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Abstract: Batch testing involves testing items in a group rather than testing the items individually for resource saving 

purposes. Estimation of proportion of a trait of interest using batch testing model insulates individuals of a population against 

stigma. In this paper, an estimator of the unknown proportion of a trait in batch testing model based on a quality control 

process is constructed and its properties discussed. In quality control, a batch is rejected if constituent defective members are 

greater than l, the cut off value. It is observed that if l = 0, then the obvious batch testing strategy is obtained. Hence when l > 

0, the batch testing strategy is generalized. The proposed model is superior to the existing models when the proportion of a trait 

is relatively high. The application of the model on Genetically Modified Organisms contamination is carried out. 
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1. Introduction 

Batch testing, also known as pooled testing or group 

testing, has a rich history going back to [1] and it involves 

testing several items simultaneously in a batch. Since his 

seminal work, batch testing has been applied to problems in 

blood bank screening, genetics, drug discovery, 

epidemiology and quality control. In all these applications, 

batch testing has two main objectives; first is the 

identification of positive individuals in a large population 

[1, 2, 3]. Second is estimation of the proportion of character 

or trait of interest [4, 5, 6, 7, 8, 9, 10]. 

Recent studies in batch testing have concentrated on the 

second objective by generalizing [4] and [5] studies. The 

various scholars have done this by considering; unequal 

pool sizes [11, 12], multistage pooling schemes [3, 7, 8], 

imperfect tests [9, 13] and [10] introduced the idea of 

blockers. However, in both objectives, batch testing has 

been shown to offer substantial gains (compared to one-at-a 

time testing) when dealing with rare traits (i.e when 

proportion, p is small). Recent advances in batch testing 

have included considering regression models for batch 

testing and hierarchical batch testing. For example, [14] 

examined two-stage hierarchical batch testing for multiple 

infections in which they developed an expectation-

maximization algorithm to estimate probabilities of 

infections using both batch and individual retest responses. 

[15] proposed retesting of random grouping of units from 

positive batches. They noted that this option is useful when 

tests are not destructive or acquisition of additional units is 

impractical or too expensive. An advance brought about by 

batch testing is the ability to assess significance of covariate 

effects and/or reporting subject-specific estimates of the 

probability of infection cost effectively [16]. This is 

achieved by developing regression models for batch testing 

that exploit the information available from the underlying 

biomarker. 

In many industrial applications in which acceptance 

sampling is employed, a batch is classified positive or 

negative according to whether the number of constituent 

members with the quality trait is greater or less than a fixed 

cut of value or threshold, l [17]. But the quality control 

processes can be resource intensive especially when tests 

involved are expensive and/or takes longer to get the 

results. Therefore, substantial savings can be realized if 

batch testing is applied. In this paper we present an 

estimator of the unknown proportion of a trait in batch 

testing model based on a quality control process and its 

properties are discussed. 
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2. Point Estimation of p 

Consider a finite population with N items and each item 

can be classified as good or defective and let p, be the 

unknown proportion of defective items in the population. 

Suppose that the population can be divided into n batches 

each of size k. A batch is rejected if the number of defective 

items, d in the batch is greater than a predefined threshold or 

cutoff value, l . The probability of rejecting a batch 

expressed in terms of cumulative distribution function is;  

)(1)( lFp −=π                             (1) 

It is noted that the relationship between )( pπ and p  is 

sensitive to both k and l as the slope of the curve changes 

with varying k and l.  

Suppose X out of the n batches test positive on the test. 

Here X is a random variable and according to Dorfman 

(1943), X follows a binomial (n,�(�)). The MLE of p is 

obtained by solving 

0)(
)(1

)(
)(

)(
=′

−
−−′ p

p

xn
p

p

x π
π

π
π                (2) 

where 
q

p
p

∂
∂=′ )(

)(
ππ and q = 1- p. 

There are two possible solutions to Equation (2); 

0)( =′ pπ  or [ ] 0)( =− pnx π   

The candidate 0)( =′ pπ  is dropped because it gives 

only two extreme solutions 0ˆ =q or 1ˆ =q and thus 0ˆ =p

or 1ˆ =p . The estimate 0ˆ =p  is most unlikely to happen 

since in practice it is not possible to avoid defectives and 

have only good items. On the other hand 1ˆ =p
 
means that 

all the batches or items test positive which is certainly an 

overestimate of p as it is most unusual for every item in the 

population to be positive (Hepworth and Watson, 2009). With 

the candidate [ ] 0)( =− pnx π , we have  
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Equation (3) has no solution in closed form except when

0=l , which leads to the results obtained by Thompson 

(1962) as 

k

n
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1

)1(1ˆ −−=                             (4) 

Hence, the proposed estimator generalizes [4] results. 

When 0>l , Equation (3) can be solved iteratively. The table 

below shows the MLE of p for different values of p, k and l.  

 

 

 

 

Table 1. MLE of p for k = 5, 10, 15, 25 and l = 0, 1, 2, and 3. 

l 

p 0 1 2 3 

k = 5 

0.005 0.00101 0.02288 0.08283 0.18511 

0.01 0.00198 0.03269 0.10564 0.22207 

0.05 0.01022 0.07646 0.18924 0.34259 

0.10 0.02085 0.11222 0.24663 0.41610 

0.15 0.03198 0.14187 0.28990 0.46795 

0.20 0.04364 0.16861 0.32659 0.50979 

0.25 0.05588 0.19377 0.35944 0.54582 

k = 10 

0.005 0.00051 0.01085 0.03701 0.07678 

0.01 0.00098 0.01554 0.04750 0.09321 

0.05 0.00514 0.03679 0.08728 0.15000 

0.10 0.01048 0.05456 0.11580 0.18756 

0.15 0.01612 0.06949 0.13813 0.21563 

0.20 0.02209 0.08326 0.15763 0.23944 

0.25 0.02836 0.09640 0.17557 0.26085 

k = 15 

0.005 0.00035 0.00709 0.02388 0.04876 

0.01 0.00065 0.01019 0.03074 0.05939 

0.05 0.00344 0.02422 0.05687 0.09666 

0.10 0.00699 0.03603 0.07585 0.12177 

0.15 0.01078 0.04606 0.09087 0.14080 

0.20 0.01477 0.05531 0.10408 0.15716 

0.25 0.01899 0.06419 0.11634 0.17205 

k = 25 

0.005 0.00021 0.00423 0.01400 0.02824 

0.01 0.00039 0.00604 0.01802 0.03446 

0.05 0.00202 0.01439 0.03351 0.05656 

0.10 0.00422 0.02148 0.04493 0.07166 

0.15 0.00648 0.02748 0.05394 0.08324 

0.20 0.00888 0.03309 0.06200 0.09328 

0.25 0.01142 0.03849 0.06950 0.10243 

From Table 1, we note that p̂ increases as l increases for 

any fixed p and k and at the same time p̂ reduces as k 

increases for fixed p and l. Thus, it is possible to get p̂ a 

combination of k and l that gives closer to a fixed p. We 

investigated the relationship between p̂  and p for different 

values of k and l as presented by Figure 1 below. 

 

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 k =5

p

p
 e

s
ti
m

a
te

cutoff=0

cutoff=1

cutoff=2

cutoff=3



621 Ronald W. Wanyonyi et al.:  Estimation of Proportion of a Trait by Batch Testing Model in a Quality Control Process  

 

 

 

 

Figure 1. Plots of p̂  against p  for k = 5, 10, 15, 25 and l = 0, 1, 2 and 3. 

The relationship between p̂  and p in batch testing when 

l = 0 has been investigated by [19]. It was found that there is 

a linear relationship between p̂ and p for k = 1. Figure 1 

clearly shows the effects of k and l on the estimate of the 

proportion. The relationship between p̂  and p  is found to 

be monotonic but not linear as opposed to the case when 

batch size is equal to 1. It is also noted that the relationship is 

sensitive to both k and l. 

3. Properties of the Estimator 

In this section, the properties of the estimator are 

discussed.  

3.1. Asymptotic Variance 

The asymptotic variance is obtained from the Fisher’s 

information given by 
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which gives 

1ˆvar( ) ( )p o n
−=                          (6) 

Derivation of Equation (6) is provided in the Appendix A. 

This asymptotic variance can be used to construct the Wald-

type confidence intervals for the proportion of defectives. To 

investigate the behavior of )ˆvar( p , we have plotted )ˆvar( p  

against p for different k and l. 
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Figure 2. )ˆvar( p as a function of p for k = 5, 10, 15, 25 and l = 0, 1, 2 and 3. 

The principal interest in Figure 2 is to observe where the 

curves for l > 0 lie below the curve for l = 0 i.e. the solid line. 

It indicates that the model with l > 0 has low variance for 

fairly higher proportions and this is achieved at lower p as k 

increases.  

Next, we compare our results with those of [4] among 

others by computing Asymptotic Relative Efficiency (ARE). 

If the estimator of [4] among others is denoted by Tp̂  and our 

estimator is denoted by lp̂ , then  

)ˆvar(

)ˆvar(

l

T

p

p
ARE =                            (7) 

Therefore, ARE > 1 implies that the proposed model is 

more efficient than the [4] model. The computed ARE is 

plotted against the p for various k and l as shown in Figure 

(4) below. 
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Figure 3. ARE plotted against p for k = 5, 10, 15, 25 and l = 1, 2 and 3. 

The proposed model is more efficient than the Thompson 

estimation model for relatively higher p. However, the p for 

which the proposed model is more efficient than Thompson’s 

model reduces as k increases. Therefore, the proposed model 

performs better in situations where p is relatively high which 

has been a drawback to the use of batch testing strategy. 

3.2. Bias of the Estimator 

The bias is used to measure the average error incurred 

when using the estimate of a parameter. The bias of an 

estimator is given by 

ppEpbias −= )ˆ()ˆ(                           (8) 

and if p̂ follows binomial distribution with parameters (n,
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This might not be the case in practice as assumed by [4] 

and [21] among others and hence we invoke Monte Carlo 

simulations. 

Since the bias of an estimator is related to )ˆ( pE , we also 

investigated the behavior of bias by plotting )ˆ( pE against p 

for different k and l as shown below. The )ˆ( pE when k = 1 

is represented by a solid line in the Figure 4.
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Figure 4. )ˆ( pE as a function of p for l = 0, 1, 2 and 3 with k = 5, 10, 15 and 

25. 

The expected values of the estimator is strongly dependent 

on l. Note also that when l = 0, the estimator is positively 

biased. That is, the estimator overestimates p as earlier noted 

by [4]. Since then the batch testing literature has continued to 

note this fact [20, 21] or indicated how it can be derived by 

approximate expression using Taylor series expansion [22] or 

by help of Jensen’s Inequality [13]. On the other hand, when 

l > 0 the estimator underestimates p for low p < 0.5 but 

overestimates p for higher p. The amount of bias is noted to 

be affected by the cut off value and the bias is negligible 

when the p is low. 

Overall, the first thing noted is that choosing k too large 

must be avoided. For example, if p = 0.3, the ideal batch size 

would be k = 5 or 10 since the bias is negligible for cut off 

values l = 1, 2 and 3. Secondly, even when p is quite large 

(up to p = 0.7) there is k for which the bias is negligible. 

Lastly, since in practice the p is likely to be small, it should 

be easy to choose k and l for which the bias is negligible. 

3.3. Mean Squared Error of the Estimator 

The Mean Squared Error (MSE) of an estimator is the 

expected value of the squared difference between the 

unknown parameter and its estimator and is used as a 

measure for the goodness of an estimator. Swallow (1985) 

gives MSE of the estimator of p to be 

2
)]ˆ([)ˆvar()ˆ( pbiasppMSE +=              (10) 

From Equation (9), the MSE amalgamates the information 

from both the bias and the variance of the estimator and will 

be inflated by either large bias (inaccuracy of the estimator) 

or large variance (poor precision). The main goal of batch 

testing in the estimation problem is to minimize the MSE of 

the estimator of p as mentioned in Hung and Swallow (1999). 

The figure that follows shows the MSE of the estimator 

versus p for different values of l and k obtained by 

simulation. The solid line represents the MSE when k = 1.  
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Figure 5. MSE of the estimator plotted against p for l = 0, 1, 2 and 3 with k 

= 5, 10, 15 and 25. 

Figure 4 prompts several comments. With k = 5 and p < 

0.2, batch testing using l = 0 or 1 can greatly reduce the MSE 

of the estimator. Further, classical batch testing has low MSE 

for low values of p < 0.18 than batch testing with l = 1. For 

higher p > 0.2 batch testing with l > 0 is better than the 

classical batch testing and for p > 0.6 batch testing with l = 3 

is better than batch testing with lower l < 3. When the batch 

size is increased to k = 10, the batch testing with l > 0 is 

better than the classical batch testing for p > 0.1. Also it can 

be noted that for fairly large values of p > 0.3, the batch 

testing with larger l = 3 would be preferred to those using 

small l < 3.  

With k = 15, batch testing with l > 0 has low MSE 

compared to classical batch testing except for very low 

values of p. The model with l = 3 however performs better 

than others when p > 0.2.  

When k = 25 the batch testing with l =3 has low MSE 

compared to others when p > 0.1. Generally, batch testing 

with l = 3 performs better than batch testing with l < 3 for 

high p. But it is also worth to note that these values of p for 

which the model with l =3 performs better than others 

reduces as k increases. For example when k = 5 that value is 

p > 0.6 while when k = 10 the value reduces drastically to p > 

0.1. If the number of batches or assays may be limited by 

cost, say but the number of items in a batch can be chosen 

without any restrictions. Then k becomes an issue to be 

considered in order to get the best estimator. It is noted 

(results not included) that k for which the model performs 

efficiently is much less when p is high as opposed when p is 

low. Therefore, the choice of k also depends on p.  

The RMSE is a convenient measure for comparing the 

MSEs of estimates of the same p that is obtained by using 

different experimental designs or procedures. In this case the 

estimator using the proposed model is compared with that of 

[4] among others. The RMSE is calculated as 

)ˆ(
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Table 2. RMSE for various values of p with l = 1, 2, 3 and k = 5, 10, 15 and 

25. 

l 

p 1 2 3 

k = 5 

0.005 1.0808780 2.1792380 2.17923800 

0.01 0.5691428 0.7733947 1.02110600 

0.05 0.2726298 0.1981342 0.22624370 

0.10 0.4952901 0.1352474 0.12972640 

0.15 0.7832783 0.1321585 0.08409845 

0.20 1.3067560 0.2421896 0.08576563 

k = 10 

0.005 0.6667864 1.0734130 1.0734130 

0.01 0.3709624 0.4818073 0.5383903 

0.05 0.5189823 0.1530551 0.1324795 

0.10 1.3166490 0.3408400 0.1101625 

0.15 8.6156060 5.3238890 0.9764622 

0.20 30.0809600 48.1317600 14.7718900 

k = 15 

0.005 0.4225163 0.6025715 0.7310380 

0.01 0.3043926 0.3213549 0.3619061 

0.05 1.0201640 0.2010700 0.1133701 

0.10 18.7554200 12.5215900 2.4391450 

0.15 137.420600 161.737700 94.988850 

0.20 17.037750 313.928900 364.764500 

k = 25 

0.005 0.3358621 0.4108387 0.4626208 

0.01 0.3078288 0.2146209 0.2359505 

0.05 7.638219 3.565189 0.8637323 

0.10 160.7329 681.5068 604.3566 

0.15 4.600869 123.6423 1282.223 

0.20 1.534643 6.501305 128.6813 
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The results show that for small k = 5, the proposed model 

performs well compared to Thompson’s model for low value 

of p = 0.005 and higher value of p = 0.20. This is indicated 

by the value of RMSE > 1. As k increases, the model 

becomes more efficient than Thompson’s model for higher 

values of p. For instance, if p = 0.05 and k = 25, the proposed 

model with l = 1 is 7.6 times more efficient than the 

Thompson’s model. 

4. Application of the Model 

The model developed can be applied in the case of 

checking for the quality of produced items before being 

released to the customers or incoming products by 

organizations. In checking for quality, a batch of the product 

is accepted if the number of defectives as far as the trait of 

interest is less than a predefined tolerance level or cut off. 

This happens in seed production [24]. The concerned 

organizations normally design what is called testing plan 

which has two key parameters; the number of individual 

items to sample and test and the maximum number of 

defectives or unacceptable items (or batches) that can be 

tolerated in the sample before the batch is rejected. 

In the case of commercial seed production, unintentional 

mingling of GMOs with non-GMOs has attracted a lot of 

public attention. Therefore, there is important need to 

control unauthorized GMOs existing in the commercialized 

batches of seeds or when legislation makes the labeling 

compulsory that is has to be adequately labeled. The 

procedures employed in detecting the presence of GMOs 

use ELISA or PCR methods which have threshold of 

detection below which the existence of the trait of interest 

is not detected. 

It is worth to indicate here that in practice, three situations 

are encountered: 

1. The number of items to be tested is unlimited but the 

number of batches formed is restricted by the cost of 

the testing procedure (assays). 

2. The batch size might be limited by the dilution effect of 

the items being tested leading to misclassification 

errors. 

3. There are cases where the total number of items to be 

tested is limited. 

The model developed in this study is applied to the three 

situations mentioned above: 

Example 1  

This example was reported by [19] but with a few 

modifications; reducing batch size and assuming that the 

quantitative technique was applied in testing conventional 

seeds for the presence of GMOs. In the experiment, 6300 

seeds were assigned to 126 batches each containing 500 

seeds. The threshold of detection is 0.005 which means a 

batch of size 500 is rejected if the number of GMO seeds is 

greater than 3. The results are represented below: 

Table 3. Estimates for p with n and k fixed and varying X. 

 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

l 3 3 3 3 3 3 

n 126 126 126 126 126 126 

X 21 24 27 30 31 32 

k  500 500 500 500 500 500 

MLE  0.00424 0.00450 0.00476 0.00497 0.00501 0.00514 

Bias (x10-6) 57 7 5 3 6 4 

MSE (x10-7) 2.6165 1.2515 1.2655 1.2642 1.2646 1.2760 

95% lower limit 0.003542 0.003830 0.004105 0.004241 0.004241 0.004439 

95%upper limit 0.004907 0.005176 0.005496 0.005655 0.005655 0.005816 

Length of 95% CI 0.001365 0.001346 0.001391 0.001414 0.001414 0.001377 

 

In this Example 1, X was increased but maintaining the 

same l, n and k. The results indicate several characteristics 

of the MLE. As X increases, the MLE also increases. This is 

expected because a higher X indicates higher proportion of 

defective items in the population. The bias of the estimate 

reduces as X increases and a minimum bias is observed 

when X is equal to 30. However, the minimum MSE of 

estimate and length of confidence interval is obtained when 

X is equal to 24. The 95% CI for the proportion, p in case1 

does not contain the threshold proportion (0.005) and the 

conclusion is that in this case the concerned batch contains 

less than the threshold proportion at 95% confidence level. 

However, in other cases the 95% CI for the proportion 

contains the threshold proportion and thus if given 

population has 24 or more positive batches on testing then it 

should be rejected or labeled accordingly at 95% 

confidence level.  

The number of batches and the batch size in this example 

is for the investigation of the properties of the MLE of the 

proposed model. But the batch size is very close to the one 

recommended by GIPSA in testing seeds for GMO which is 

400 seeds [25]. 

Example 2 (Hypothetical situation) 

The second example also concerns the procedure of 

detecting GMOs in commercial seed production and the unit 

of sampling is one seed. Both ELISA and PCR are used in 

the detection of GMOs with threshold of detection 0.005. 

The example presents different scenarios; varying k and X.  
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Table 4. Estimates of p with n is fixed and varying k and X. 

 Case 1 Case 2  Case 3 Case 4 Case 5 Case 6  Case 7  Case 8 Case 9 

l 1 2 4 1 2 4 1 2 4 

n 20 20 20 20 20 20 20 20 20 

X 1 1 1 5 5 5 10 10 10 

k 100 400 800 100 400 800 100 400 800 

MLE 0.00357 0.00247 0.00205 0.00961 0.00432 0.00421 0.01673 0.00668 0.00584 

Bias (x10-4) 8.14 2.68 9.64 10.00 0.66 6.10 3.34  0.69 0.19 

MSE (x10-6) 7 1 3 8 1 0.57 14.00 1.30 0.58 

95% lower limit 0 0 0 0.005333 0.002761 0.003014 0.01097 0.004777 0.004542 

95% upper limit 0.006848 0.003846 0.003014 0.015206 0.006175 0.005509 0.02422 0.009039 0.007333 

Length 95% CI 0.006848 0.003846 0.003014 0.009873 0.003414 0.002495 0.01325 0.004262 0.002791 

 

For this example, in case 1, case 2 and case 3, k was 

increased while keeping n = 20 and, X = 1 while in case 4, 

case 5 and case 6, X = 5. Lastly, case 7, case 8 and case 9 the 

positive batches was fixed at X = 10. The results show that 

the MLE reduces with increasing k in all the cases. In all 

cases, the length of the 95% CI decreases with increasing k. 

This is in accordance with the law of large numbers which 

assures that the estimate of p converges to p as k increases. 

From the results, it is also noted that as n increase the length 

of the confidence interval increases. The bias of the estimate 

increased with k but reduced with the increase in X. 

However, the MSE of the estimate did not exhibit a simple 

kind of relationship between k and X. 

Example 3 

In the control of GMO seeds in commercial seeds, Grain 

Inspection, Packers and Stockyards Administration (GIPSA) 

recommends acceptance sampling plans using control by 

attributes and has been adopted by several seed producers 

and grain exporters [25]. The sampling plan was designed 

such that the producer’s and consumer’s risks are minimized. 

The standard sample size that achieves this was found to be 

2400 seeds per batch. 

Now performing a single test on the sample may not be 

practical as it could lead to higher rate of misclassifications 

due to dilution effect of test material. On the other hand, 

testing individual seeds leads to wastage of resources 

especially expensive assays involved. Thus, the 2400 seeds 

are normally divided into batches of size 400 seeds and each 

batch tested. The threshold in this case is 1% and so a pool is 

adjudged to be positive if the GMO seeds in the batch are 

greater than 4. The results are recorded below: 

Table 5. Estimates of p in GIPSA recommended acceptance sampling plan. 

 Case 1 Case 2 Case 3 Case 4 Case 5 

l 4 4 4 4 4 

n 6 6 6 6 6 

X  1 2 3 4 5 

k  400 400 400 400 400 

MLE of p 0.00724 0.00952 0.01167 0.01412 0.01761 

Bias of estimate 0.00177 0.00151 0.01883 0.09058 0.30829 

MSE of estimate 0.00002 0.00197 0.01857 0.08942 0.30401 

Two-sided 95% lower limit 0 0 0.007228 0.009538 0.011694 

Two-sided 95% upper limit 0.01169 0.014098 0.018267 1.000000 1.000000 

Length of 95% CI 0.01169 0.014098 0.011039 0.990462 0.988306 

 

The MLE of p and MSE of the estimate both increase as X 

increases. The bias of the estimate attains the minimum at the 

point when X is equal to 2. But the minimum length of the 

confidence interval occurs when X is 3. 

5. Discussion 

Batch testing procedure where batches are classified as 

positive if they contain more than l defective items has been 

presented and its likelihood estimator for the proportion of a 

trait derived. This procedure is usually used in quality control 

by organizations before procuring or releasing a product to the 

market to cut on costs. We derived the MLE of p and found 

that it generalizes the estimator obtained by [4]. It is also seen 

that our estimator has no closed form solution when l > 0 and 

hence R-code, using in-built function uniroot, is developed to 

determine the estimates for various values of p, k and l. From 

Table 1 and Figure 1, it is noted that the MLE of p 

monotonically increases with p but the relationship is not 

linear and greatly affected by both k and l. As it can be 

observed from Figures 3 and 5, the method improves the 

efficiency of the estimator over the classical batch testing for 
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relatively high proportions. But the efficiency of the estimator 

can be improved for low proportions by increasing the sample 

size. It is further observed that the estimator is negatively 

biased for proportion when sample size is small and proportion 

low but positively biased for large proportions. But for high 

proportions the estimator is positively biased for proportions.  

We also considered the behavior of the estimator when the 

proposed model is applied in screening for the presence of 

GMO in seeds. Note that he procedure used in testing for 

GMO in seeds is well detailed by [26]. The paper looks at 

three scenarios are commonly encountered in practice; 

number of batches is limited, batch size is restricted and 

number of units to be tested is limited. In all situation, the 

study found that we can set k and l so as to obtain an estimate 

of the given p with minimum MSE or bias.  

This paper has considered a case in which the tests are 

assumed to be perfect and the detection of defective unit can 

be accurately determined but this may not be the case in most 

applications. In fact [27] noted that ELIZA assay has 

sensitivity of 97.7% and specificity of 92.6%. Therefore, we 

propose the examining of batch testing based on quality 

control processes with imperfect tests. That is, these tests 

have sensitivity and specificity less 100% and thus lead to 

misclassifications (false positive or false negative). Also, it is 

worthy considering the case where retesting of positive 

batches is allowed since retesting can make up for lost 

sensitivity due to pooling in first stage.  

Appendix A: Derivation of Asymptotic 

Variance 

The asymptotic variance is computed by solving; 
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