numerical procedure known as the Newton Raphson 

method can be used to iteratively solve Equations (10) and 

(11) and use the MLEs thus obtained to obtain an estimator 

of the MTBF as 

( ) 1 ˆˆˆ ˆ mle nt

mle mleMTBF e
βα β

−
=                          (12) 

We denote the model from Equation (12) as MTBF mlea −  

model. 
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2.2. Regression Model and the Resulting Intensity 

Function. 

Subsection 2.2.1 outlines the derivation of the regression 

model and the resulting intensity function is derived in 

subsection 2.2.2. 

2.2.1. Regression Approach for the Goel-Okumoto Software 

Reliability Model 

This study stems from the fact that the logarithm of the 

intensity function of the Goel-Okumoto software reliability 

model is a linear function of the software failure times. It is 

thus proposed that the model can be taken as a simple linear 

regression. The parameters of the model are estimated using 

the classical regression approaches. References [11], [12], 

[13] and [14] used the inverse of the power law process, 

which is a NHPP to approximate MTBF. Since the Goel-

Okumoto software reliability model is also a NHPP, its 

MTBF can be approximated by taking the inverse of its 

intensity function as 

( )
1

MTBF
tλ

= 1
te βαβ −=                    (13) 

where t  is the failure time. 

Taking natural logarithm both sides of Equation (13) we get 

( ) ( )ln lnMTBF tαβ β= − +                       (14) 

Let 

( )lnY MTBF=                                 (15) 

( )ln aαβ− =                                (16) 

bβ =                                          (17) 

Then Equation (14) becomes 

Y a bt= +                                          (18) 

Using the method of least squares for the linear regression 

model, the least squares estimators of the parameters 

 and a b in Equation (18) are obtained as 

1 1

1

2

12

1

ˆ

n n

i in
i i

i i

i

n

in
i

i

i

t Y

t Y
n

b

t

t
n

= =

=

=

=

  
  
  −

=
 
 
 −

∑ ∑
∑

∑
∑

                      (19) 

and 

ˆâ Y bt= −                                 (20) 

After obtaining the estimators of  and a b as in Equations 

(19) and (20) we get the estimators of the Goel-Okumoto 

software model parameters  and α β  denoted by 

ˆˆ  and 
reg reg

α β  from Equations (16) and (17) as; 

ˆ

ˆ
ˆ

a

reg

e

b
α

−

=                                  (21) 

and 

ˆˆ
reg

bβ =                                      (22) 

The estimator of MTBF can be obtained from Equation (2) 

and the regression estimators in Equations (9) and (10) as; 

( ) 1 ˆˆˆ ˆ reg nt

reg regMTBF e
βα β

−
=                       (23) 

We call this bMTBF regression − model. 

2.2.2. Intensity Function for the Regression Model 

In order to derive the resulting intensity function from the 

assumed linear relationship in Equation (18), we state the 

following theorem without proof. 

Theorem 

Let T  be a random variable of continuous type with 

density function ( )f t  and the cumulative density function 

( )F t . If it is assumed that ( ) ( ) 0 for 0f t F t t= = < , then 

( ) ( )( )
0

1E T F t dt

∞

= −∫ ( )
0

R t dt

∞

= ∫                 (24) 

and the MRT is given as 

( )
( )

( )
t

R u du

M t
R t

∞

=
∫

                          (25) 

From the assumed linear relationship 

( )lnY MTTF a bt= = + , we get 

a btMTTF e += a bte e=                       (26) 

Equating the MRT in the above theorem and the MTTF, 

i.e. equating Equations (25) and (26) in order to obtain the 

intensity failure function ( )tλ , we have 

( )

( )
a btt

R u du

e e
R t

∞

=
∫

 

from which we obtain 

( ) ( )a bt

t

e e R t R u du

∞

= ∫                       (27) 

By differentiating Equation (27) and using the result 

( ) ( ) ( )
t

t

d d
R u du R u du R t

dt dt

∞

∞

      = − = −   
      
∫ ∫  
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We obtain 

( ) ( ) ( )a bt a bt d
be e R t e e R t R t

dt
+ = −               (28) 

If we let ae k= , the Equation (28) becomes 

( ) ( ) ( )bt bt d
kbe R t ke R t R t

dt
+ = −              (29) 

Re-arranging Equation (29), we obtain 

( ) ( )1
0

bt

bt bt

d kbe
R t R t

dt ke ke

 
+ + = 
 

            (30) 

It is known that 

( ) ( )
( )

f t
t

R t
λ =                                (31) 

But 

( ) ( ) ( )( ) ( )1d R tdF t dR t
f t

dt dt dt

−
= = = −          (32) 

From Equation (32), Equation (31) becomes 

( )
( )

( )

dR t

dtt
R t

λ
−

=                             (33) 

Now, from Equation (30), we have 

( ) ( )1 bt

bt

d kbe
R t R t

dt ke

 − +=  
 

. Thus Equation (33) becomes 

( ) 1
bt

bt

kbe
t

ke
λ +=                                 (34) 

Equation (34) is the intensity function obtained when we 

assume a linear regression equation from the Goel-Okumoto 

software reliability model. 

2.3. Simple Linear Regression Model and the Resulting 

Intensity Function 

Subsection 2.3.1 outlines the derivation of the simple 

linear regression model and the derivation of resulting 

intensity function from the simple linear regression model is 

outlined in subsection 2.3.2. 

2.3.1. Simple Linear Regression Model 

In this section, we directly take a simple linear regression 

model instead of assuming the Goel-Okumoto (1979) 

reliability model. That is, we assume that the failure times 

and TBF are linearly related as 

TBF b at ε= + +                                   (35) 

where TBF is the dependent variable and time of failure t  is 

the independent variable and  and a b  are constants that need 

to be estimated. ε  represents the error term. 

Using least squares method, the estimators of the 

parameters  and a b in Equation (35) are obtained as 

( )
( )

1 1

1

2

12

1

ˆ

n n

i in
i i

i i

i

n

in
i

i

i

t TBF

t TBF
n

a

t

t
n

= =

=

=

=

  
  
  −

=
 
 
 −

∑ ∑
∑

∑
∑

                 (36) 

and 
ˆ ˆTBFb at= −                               (37) 

where TBF denotes the average time between software 

failure. Thus the prediction equation (38) represents the 

estimating mean time between software failures. 

ˆˆ ˆMTBF b at= +                                  (38) 

We denote the estimator of MTBF from the simple linear 

regression model as 
c

MTBF Linear regression− model. 

2.3.2. Intensity Function for the Simple Linear Regression 

Model 

Here, we derive the intensity function resulting from the 

simple linear regression model in Equation (35) using the 

MRT. For a simple linear regression Equation (35), 

MTTF at b= +                                  (39) 

Equating the MRT in Equation (13) and MTTF in Equation 

(39) we have 

( )

( )
t

R u du

at b
R t

∞

= +
∫

 from which we obtain 

( ) ( ) ( )
t

at b R t R u du

∞

+ = ∫                              (40) 

Differentiating Equation (40) and using the procedures and 

steps in Section 2.2.2, it can easily be shown that the 

intensity function resulting from the assumption of the simple 

linear regression model in Equation (35) is; 

( ) 1 a
t

at b
λ +=

+
                                             (41) 

3. Results and Comparison of the 

Performance of the Three Estimation 

Methods 

This section is divided into two where the results obtained 

from the three methods of estimation are discussed in section 

3.1 and thereafter, the performances of these three methods 

are compared using RMSE and MAVD in section 3.2. 
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3.1. Results from the Three Methods of Estimation 

The results obtained from the MLE method, regression 

method and simple linear regression method are respectively 

given in subsections 3.1.1, 3.1.2 and 3.1.3. 

3.1.1. Using Maximum Likelihood Estimation Method 

From Equations (10) and (11) and the data in Table 1, the 

MLE of the parameters  and α β  of the Goel-Okumoto 

software reliability model with intensity function given in 

Equation (1) are ˆˆ 31.698171 and 0.003962mle mleα β= = . 

Using these estimates and Equation (12), we find MSE and 

MAVD of the failure data in Table 1 as is in Table 2. 

Table 2. MSE and MAVD of the 
aMTBF mle−  model. 

Model RMSE MAVD 

aMTBF mle−  679.1673 125.8273 

3.1.2. Using Regression Model 

Using Equation (21) and Equation (22), we find the 

estimates of the parameters  and α β  of the Goel-Okumoto 

software reliability as ˆˆ 70.3433 and 0.003426915reg regα β= =  

Using these estimates, we find MSE and MAVD of the 

failure data in Table 1 as is in Table 3. 

Table 3. MSE and MAVD of the bMTBF regression − model. 

Model RMSE MAVD 

b
MTBF regression −  150.7669 43.118 

3.1.3. Using Simple Linear Regression 

Using Equations (37) and (38), we obtain the simple linear 

regression estimates of the parameters  and α β  of the Goel-

Okumoto software reliability model as 

ˆˆ 2.260013 and 0.09329616α β= = . The following is the 

MSE and MAVD for the data in Table 1 obtained using 

simple linear regression approach based on Equation (38). 

Table 4. MSE and MAVD for 
cMTBF Linear regression−  model. 

Model RMSE MAVD 

cMTBF Linear regression−  254.9832 57.5122 

3.2. Comparison of the Three Methods of Estimation 

Comparison of the performance of the three methods of 

estimation of the parameters  and α β  and MTBF of the 

Goel-Okumoto software reliability model based on RMSE 

and MAVD is given in Table 5. 

Table 5. RMSE and MAVD for aMTBF mle− , bMTBF regression − and 

cMTBF Linear regression− models. 

Model RMSE MAVD 

aMTBF mle−  679.1673 125.8273 

bMTBF regression −  150.7669 43.118 

cMTBF Linear regression−  254.9832 57.5122 

Based on the results from Table 5, 
b

MTBF regression − is 

the best model for estimating the parameters  and α β  and 

MTBF for the Goel-Okumoto (1979) software reliability 

model. This is so because the model has the least RMSE and 

MAVD. It is worth noting that this method of estimation 

performs better than pure linear regression model and MLE 

method and thus should be preferred. Based on this model and 

the data in Table 1, the preferred estimates of  and α β  and 

MTBF are thus obtained as ˆˆ 70.3433 and 0.003426915reg regα β= =  

ˆMTBF 52.14881=  respectively. 

4. Conclusions 

Estimation of the parameters of software reliability 

models using the traditional techniques like the maximum 

likelihood method and the least squares Method pose some 

difficulties since the models are generally in non-linear 

relationships, [15]. The derivation and calculation of the 

MLEs usually require specialized software and more 

powerful computers for solving the non-linear equations. 

Some researchers, for instance, [16] argue that the difficulty 

experienced in the computations of MLE is less of a 

problem as time goes by as more statistical packages are 

being developed to contain and solve the complex 

maximum likelihood (ML) equations. However, these 

statistical packages require more complex algorithms and 

programming languages for them to work. MLEs are also 

heavily biased when there is small data on failure times, 

[17]. In this paper, we have presented a simpler and more 

efficient parameter estimation method for the Goel – 

Okumoto software reliability model. This stems from the 

fact that the logarithm of the intensity function of the model 

is a linear function of the software failure times and the 

parameters can thus be estimated using the traditional least 

squares regression method. The estimates thus obtained are 

better than MLE which is the widely used method in 

estimating the parameters of the model. It is also worth 

noting that when the parameters of the model are estimated 

using simple linear regression method, the results obtained 

are still better than MLE method. 
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