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Abstract: The current fixed car-year pricing of auto insurance is inefficient and actuarially inaccurate since motorists in the 
same risk class pay the same amount of premium regardless of the number of miles covered by the different vehicles. In this 
paper, a simple alternative, the pay as you drive insurance, was proposed whereby motorists only pay for the mileage covered by 
their vehicles. The main objective was to find a suitable probability distribution that would be used to model the per kilometer 
risk premiums for the total aggregate claims cost. A case study was done for a company in Kiambu county. The data collected 
consisted of 5 variables in 194 categories whereby the total aggregate claims cost was the dependent variable. The data collection 
technique was via a census. The most appropriate model was found to be the zero inflated negative binomial model. The 
significant factors were found to be the make of the vehicle, annual mileage, and present value of the vehicle. In addition to this, 
mileage was also found to be positively correlated to the total aggregate claims cost. 

Keywords: Pay As You Drive, Generalized Linear Model, Risk Premium, Vehicle Insurance, Total Claims Cost, Correlation, 
Premium Pricing 

 

1. Introduction 

[13] In their paper stated that the current automobile pricing 
models are too generalized and hence not adequate to capture 
the uniqueness of their individual users. This is because its 
pricing structure does not include relevant parameters such as 
mileage, driving behavior, location and the type of roads the 
vehicle is driven in. However, under the pay as you drive 
(PAYD) automobile option; these parameters are factored in 
converting the insurance pricing structure from fixed to 
variable cost [5]. The vehicle owners, under this structure, pay 
premiums according to the usage of their vehicles. With this 
incentive, most motorists tend to reduce their mileage in the 
hope of paying lower premiums and as a result, this has led to 
a reduction of about 3% in claim frequency [6]. 

The implementation of PAYD insurance is still relatively 
new due to unfavorable regulations kept in place in the past. 
This has slowly changed as favorable legislations such as bills 
HB45 and HB3871 are being passed that encourage PAYD 
insurance, boosting its implementation. To boost the uptake of 
PAYD insurance to consumers, [16] suggested that the 

customers’ perceptions towards the usage of different rating 
factors should be considered. In his research, he found that the 
consumers preferred the use of risk factors that they 
understood. This was with regard on how they were applied in 
the premium calculation and the impacts it had on the 
premium amounts. 

Currently, there are several insurance companies that offer 
PAYD insurance such as Progressive insurance, Real 
insurance, Hollard insurance, Oakhurst insurance to mention 
but a few. However, this type of product is not available in 
Kenya due to reasons such as fear of resistance from the 
Kenyan market, no set out legislation for such insurance by 
the insurance regulatory body and PAYD insurance still 
being an unknown concept to the Kenyan people. However, 
this is set to change with the introduction of a risk-based 
insurance system in Kenya.  

[15] Suggested that PAYD pricing options can broadly be 
subdivided into three main categories namely: pay at the pump, 
distance-based and GPS-based premiums. However, in order 
to get actuarially accurate premiums, relevant risk factors 
should be used. According to [10], experience of the driver is 
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negatively correlated to the frequency of claims. In addition to 
this, they found that the urban drivers were more prone to 
accidents as compared to rural drivers. Also, they found that 
night time driving only affected women and not men. [12] 
found that the number of claims recorded in year were 
negatively correlated to the age of the driver. 

In this study, focus was on the per kilometer premiums. A 
simple way of calculating the PAYD premiums via this option 
was by dividing the annual premium with the average annual 
kilometers recorded in a risk class. The billing process 
required the premiums to be paid in advance for the annual 
mileage a policyholder expects to cover. If the expected 
number of miles was exhausted before the end of the term, the 
insured would have been required by the insurance company 
to purchase additional insurance for more mileage. However, 
according to [8], these premiums should decline up to a certain 
maximum amount and then they should stop. In addition to 
this, a minimum premium amount should be set that will cater 
for the expenses incurred when the policy was issued. 

PAYD premiums use mileage data to convert the annual 
premium from fixed to variable cost. Therefore, credible data 
should be used. However, odometer fraud has been a major 
challenge. [15] suggested some ways on how the insurance 
companies can eliminate this problem. This could be done 
through regular odometer audits, occasional random spot 
checks, outsourcing staff who will be authorized to perform 
the odometer audits on their behalf or through the installation 
of an electronic device that could transmit mileage data 
automatically to the insurer’s database. 

The main aim of this paper was to find a suitable 
probability distribution for the total aggregate claims cost 
using a generalized linear model (GLM). The concept of 
GLMs was first introduced in [7]. However, in the recent 
years, the use of GLMs to model insurance data has been on 
the rise thanks to great publications and guides on its 
application on insurance data. 

There are two main approaches that may be employed in the 
process of predicting the total aggregate claims cost. The first 
approach is through modeling the total aggregate claims cost 
directly using an appropriate probability distribution. [3] 
suggested that a tweedie model with 1<p<2 may be used to 
achieve this. Alternatively, the total aggregate claims cost can 
be done by modeling the claim frequencies and the claim 
severity separately and then combining them in the end. 
However, the evaluation of the claim frequency and the claim 
costs separately is considered to be more relevant since the 
risk factors influencing the two components of the insurance 
premium are usually different [12]. 

There are various researchers who used the GLM approach 
to find an appropriate model for predicting the claim 
frequencies. [4] compared various probability distributions the 
Poisson, negative binomial and quasi-Poison models. They 
found the negative binomial model to be the most appropriate 
since there was presence of over-dispersion in their data. [14] 
also wanted to find an appropriate model to predict the annual 
claim frequencies; they only used a Poisson regression model 
and found that it fitted well to their data. [11] compared the 

Poisson model to the negative binomial model. They found the 
negative binomial distribution to be the best model due to the 
presence of over dispersion in their data 

[9] Compared different models such as the exponential, 
gamma, log-normal and the Weibull distributions and found 
that the log-normal was the most appropriate in predicting the 
claim severity of First Assurance data. [1] analyzed the third 
party Swedish data collected in 1977 using Poisson regression 
and other data mining techniques. He found that the Poisson 
probability distribution with a logit link to be the most 
appropriate of them all.  

In this study, the data was tested for both over dispersion 
and zero inflation since in the insurance industry, the total 
claims data has a lot of zeroes due to no claims filed. 

2. Methodology 

Secondary data was collected from one of the companies 
located in Kiambu county, Kenya. The census technique was 
used as the data collection technique. Information on all the 
years the vehicles were in service was analyzed. The data 
analyzed consisted of one response variable (the total 
aggregate claims cost) and four explanatory variables (the 
make of the vehicle, annual mileage covered, engine capacity 
and the make of the vehicle). A generalized linear model was 
then used. The data was analyzed using the open source 
software R, version 3.1.2 

2.1. Generalized Linear Models 

Generalized linear models (GLMs) linearize the non-linear 
relationship between the linear predictor and the response 
variable. GLMs belong to the exponential family and hence 
their probability distributions can be expressed in the form, 

���, �, �� = 	
� ��
�������
���� + ���, ���        (1) 

where Y is the total aggregate claims cost, � is the natural 
parameter or canonical link and � is the scale or dispersion 
parameter. The mean and variance of the response variable 
used in the exponential family is given by 

E�Y� = ����� ���  �!�"� = ���� ������      (2) 

GLMs consist of three major components: the random 
component, systematic component and the link function. The 
random component describes the characteristics of the 
response variable and assumes a probability distribution for it. 
The total aggregate claims cost is distributed as a compound 
function. The probability distributions that were used in this 
study were the Poisson, negative binomial, zero inflated 
Poisson and the zero inflated negative binomial. 

The specific component specifies the predictor variables for 
the model. These variables enter into the model linearly. The 
combination of these factors is the linear predictor. The 
multiple linear predictor used in this study was given by: 

# = $%& + 	, 'ℎ	!	 	~*�0, ,-./�        (3) 
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where X is a matrix that contains the explanatory variables: 
MAKE, VALUE, CC and KM, & is a vector consisting of the 
regression parameters to be estimated by the model, e is a 
vector consisting of the errors which is multivariate normal, ./ is an nxn identity matrix, ,-./ is the covariance matrix. 

The link function specifies a function 0�1� relating to the 
linear predictor. It acts as the connector between the random 
component and the systematic component. The link function 
is given by: 

0�1� = #                  (4) 

where 1 = 0�2�#� is the mean of the total aggregate claims 
and # is the linear predictor specified in equation (3). Table 1 
consists of commonly used link functions for different 
distributions. 

Table 1. Commonly used Link Functions. 

Distribution    Link Name    Link Function    
Normal Identity g�μ� = μ 
Poisson Log g�μ� = log �μ� 
Binomial Logit g�μ� = 1

1 − 1 
Gamma Inverse g�μ� = 1

1 

The GLM parameters are estimated via the maximum 
likelihood estimation (MLE) technique. This is achieved when 
the log likelihood function given by 

9��, �, �� = ln ; ��, �, �� = ln�∏ ���, �, ��=>?2 �  (5) 

is maximized so as to produce the maximum likelihood 
estimates. This can easily be done in R through the use of 
iterative procedures such as the Newton Raphson algorithm 
given by 

�@ = �@�2 + �−9����@�2���2�−9���@�2��, r = 1, 2, …,   (6) 

where, −9���@�2� and −9����@�2�  are the first and second 
derivatives of equation (5) evaluated at � = �@�2 , or the 
Fischer scoring algorithm given by 

�@ = �@�2 + �.��@���2�−9���@�2��, r = 1,2, …,    (7) 

where .��@� = D�−9������  is the Fischer’s information 
matrix. 

2.2. Assessment of Goodness of Fit 

Deviance is given by 

D = −2�9F − 9G�                (8) 

where 9F is the log likelihood function of the saturated model 
while 9G  is the log likelihood of the proposed model. 
Deviance is used to compare the fit of the proposed model to 
the fit of the saturated model. The value of D is then compared 
with the H/�I-  where n is the number of observations and p 
is the number of parameters. The proposed model is assumed 
to be unsuitable when J > H/�I- at L level of significance. 

Alternatively, the generalized chi-square goodness of fit test 
given by 

C = ∑ �OP�QRP�S
T�QRP�

/>?2                  (9) 

where 1̂> and V(1̂>� are respectively the estimated mean and 
variance. The proposed model is also assumed to be a lack of 
good fit when D > HV�W- at α level of significance. 

2.3. Inference About Model Parameters 

There is a need of knowing the number of appropriate 
parameters to be included in the model and still obtain a good 
fit. An assessment of the significance of the explanatory 
variables is done. The Wald test given by 

Z = Z[P
\]                    (10) 

where SE is the standard error and &̂> is the value of the _`a 
estimated parameter. Z is compared with the standard normal 
distribution. The explanatory variable is considered to be 
insignificant when b > b2�c

S  at L level of significance. 

2.4. Model Selection 

Once the assessment of goodness of fit is done, good 
models are found. Therefore, there is need to pick the finest 
model amongst them. This can be achieved through the use of 
the information criterions such as the Akaike Information 
Criterion (AIC) and the Bayesian Information Criterion (BIC) 
given by 

d.e = −2�9G − �� ��� f.e = −29G + � �9� ��   (11) 

where 9G is the log likelihood of the proposed model and p is 
the number of parameters in the proposed model. The 
preferred model is the one with the smallest AIC or BIC. 

2.5. Test for Over-Dispersion 

Given the variance function 

V�y� =  μ + i1-              (12) 

where i is the over dispersion parameter and 1 is the mean 
of Y, the total aggregate claims cost. According to [2], the test 
statistic for over-dispersion is given by 

T =  ∑  ��
P�QRP�S�QRP�kPlm
n- ∑ QRPSkPlm

            (13) 

and Y is considered to be over-dispersed when o > b2�p 
where L is the level of significance and b2�p can be found in 
the standard normal tables. 

2.6. Vuong Closeness Test 

Vuong [18] came up with a likelihood test based on the Kull 
Leibner information criteria. It tests whether the two models, 
the simpler and the complex one, are close to the true 
specification against the alternative that the complex model is 
closer to the true specification. The test is given by 

V =  qrk�Z[sm�Z[sS�
t[k u√/w                (14) 
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where ;x/u&̂G2 − &̂G-w is the summed difference between 
the log likelihoods of the two models given by 

;x/u&̂G2 − &̂G-w = y 9� zf2uy|}x|, &̂G2wf-uy|}x|, &̂G-w� � 92 8 9-
V

|?2  

n is the number of observations and ,̂/  is the estimated 
standard deviance given by ,̂/
� �1� y �ln zf2uy|}x|, &̂G2wf-uy|}x|, &̂G-w��- 8 �1� y ln f2uy|}x|, &̂G2wf-uy|}x|, &̂G-w

/
>?2 �-/

>?2  

However, the vuong test is affected by the number of 
estimated parameters and hence the test needs to be corrected 
for model dimensionality. A correction to the vuong statistic 
related to the AIC or BIC is used to solve the problem. The 
adjusted vuong test statistic is now given by 

V��� �  qr�kuZ[sm�Z[sSwt[k u√/w               (15) 

where ;xd/u&̂G2 8 &̂G-w � ;x/u&̂G2 8 &̂G-w 8 �I��- � ln � 

and p and q are respectively the number of parameters in 
models 1 and 2. The complex model is considered to be closer 
to the true specification when  K b2�p  or V��� K b2�p  at L level of significance. 

3. Results and Discussion 

This section presents the results obtained through the 
application of the methodology discussed in section 2. The 
discussion was then based on the findings. The level of 
significance used throughout this study was at 5%. 

3.1. Dataset Description 

Data collected on five variables: annual mileage, make of 
the vehicle, engine capacity, present value of the car and the 
total aggregate claims cost was analyzed and used in the 
calculation of the per kilometer risk premiums. 

3.1.1. Total Aggregate Claims Cost 

This was the response variable. It contained the total 
aggregate amount of money claimed by a vehicle per year in 
Kenyan shillings. Its descriptive statistics were displayed in 
Table 2. 

Table 2. Descriptive Statistics of the Total Aggregate Claims cost. 

Min Mean Mode Median Std.dev Max 

0 5151 0 0 9085 48500 

Table 2 shows that the mean, median and mode are not 
equal. In addition to this, it showed that most of the total 
aggregate claims amounts were zero. Some of the reasons why 
this was so were: 1) many of the vehicles were not involved in 

an accident, 2) some of those that were, recorded claims that 
did not exceed the deductible amount, and 3) some of the 
claims were not reported to the insurance company as they 
were considered too small. A histogram of the total aggregate 
claims cost was plotted so as to see how it is skewed. 

 

Figure 1. Histogram the Total Aggregate Claims cost. 

The histogram in Figure 1 demonstrated that the data was 
positively skewed to the right. This implied that the use of a 
Gaussian model could have been inappropriate and hence a 
Shapiro-wilk test for normality was done on the data to 
ascertain this. The null hypothesis being that the data was 
normally distributed against the alternative that it was not. The 
results were then displayed in Table 3. 

Table 3. Results from the Shapiro-Wilk test. 

Statistic P-value 

0.6383 <2.2e-16 

From these results, it was found that the data was in deed 
not normally distributed at 5% level of significance. 

3.1.2. Mileage 

This variable consisted of the annual mileage a vehicle has 
covered over the year. The overall annual mileage was found 
to be 27,685 kilometers. The mileage data was then classified 
as in Table 4. 

Table 4. Classification of Annual Mileage. 

Classification Interval Frequency 

1 0-1000 1 
2 1001-10000 25 
3 10001-30000 91 
4 30001-47000 49 
5 >47000 28 

3.1.3. Engine Capacity 

The engine capacity ranged between 100 and 13,741 cc. 
The values of the different engine capacities were then 
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classified as in Table 5. 

Table 5. Classification of Vehicle Engine Capacity. 

Classification Interval Frequency 

1 0-2000 80 

2 2001-3000 63 

3 >3000 51 

It was seen that most vehicles had an engine capacity 
ranging from 0 to 2000 cc. 

3.1.4. Make of the Vehicle 

There were several car models considered in this study and 
they were classified as in Table 6 due to their frequencies. 

Table 6. Classification of the Make of the vehicle. 

Classification Interval Frequency 

1 Isuzu 48 

2 Mitsubishi 34 

3 Toyota 101 

4 Others 11 

This shows that most of the vehicles in this study were 
Toyota branded followed by Isuzu then Mitsubishi. 

3.1.5. Present Value of the Vehicle 

The present values of the vehicles were recorded and 
categorized in Table 7. 

Table 7. Classification of the Present Value of the Vehicle. 

Classification Interval Frequency 

1 0-1000000 28 

2 1000001-25000000 129 

3 >2500000 37 

3.2. Finding a Suitable Distribution for the Total Aggregate 

Claims Cost 

The first assumption was that the total aggregate cost 
followed a compound Poisson distribution and hence a 
Poisson distribution was fitted to the data. However, there are 
times that the data shows the presence of over-dispersion. 
Hence, if this was the case, it would be inappropriate to model 
the data via a compound Poisson model. A test for over 
dispersion, discussed under section 2.4, was done and the 
results were as recorded in Table 8. 

Table 8. Results from the over dispersion test. 

T Statistic P-Value 

2.5678 0.005117 

From the results in Table 8, it was found that the data was 
over-dispersed. This implied that it was necessary to fit 
another distribution to the data that catered for the 
over-dispersion in the data. Therefore, a negative binomial 
model was fitted to the data. 

In addition to this, it was seen from the total aggregate 
claims cost data that there were so many zero claims recorded. 
Hence, there was need to perform a zero inflation test on the 

total aggregate claims cost. Therefore, two more distributions 
were fitted to the data: the zero inflated Poisson model and the 
zero inflated negative binomial model. Two vuong tests were 
performed on the data; one of them between the Poisson and 
the zero inflation Poisson model and the other between the 
negative binomial and the zero inflated negative binomial 
model. The results from the vuong tests were as recorded in 
Table 9 and 10 respectively. 

Table 9. Vuong Test between Poisson and ZIP.  

Type Vuong Statistic p-value 

Raw -4.681712 1.4224e-06 

AIC-corrected -4.674503 1.4733e-06 

BIC-corrected -4.669001 1.5133e-06 

From the results in Table 9, it was found that the zero 
inflated Poisson (ZIP) model was closer to the true 
specification compared to the Poisson model. 

Table 10. Vuong Test between NB and ZINB.  

Type Vuong Statistic p-value 

Raw -10.006578 <2.22e-16 

AIC-corrected -9.124027 <2.22e-16 

BIC-corrected -7.682002 7.311e-15 

Also, from the results in Table 10, it was found that the zero 
inflated negative binomial (ZINB) model was closer to the 
true specification compared to the negative binomial (NB) 
model. Hence, the two zero inflated models were found to be 
better fitting models compared to their counterparts implying 
that zero inflation was present in the data.  

The AIC and log-likelihood values of the fitted models 
were recorded in Table 11. 

Table 11. AIC and the Log-Likelihood values of the Fitted Models.  

Model AIC Log-Likelihood 

Pois 1,515,921.00 -756,949.70 

NB 1,865.70 -920.87 

ZIP 208,260.10 -104,106.00 

ZINB 1,596.95 -773.48 

Table 12. Results on the Stepwise Regression on ZINB Model.  

Variable Df AIC 

-factor(cc) 4 1596.7 

none  1597.0 

-factor(km) 8 1607.7 

-factor(val) 4 1655.1 

-factor(Mk) 6 1636.7 

The results from Table 11 show that the zero inflated 
negative binomial model had the smallest AIC making it the 
most appropriate model out of the four. This was because the 
data was both zero inflated and over-dispersed. 

Stepwise regression was performed on the fitted negative 
binomial model so as to get the best combination of factors 
that would yield the lowest AIC. The results from the stepwise 
regression were recorded in Table 12. 
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From the results on the stepwise regression in Table 12, it 
was seen that when all the four explanatory variables were 
fitted together in the data, the AIC was at 1597.0. However, 
when the variables make, value and make were eliminated, the 
AIC went up. However, when the engine capacity factor was 
eliminated, the AIC value went down to 1596.7. This implied 
that the engine capacity factor was not relevant in predicting 
the total claims cost distribution. However, the make of the 
vehicle, annual mileage and the present value of the vehicle 
were found to be significant to the study. 

Another zero inflated negative binomial model was fitted to 
the data with only the three significant factors. The estimated 
parameters were displayed as in Table 13. 

Table 13. Estimated Parameters from the Best fitted ZINB Model.  

Variable Df AIC 

Intercept 7.86475 -16.53201 

factor(Mk)2 -0.06608 -0.32200 

factor(Mk)3 0.13310 2.15850 

factor(Mk)4 1.29349 0.09608 

factor(km)2 0.74332 15.75723 

factor(km)3 0.94231 14.11106 

factor(km)4 1.02109 13.84011 

factor(km)5 1.54756 13.84683 

factor(val)2 0.66832 1.96595 

factor(val)3 0.05960 4.93554 

3.3. Determining the Effect of Mileage as a Risk Factor 

A two-sided test for correlation was performed on the data 
so as to test whether the true correlation, ρ, between mileage 
and the total aggregate claims cost was equal to zero against 
the alternative that it was not. The results from the test were as 
recorded in Table 14. 

Table 14. Two-sided Pearson Product Moment Correlation Test. 

Statistic P-value Alternative 

2.9659 0.0042 ρ ≠ 0 

From the results displayed in Table 14, it was found that the 
true correlation between mileage and total aggregate claims 
cost was significantly not equal to zero. Therefore, two more 
one-sided Pearson product moment correlation tests were 
performed on the two variables. The results were recorded in 
Table 15. 

Table 15. One-sided Pearson Product Moment Correlation Tests. 

Statistic P-value Alternative 

2.9659 0.9979 ρ < 0 

2.9659 0.0021 ρ > 0 

From the results in Table 15, it was found that there was 
positive correlation between mileage and the total aggregate 
claims cost implying that the total aggregate claims cost 
increased with every mileage increase. 
 

 

4. Conclusions and Recommendations 

This section presents the conclusions derived from the 
results and the recommendations made for further research. 

4.1. Conclusions 

One of the aims of this research was to find an appropriate 
model for the total aggregate claims cost and it was found to 
be the zero inflated negative binomial model. The make of the 
vehicle, annual mileage, and the present value of the vehicle 
were the only significant explanatory variable. In addition to 
this, mileage was found to be positively correlated to the total 
aggregate claims cost justifying why PAYD insurance should 
be used instead of fixed car year pricing. However, due to time 
restrictions, the study was constrained to a specific company 
located in Kiambu County. This implied that the findings in 
this research could not be generalized to all the institutions in 
Kenya but could be used as a basis for future research 
purposes on PAYD insurance. 

4.2. Recommendations 

The researcher recommends that an extension of this 
research should be extended to sample surveys whereby more 
institutions from different parts of the country are sampled so 
as to achieve more generalized results. In addition to this, 
more data will be collected making the results more reliable. 
Other distributions should be used so as to see whether a more 
appropriate model could be found. 

Abbreviations 

PAYD - Pay As You Drive 
ln – Natural Logarithm 
NB – Negative Binomial 
ZINB – Zero Inflated Negative Binomial 
ZIP – Zero Inflated Poisson 
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