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Abstract: Nonparametric density estimation, based on kernel-type estimators, is a very popular method in statistical research, 

especially when we want to model the probabilistic or stochastic structure of a data set. In this paper, we investigate the 

asymptotic confidence bands for the distribution with kernel-estimators for some types of divergence measures (Rényi-α and 

Tsallis-α divergence). Our aim is to use the method based on empirical process techniques, in order to derive some asymptotic 

results. Under different assumptions, we establish a variety of fundamental and theoretical properties, such as the strong 

consistency of an uniform-in-bandwidth of the divergence estimators. We further apply the previous results in simulated 

examples, including the kernel-type estimator for Hellinger, Bhattacharyya and Kullback-Leibler divergence, to illustrate this 

approach, and we show that that the method performs competitively. 
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1. Introduction 

In this paper, we focus on the similarity between two 

distributions. Given a sample from one distribution, one of 

fundamental and classical question to ask is: how to have the 

similarity between this density with another known density? 

First, one must specify what it means for two distributions to 

be close, for which many different measures quantifying the 

degree of these distributions have been studied in the past. 

They are frequently called distance measures, although some 

of them are not strictly metrics. The divergence measures play 

an important role in statistical theory, especially in large 

theories of estimation and testing. They have been applied to 

different areas, such as medical image registration [21], 

classification and retrieval. There are several important 

problems in machine learning and statistics that require the 

estimation of the distance or divergence between distributions. 

Divergence between distributions also proves to be useful in 

neuroscience, For example (see, e.g [14]). employs divergence 

to quantify the difference between neural response patterns. 

Later, many papers have appeared in the literature, where 

divergence or entropy type measures of information have been 

used in testing statistical hypotheses. For more examples and 

other possible applications of divergence measures, see the 

extended technical report [23, 24]. The key role of the measure 

divergence in these various applications, it is necessary to 

accurately estimate these divergences. 

Recently Ngom et all [16] has introduced the Divergence 

Indicator ��  method by proposing a test for choosing 

between a random walk and AR(1), using a divergence 

measure. 

The class of divergence measures is large; it includes the 

Rényi- �  [25, 26], Tsallis- �  [30], Kullback-Leibler (KL), 

Hellinger, Bhattacharyya, Euclidean divergences, etc. These 

divergence measures can be related to the Csiszár- � 

divergence [3]. The Kullback-Leibler, Hellinger and 

Bhattacharyya are special cases of Rényi-�  and Tsallis-� 

divergences. But the Kullback-Leibler one is the most popular 

of these divergence measures. Estimation of divergence and 

its applications have been many studies using different 

approaches. For example Pardo [20] presented methods and 

applications in the case of discrete distributions. By exploring 

a nonparametric method for estimating the divergence in the 

continuous case, Poczos and Schneider [23] proposed a � -nearest-neighbor estimator and proved the weak 
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consistency of the estimator Rényi- �  and Tsallis- � 

divergences. 

Finding estimators nonparametric of measure divergence, 

remains an open issue. Krishnamurthy and Kandasamy [15] 

used an initial plug-in estimator for estimating by estimates of 

the higher order terms in the von Mises expansion of the 

divergence functional. In their frameworks, they proposed 

three estimators for Rényi- � , Tsallis- � , and Euclidean 

divergences between two continuous distributions and 

established the rates of convergence of these estimators. The 

main purpose of this paper is to analyze estimators for 

divergence measures between two continuous distributions. 

Our approach is similar to that of Krishnamurthy and 

Kandasamy [15] and is based on plug-in estimation scheme: 

first, we apply a consistent density estimator for the 

underlying densities, and then we plug them into the desired 

formulas. Unlike of their frameworks, we study the strong 

consistency estimators for a general class of divergence 

measures. We emphasize that the plug-in estimation 

techniques are heavily used by [2, 9] in the case of entropy. 

Bouzebda [2] proposed a method to establish consistency for 

kernel-type estimators of the differential entropy. We 

generalize this method for a large class of divergence 

measures in order to establish the consistency of kernel-type 

estimators of divergence measure when the bandwidth is 

allowed to range in a small interval which may decrease in 

length with the sample size. Our results will be immediately 

applicable to proving strong consistency for Kenel-type 

estimation of this class of divergence measures. 

The rest of this paper is organized as follows: in Section 2, 

we introduce divergence measures and we construct their 

kernel-type estimators. In Section 3, we study the uniform 

strong consistency of the proposed estimators. Section 4 is 

devoted to the proofs. In Section 5, numical examples are 

proposed in order to illustrate the performance of our method. 

Finally, in Section 6, we present our conclusion. 

2. Kernel-Type Estimators of Divergence 

Measures 

In this section we give the notations and then presenting 

some basic definitions. We are interested with two densities,, �, �: ℝ	 ↦ [0,1] where � ≥ 1 denotes the dimension. The 

divergence measures of interest are Rényi-� , Tsallis-�  are 

defined respectively as follows  

�����, �� = ���� log �  ℝ� ��������������, � ∈ ℝ\!1"   (1) 

��#��, �� = ���� $�  ℝ� �������������� − 1&, � ∈ ℝ\!1" (2) 

These quantities are nonnegative, and equal zero iff � = � 

almost surely (a.s). Remark that in the special cases where � = 1/2,1 , we obtain from (1) and (2) the well known 

Hellinger, Kullback-Leibler and Bhattacharyya divergences. 

��/)# ��, �� = 2�*��, �� = 2 +1 − ,  ℝ� ��/)�����/)�����-, 

��/)� ��, �� = 2�.��, �� = −log ,  ℝ� ��/)�����/)�����, 
lim�→������, �� = �23��, �� = ,  ℝ� ����log �������� ��, 

which is related to the Shannon entropy. For some statistical 

properties for the Shannon entropy, one can refer to [2].  

45��� = ,  ℝ� ����log������ 

via 

�23��, �� = 65��, �� − 45��� 

where 

65��, �� = ,  ℝ� ����log������� 

For the following, we focus only on the estimation of ��#��, �� and �����, ��. The Kullback-Leibler, Hellinger and 

Bhattacharyya can be deducted immediately.  

We will next provide consistent estimator for the following 

quantity  

����, �� = �  ℝ� ��������������,          (3) 

whenever this integral is meaningful. Plugging its estimates 

into the appropriate formula immediately leads to a consistent 

estimator for the divergence measures �����, ��  and ��#��, ��. 

Now, assuming that for the rest of the document, the density �  is unknown, and the density �  is known and satisfies: �  ℝ� ��������� is finite, this implies that ����, �� is finite. 

Next, consider 7�, . . . , 79, : ≥ 1 a sequence of independent 

and identically distributed ℝ	-valued random vectors, with 

cumulative distribution function ;  a density function ��⋅� 

with respect to the Lebesgue measure on ℝ	. The following 

conditions are needed for the remainder of this paper. To 

construct our divergence estimators we define, We start by a 

kernel density estimator for ��⋅�, and then substituting ��⋅� 

by its estimator in the divergence like functional of ��⋅�. For 

this, we introduce a measurable function =�⋅� that satisfies 

the following conditions.  

(K.1) =�⋅� is of bounded variation on ℝ	 

(K.2) =�⋅� is right continuous on ℝ	 

(K.3) ||=||? = supC∈ℝ�|=���| < ∞ 

(K.4) �  ℝ� =�F��F = 1. 
Rosenblatt [27] first proposed an estimator for ��⋅� and 

Parzen [19] generalized, it eventually leading to the 

Parzen-Rosenblatt estimator, defined in the following way for 

any � ∈ ℝ	 

�9,GH��� = �9GH� ∑  9JK� = LC�MNGH O            (4) 

where 0 < ℎ9 < 1 is the bandwidth sequence. Assuming that 

the density � is continuous, one obtains a strongly consistent 

estimator �9,GH��� of �, that is, one has with probability 1, 
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�9,GH��� → ����, � ∈ ℝ	. There are also results concerning 

uniform convergence and convergence rates. For proving such 

results one usually writes the difference �9,GH��� − ���� as 

the sum of a probabilistic term �9,GH��� − Q�R9,GH��� and a 

deterministic term Q�9,GH��� − ���� , also called bias. For 

further explanation One can refer to [10, 12, 13], among other 

authors. After having estimated �9,GH�⋅� , we estimate ����, �� by setting  

�S�$�9,GH , �& = �  TH,UH �9,GH �������������, � ≠ 1    (5) 

where W9,GH = !� ∈ ℝ	 , �R9,GH��� ≥ X9"  and X9 ↓ 0  is a 

sequence of positive constants. Thus, using (5), the associated 

divergences �����, �� and ��#��, �� can be estimated by:  

�S����9,GH , �� = 1� − 1 log�S���9,GH , ��, 
�S�#��9,GH , �� = 1� − 1 $�S���9,GH , �� − 1&. 

The approach used to define the plug-in estimators is also 

developed in [2] in order to introduce a kernel-type estimator 

of Shannon’s entropy. Some statistical properties of these 

divergences is related to those of the kernel estimator �9,GH�⋅� 

of the continuous density �. The limiting behavior of �9,GH�⋅�, 

for appropriate choices of the bandwidth ℎ9, has been widely 

studied in the literature, examples include the work of Deroye 

[6, 7] Bosq [1] and Prakasa [22]. In particular, under our 

assumptions, the condition that ℎ9 ↓ 0  together with :ℎ9 ↑ ∞ is necessary and sufficient for the convergence in 

probability of �9,GH��� towards the limit ����, independently 

of � ∈ ℝ	 and the density ��⋅�. We can find other results of 

uniform consistency of the estimator �9,GH��� in [4, 10, 5] 

and the references therein. In the next section, we will use the 

methods developed in previous references to establish 

convergence results for the estimates �S���9,GH , ��  and 

deduce the convergence results of �S����9,GH , ��  and �S�#��9,GH , ��. 

3. Statistical Properties of the Estimators 

We first study the strong consistency of the estimator �S���9,GH , �� defined in (5). Throughout the remainder of this 

paper, we well the notation for Q�S���9,GH , �� , which is 

delicate to handle. This is given by  

Q�S���9,GH , ��: = ,  TH,UH
$Q�9,GH���&����������. 

Lemma 1 Let =�⋅� satisfy (K.1-2-3-4) and let ��⋅� be a 

continuous bounded density. Then, for each pair of sequence �ℎ9\ �9]� , �ℎ9\\�9]�  such that 0 < ℎ9\ < ℎ9 ≤ ℎ9\\ , together 

with ℎ9\\ → 0 , :ℎ9\ /_`��:� → ∞  as : → ∞  and for any � ∈ �0,1�, one has with probability 1 

supGHa bGbGHaac�S���9,G, �� − Q�S���9,G , ��c = d e+log�1/ℎ9\ � ∨ loglog::ℎ9\ -�/)g. 
The proof of Lemma 1 is postponed until Section 4.  

Lemma 2 Let =�⋅�  satisfy (K.3-4) and let ��⋅�  be a 

uniformly Lipschitz and continuous density. Then, for each 

pair of sequence �ℎ9\ �9]�, �ℎ9\\�9]� such that 0 < ℎ9\ < ℎ9 ≤ℎ9\\, together with ℎ9\\ → 0, as : → ∞ and for any � ∈ �0,1�, 
we have  

supGHa bGbGHaacQ�S���9,G, �� − ����, ��c = d$X9� ∨ ℎ9\\�/	&. 

The proof of Lemma 2 is postponed until Section 4.  

Theorem 1 Let =�⋅� satisfy (K.1-2-3-4) and let ��⋅� be a 

uniformly Lipschitz, bounded and continuous density. Then, for 

each pair of sequence �ℎ9\ �9]�, �ℎ9\\�9]� such that 0 < ℎ9\ <ℎ9 ≤ ℎ9\\ , together with ℎ9\\ → 0 , :ℎ9\ /_`��:� → ∞  as : → ∞ and for any � ∈ �0,1�, one has with probability 1  

supGHa bGbGHaac�S���9,G, �� − ����, ��c = d e+log�1/ℎ9\ � ∨ loglog::ℎ9\ -�/) ∨ X9� ∨ ℎ9\\�/	g. 
This, in turn, implies that  

lim9→? supGHa bGbGHaac�S���9,G, �� − ����, ��c = 0 h. i.                            (6) 

The proof of Theorem 1 is postponed until Section 4. 

The following corollaries handle respectively the uniform deviation of the estimate �S�#��9,G, �� and �S����9,G, �� with respect 

to ��#��, �� and �����, ��. 

Corollary 1 Assuming that the assumptions in Theorem 1 hold. Then, we have  

supGHa bGbGHaac�S�#��9,G, �� − ��#��, ��c = d e+log�1/ℎ9\ � ∨ loglog::ℎ9\ -�/) ∨ X9� ∨ ℎ9\\�/	g. 
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This, in turn, implies that  

lim9→? supGHa bGbGHaac�S�#��9,G, �� − ��#��, ��c = 0 h. i                                (7) 

The proof of Corollary 1 is postponed until Section 4. 

Corollary 2 Assuming that the assumptions in Theorem 1 hold. Then, we have  

supGHa bGbGHaac�S����9,G, �� − �����, ��c = d e+log�1/ℎ9\ � ∨ loglog::ℎ9\ -�/) ∨ X9� ∨ ℎ9\\�/	g 

This, in turn, implies that  

lim9→? supGHa bGbGHaac�S����9,G , �� − �����, ��c = 0 h. i.    (8) 

The proof of Corollary 2 is postponed until Section 4. 

Note that, the divergence estimator such as (5) also requires 

the appropriate choice of the smoothing parameter ℎ9. The 

results given in (6), (7) and (8) show that any choice of ℎ 

between ℎ9\  and ℎ9\\  ensures the strong consistency of the 

underlying divergence estimators. In other words, the 

fluctuation of the bandwidth in a small interval do not affect 

the consistency of the nonparametric estimators of these 

divergences. The work of Bouzebda and Elhattab [2] is very 

important for establishing our results, these authors have 

created a class of compactly supported densities. They used 

the following additional conditions. 

(F.1) ��⋅�  has a compact support say j  and is i -time 

continuously differentiable, and there exists a constant 0 < k < ∞ such that 

supC∈j l ∂n����∂��op . . . ∂�	o�l ≤ k, q� + ⋯ + q	 = i. 

(K.5) =�⋅� is of order i, i.e., for some constant t ≠ 0, 
,  ℝ� u�op … u	o�=�u��u = 0,  

q�, . . . , q	 ≥ 0, q� + ⋯ + q	 = 1, . . . , i − 1, 
and 

,  ℝ� wu�op … u	o�w=�u��u = t, q�, … , q	 ≥ 0, 
q� + ⋯ + q	 = i. 

Under (F.1) the expression ����, ��  may be written as 

follows 

����, �� = �  j �����������.            (9) 

Theorem 2 Assuming conditions (K.1-2-3-4-5) hold. Let ��⋅� fulfill (F.1). Then for each pair of sequences 0 < ℎ9\ <ℎ9 ≤ ℎ9\\  with ℎ9\\ → 0 , :ℎ9\ /_`�: → ∞  as : → ∞  and for 

any � ∈ �0,1�,, we have  

limsup9→? supGHa bGbGHaa
x�:ℎ��c�S���9,G, �� − ����, ��cx�log�1/ℎ� ∨ loglog:�� ≤ y�j� ,  ℝ� ���������h. i, 

where  

y�j� = supC∈j z���� ,  ℝ� =)�u��u{�/). 
The proof of Theorem 2 is postponed until Section 4. 

Corollary 3 Assuming that the assumptions in the Theorem 

2 hold. Then,  

limsup9→? supGHa bGbGHaa
x�:ℎ��c�S�#$�9,G, �& − ��#��, ��cx�log�1/ℎ� ∨ loglog:��  

≤  11 − � y�j� ,  ℝ� ���������h. i, 
Corollary 4 Assuming that the assumptions in the Theorem 

2 hold. Then, for any X > 0 we have  

Limsup9→? supGHa bGbGHaa
x�:ℎ��c�S��$�9,G, �& − �����, ��cx�log�1/ℎ� ∨ loglog:��  

≤ 1�1 − ��X� y�j� h. i, 
The proof of Corollaries 3 and 4 are given in Section 4. 

Now, assume that there exists a sequence !j9"9]� of strictly 

nondecreasing compact subsets of j, such that j =∪9]� j9 . For 

the estimation of the support j we may refer to ([8]) and the 

references therein. Throughout, we let ℎ ∈ [ℎ9\ , ℎ9\\], where ℎ9\  

and ℎ9\\ are as in Corollaries (3) and (4). We choose an estimator 

of y�j� in the Corollaries (3) and (4) as the form  

y9�j9� = supC∈jH z�9,G��� ,  ℝ� =)�u��u{�/). 
Using the techniques developed in [5] and the Corollaries (3) 

and (4) one can construct an asymptotically 100% certainty 

intervals for the true divergences ��#��, �� and �����, ��. 

4. Proofs of Our Results 

Proof of Lemma 1. to show the strong consistency of 
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�S���9,GH , ��, we use the following expression  

Q�S���9,GH , ��: = ,  TH,UH
$Q�9,GH���&����������, 

where W9,GH = !� ∈ ℝ	 , �9,GH��� ≥ X9"  and X9 ↓ 0  is a 

sequence of positive constant. Define  

Δ9,�,GH: = �S���9,GH , �� − Q�S���9,GH , ��. 
We have 

 

cΔ9,�,GHc =  l,  TH,UH
$�9,GH� ��� − $Q�9,GH���&�&���������l 

≤  ,  TH,UH
c�9,GH� ��� − $Q�9,GH���&�c��������� 

≤ supC∈ℝ�c�9,GH� ��� − $Q�9,GH���&�c ,  TH,UH
���������. 

Since i��� = � is a 1-Lipschitz function, for 0 < � < 1 

then  

|�i����� − �i�����| ≤ |i��� − i���|�. 

Therefore for 0 < � < 1, we have  

c�9,GH� ��� − $Q�9,GH���&�c ≤ c�9,GH��� − Q�9,GH���c�   ≤ wc�9,GH − Q�9,GHcw?
� , 

where �⋅�?  denotes, as usual, the supremum norm, i.e., ���?: = supC∈ℝ|����|. Hence,  

|Δ9,�,GH| ≤ ��9,GH − Q�9,GH�?� �  TH,UH ���������.   (10) 

Finaly,  

|Δ9,�,GH| ≤ ��9,GH − Q�9,GH�?� �  ℝ� ���������.     (11) 

Using the conditions on the kernel =�⋅�, posed by Einmahl 

[11], consider the class of functions  

�: = !=��� −⋅�/ℎ�: ℎ > 0, � ∈ ℝ	". 
For � > 0 , set ���, =� = sup�����, =, ��� , where the 

supremum is taken over all probability measures �  on �ℝ	, ℬ�, where ℬ represents the �-field of Borel sets of ℝ	, 

i.e is the smallest containing all the open (and/or closed) balls 

is ℝ	. Here, �� denotes the �)���-metric and ����, =, ��� 

is the minimal number of balls !�: ����, �\� < �"  of ��-radius � needed to cover =.  

We assume that = satisfies the following uniform entropy 

condition.  

(K.6) for some � > 0  and � > 0 , ���, =� ≤ ���� , 0 <� < 1. 
(K.7) = is a pointwise measurable class, that is there exists 

a countable sub-class =� of = suchthat we can find for any 

function � ∈ = a sequence of functions !��: � ≥ 1" in =� 

for which  

����� → ����, � ∈ ℝ	. 
This condition is discussed in [27]. It is satisfied whenever = is right continuous. 

Remark that condition (K.6) is satisfied whenever (K.1) 
holds, i.e., =�⋅� is of bounded variation on ℝ	, we refer the 
reader to Van der Vaart and Wellner [28], for details on 
conditions of entropy (see also Pakes and Pollard [18], and 
Nolan and Pollard [17]). Condition (K.7) is satisfied 
whenever (K.2) holds, i.e., =�⋅�  is right continuous, this 
condition is discussed in [28], (see also [5] and [11]). 

From Theorem 1 in [11], whenever =�⋅� is measurable and 

satisfies (K.3-4-6-7), and when ��⋅� is bounded, we have for 

each pair of sequence �ℎ9\ �9]�, �ℎ9\\�9]� such that 0 < ℎ9\ <ℎ ≤ ℎ9\\ ≤ 1, together with ℎ9\\ → 0 and :ℎ9\ /log�:� → ∞ as : → ∞, with probability 1 

supGHa bGbGHaa��9,G − Q�9,G�? =  d +������/GHa �∨������99GHa -.      (12) 

Since �  ℝ� ��������� < ∞, in view of (11) and (12), we 

obtain with probability 1. 

supGHa bGbGHaacΔ9,�,Gc = d �L�����/GHa �∨������99GHa O�/)�.     (13) 

It concludes the proof of the lemma. 

Proof of Lemma 2. 
Let W9,GH�  be the complement of W9,GH  in ℝ	  (i.e, W9,GH� = !� ∈ ℝ	 , �9,GH < X9"). We have  

Q�S���9,GH , �� − ����, �� = Δ9,),GH + Δ9,�,GH , 
with 

Δ9,),GH: = ,  TH,UH
$$Q�9,GH���&� − �����&��������� 

and 

Δ9,�,GH: = ,  TH,UH� ��������������. 
Term Δ9,),GH . Repeat the arguments above in the terms Δ9,�,GH with the formal change of �9,GH by �. We show that, 

for any : ≥ 1, 

|Δ9,),GH| ≤ ��9,GH − Q�9,GH�?� �  TH,UH ���������,    (14) 

which implies  

|Δ9,),GH| ≤ �Q�9,GH − ��?� �  ℝ� ���������.     (15) 

On the other hand, we know (see, e.g,[11] ), that since the 
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density ��⋅� is uniformly Lipschitz and continuous, we have 

for each sequences ℎ9\ < ℎ < ℎ9\\ < 1 , with ℎ9\\ → 0 , as : → ∞,  

supGHa bGbGHaa�Q�9,G − ��?� = d�ℎ9\\�/	�.        (16) 

Thus,  

supGHa bGbGHaacΔ9,),Gc = d�ℎ9\\�/	�.          (17) 

Term Δ9,�,GH. It is obsious to see that  

cΔ9,�,GHc    = ,  TH,UH� |��(�)|����(�)��                              
≤ ,  TH,UH� cQ�9,GH(�) − ��(�)c����(�)�� + ,  TH,UH� Q�9,GH(�)����(�)��
≤  �Q�9,GH − ��?

� ,  TH,UH� ����(�)�� + X9� ,  TH,UH� ����(�)�� 

Thus,  

cΔ9,�,GHc ≤ L�Q�9,GH − ��?
� + X9�O �  TH,UH� ����(�)��.  (18) 

Hence,  

cΔ9,�,GHc ≤ L�Q�9,GH − ��?
� + X9�O �  ℝ� ����(�)��.  (19) 

Thus, in view of (16), we get  

supGHa bGbGHaacΔ9,�,GHc = d$X9� ∨ ℎ9\\�/	&         (20) 

Finaly, in view of (17) and (20), we get  

supGHa bGbGHaacQ�S�$�9,G, �& − ��(�, �)c = d$X9� ∨ ℎ9\\�/	&   (21) 

is deduced the proof of the lemma. 

Proof of Theorem 1. We have  

c�S��$�9,GH , �& − ���(�, �)c ≤ c�S�$�9,GH , �& − Q�S�$�9,GH , �&c +  cQ�S�(�9,GH , �) − ��(�, �)c. 
Combinating the Lemmas (1) and (2), we obtain  

supGHa bGbGHaac�S�(�9,G , �) − ��(�, �)c = d e+log(1/ℎ9\ ) ∨ loglog::ℎ9\ -�/)g + d$X9� ∨ ℎ9\\�/	&. 
It concludes the proof of the Theorem. 

Proof of Corollary 1. Remark that  

�S�#(�9,GH , �) − ��#(�, �) = 1� − 1 $�S�(�9,GH , �) − ��(�, �)&. 
Using the Theorem (1), we have 

supGHa bGbGHaac�S�#(�9,G , �) − ��#(�, �)c = d e+log(1/ℎ9\ ) ∨ loglog::ℎ9\ -�/) ∨ X9�  ∨ ℎ9\\�/	g, 
and the Corollary 1 holds. 

Proof of Corollary 2. A first order taylor expansion of � ↦ log� arround � = �� > 0 and � = �  > 0 gives  

log�  = log�� + 1�� (�  − ��) + `(||�  − ��||). 
Remark that from Theorem 1,  

supGHa bGbGHaac�S�(�9,G, �) − ��(�, �)c = d e+log(1/ℎ9\ ) ∨ loglog::ℎ9\ -�/) ∨ X9� ∨ ℎ9\\�/	g, 
which in turn, implies that 

lim9→? supGHa bGbGHaac�S�(�9,G, �) − ��(�, �)c = 0  h. i. 
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Thus, for all 

�S����9,GH , �� − �����, �� = 1� − 1 $log�S���9,GH , �� − log����, ��& 

= 1�� − 1�����, �� $�S���9,GH , �� − ����, ��& + ` Lwc�S���9,GH , �� − ����, ��cwO. 
Consequently 

supGHa bGbGHaac�S����9,G, �� − �����, ��c = d e+log�1/ℎ9\ � ∨ loglog::ℎ9\ -�/) ∨ X9� ∨ ℎ9\\�/	g
and the Corollary 2 holds. 

Proof of Theorem 2. Under conditions �;. 1�, �=. 5� and 

using Taylor expansion of order i we get, for � ∈ j,  

|Q�9,G − ����|
= ℎn/	i! £,  ¤  

¥p¦...¦¥�
F�¥p . . . F	¥� ∂n��� − ℎ§F�∂��¥p . . . ∂��¥� =�F��F£ 

where § = �§�, . . . , §	� and 0 < §J < 1, ¨ = 1, . . . ; � Thus a 

straightforward application of Lebesgue dominated 

convergence theorem gives, for : large enough,  

supC∈j |Q�9,G��� − ����| = d�ℎ9\\� 

Let ª be a nonempty compact subset of the interior of j. 

First, note that we have from Corollary 3.1.2. p. 62 of Viallon 

[29] (see also, [2], statement (4.16)). 

limsup9→? supGHa bGbGHa supC∈ª
√9G|¬H,U�C��¬�C�|x�����/G�∨������9 = supC∈ª $���� �  ℝ� =)�F��F&�/)

                       (22) 

Set, for all : ≥ 1,  

­9�ª� = ®, ª $�9,G�  ��� − �����&���������® 
≤ , ª |�9,G� ��� − �����|��������� 

≤  , ª |�9,G��� − ����|����������  i¨:¯°  � ∈ [0,1], 
≤ supC∈ª |�9,G��� − ����|� �  ª ���������,          (23) 

≤ supC∈ª |�9,G��� − ����|� �  ℝ� ���������.        (24) 

by combining (22) and (24)  

limsup9→? supGHa bGbGHaa
x�9G�±²H�ª�x������/G�∨������9�± ≤

 supC∈ª ³$���� �  ℝ� =)�F��F&�/)´ �  ℝ� ���������.  (25) 

Let !ªℓ", ℓ = 1,2, . . .,  be a sequence of nondecreasing 

nonempty compact subsets of the interior of j such that  

¶  
ℓ]�

ªℓ = j 

Now, from (25), it is straightforward to observe that 

limsup ℓ→? limsup9→? supGHa bGbGHaa
x�:ℎ��­9�ªℓ�x�log�1/ℎ� ∨ loglog:�� 

≤ limsupℓ→?  supC∈ªℓ z���� ,  ℝ� =)�F��F"�/){ ,  ℝ� ��������� 

≤ supC∈j ·+���� ,  ℝ� =)�F��F-�/)¸ ,  ℝ� ��������� 

The proof of Theorem 2 is completed. 

Proof of Corollary 3. A direct application of the Theorem 2 

leeds to the Corollary 3. 

Proof of Corollary 4. Here again, set, for all : ≥ 1, 

¹9�ª� = ® 1� − 1 +log , ª �9,G� ������� − log , ª ��������������-®. 
A first order Taylor expansion of log��� leads to 

¹9�ª� ≤ 11 − � 1�  ª �������������� ®, ª $�9,G� ��� − �����&���������® + `$||�9,G� − �||?� &, 
≤ 11 − � 1�  ª �������������� ­9�ª�  + `$||�9,G� − �||?� &,       
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Using condition �;. 1�, ��⋅� is compactly supported), ��⋅� is bounded away from zero on its support, thus, we have for : 

large enough, there exists X > 0, such that ���� > X, for all � in the support of ��⋅�. From (23), we have  

­9�ª� ≤ supC∈ª |�9,G��� − ����|� , ª ���������. 
Hence, 

¹9�ª� ≤ 11 − � 1X� 1�  ª ��������� supC∈ª |�9,G��� − ����|� ,  ªº ��������� ≤ 11 − � 1X� supC∈ª |�9,G��� − ����|�
 

by combining the last equation with (22)  

limsup9→? supGHa bGbGHaa
x�:ℎ��¹9�ª�

��log��G� ∨ loglog:�� ≤ 11 − � 1X� supC∈ª ·+���� ,  ℝ� =)�F��F-�/)¸ 

limsup»¼¼→?  limsup9→? supGHa bGbGHaa
x�:ℎ��¹9�ªℓ�x�log�1/ℎ� ∨ loglog:�� 

≤ 11 − � 1X� limsup_→∞ sup�∈ªℓ z���� ,  ℝ� =2�F��F"�/2{ 

≤  11 − � 1X� supC∈j ·+���� ,  ℝ� =)�F��F-�/)¸ 

The proof of Corollary is completed. 

5. Simulation Study 

Summarizing the ideas and the results given in the previous 

sections, we propose to study the performance of the 

kernel-estimators for Hellinger ( � = �)  ¨: Tsallis - � ), 

Bhattacharyya ( � = �)  ¨: Rényi – � ) and Kullback-Leibler 

( � → 1 ¨: Rényi – � ) measures and their 

uniform-in-bandwidth consistency.  

Hellinger, Bhattacharyya and Kullback-Leibler divergences 

are defined respectively as follows:  

�*��, �� = 1 − ,  ℝ� ��/)�����/)�����, 
�.��, �� = − 12 log ,  ℝ� �pÃ����pÃ�����, 

�23��, �� = ,  ℝ� ����log �������� ��, 
The asymptotic behavior of each bandwidth is performed 

using the kernel-type estimator of the divergence criteria in 

corollary 3 and corollary 4 respectively. 

We compute, for each chosen value of α, the expressions 

|�4| = limsup9→? supGHa bGbGHaa
x�:ℎ�.Äc�SÅ$�9,G, �& − �*��, ��cx�log�1/ℎ� ∨ loglog:�.Ä  ≤  2y�j� ,  ℝ� �.Ä����� 

|�Æ| = limsup9→? supGHa bGbGHaa
x�:ℎ�.Äc�SÇ$�9,G, �& − �.��, ��cx�log�1/ℎ� ∨ loglog:�.Ä  ≤  2xlog �:� y�j� 

|�=| = limsup9→? supGHa bGbGHaa
√:ℎc�SÈ$�9,G, �& − �2��, ��cxlog�1/ℎ� ∨ loglog:  ≤  2log �:� y�j� 

where the cooresponding bounds (Æ4, ÆÆ9 , Æ=9) are defined 

by 

Æ4 = 2y�j� ,  ℝ� �.Ä����� 

ÆÆ9 = 2xlog �:� y�j� 

Æ=9 = 2log �:� y�j� 

We consider an experiment in which the DGP (Data 

Generating Process) for the true distribution � are generated 

from a mixture of two normal distributions,  

���� = 0.5 × ��0,1� + 0.5 × ��0,2� 

and the � function is supposed to be a normal distribution 

with mean 1 and variance 2.  

The sample size varies from 10 to 1000, and for each size, 

the statistics �4, �Æ, �= and Æ4, ÆÆ, Æ= are evaluated.  

In order to plot �4, �Æ h:� �= against sample size, we 

need to perform three sets experiments. 
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The results are presented in tables 1-3 and figures 1-3. 

Table. 1. |�4| and Æ4 against the sample :. 

ÊËÌÍ Î |ÏÐ| ÑÐ 

10 0.14 0.0627 

20 0.25 0.0627 

50 0.07 0.0627 

100 0.02 0.0627 

300 0.01 0.0628 

500 0.006 0.0629 

1000 0.003 0.0629 

Table. 2. |�Æ| and ÆÆ9 against the sample :. 

ÊËÌÍ Î |ÏÑ| ÑÑÎ 

10 0.048 0.040 

20 0.037 0.030 

50 0.007 0.027 

100 0.007 0.025 

300 0.005 0.024 

500 0.003 0.024 

1000 0.002 0.023 

Table. 3. |�=| and Æ=9 against the sample :. 

ÊËÌÍ Î |ÏÒ| ÑÒÎ 

10 0.15 0.19 

20 0.128 0.167 

50 0.213 0.11 

100 0.053 0.095 

300 0.034 0.093 

500 0.025 0.842 

1000 0.007 0.825 

The tables 1-3 show that the kernel-type estimators of the 

divergence measures converge rapidly to their pseudo-true 

value, and confirm our asymptotic results. They all show that 

the discrepancy between the estimated and the true divergence 

criterion converge rapidly to zero. Similarly, in table 2 and 

table 3, DB and DK converge, as expected, to zero, which is 

the mean of the asymptotic distribution when the estimated 

distribution �9,G is close to f. 

 

Fig. 1. �4, Æ4 and %Æ4 as a function of :. 

 

Fig. 2. �Æ, ÆÆ and %ÆÆ as a function of :. 

 

Fig. 3. �=, Æ= and %Æ= as a function of :. 

The figures 1-3 show �4, �Æ h:� �=  values plots for 

Hellinger, Bhattacharyya and Kullback-Leibler divergence 

respectively. The preceding comments from the table 1-3 also 

apply to the figure 1-3. For dealing with divergence error, it is 

much revealing to graph DH, DB and DK against sample size. 

They also confirm our asymptotic results. We note that, as 

sample size increases, the value discrepancy plots of 

divergence error converge, as it should, to zero These plots 

provide a great deal of information about how the sample size 

: affect the performance of these informational criterions.  

6. Concluding Remarks and Future 

Works 

In this paper, we are concerned with the problem of 

nonparametric estimation of a class of divergence measures. 

For this cause, many estimators are available. The most recent 

ones are the estimates developed by Bouzebda [2]. We 

introduce an estimator that can be seen as a generalization of 

those previously suggested, in the sense that Bouzebda was 

only interested in the case of entropy, while we focus on the 

Rényi-� and the Tsallis-� divergence measures. Under our 

study, one can easily deduce Kullback-Leibler, Hellinger and 
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Bhattacharyya nonparametric estimators. The results 

presented in this work are general, since the required 

conditions are fulfilled by a large class of densities. We 

mention that the estimator �S�(�R9,GH , ��  in (5) can be 

calculated by using a Monte-Carlo method under a given 

distribution � . And a practical choice of X9  is Ó�log:�Ô  

where Ó > 0 and Õ ≥ 0. 

It will be interesting to enrich our results presented here by 

an additional uniformity in term of X9  in the supremum 

appearing in all our theorems, which requires non trivial 

mathematics, this would go well beyond the scope of the 

present paper. Another direction of research is to obtain results, 

in the case where the continuous distributions � and � are 

both unknown. The problems and the methods described here 

are all inherently univariate. A natural and useful multivariate 

extension appear in the use of copula function. 
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