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Abstract: This study sought to estimate finite population total using spline functions. The emerging patterns from spline 

smoother were compared with those that were obtained from the model-based, the model-assisted and the non-parametric 

estimators. To measure the performance of each estimator, three aspects were considered: the average bias, the efficiency by use 

of the average mean square error and the robustness using the rate of change of efficiency. We used six populations: four natural 

and two simulated. The findings showed that the model-based estimator works very well in terms of efficiency while the 

model-assisted is almost unbiased when the model is linear and homoscedastic. However, the estimators break down when the 

underlying model assumptions are violated. The Kernel Estimator (Nadaraya-Watson) is found to be the most robust of the five 

estimators considered. Between the two spline functions that we considered, the periodic spline was found to perform better. The 

spline functions were found to provide good results whether or not the design points were uniformly spaced. We also found out 

that, under certain conditions, a smoothing spline estimator and a Kernel estimator are equivalent. The study recommends that 

both the ratio estimator and the local polynomial estimator should be used within the confines of a linear homoscedastic model. 

The Nadaraya-Watson and the periodic spline estimators, both of which are non-parametric, are highly robust. The 

Nadaraya-Watson however is even more robust than the periodic spline. 

Keywords: Population Total, Estimator, Efficiency, Homoscedasticity, Robustness 

 

1. Introduction 

The name “spline function” was given by [11] to the 

piecewise polynomial functions known as univariate 

polynomial spines. This was because of their resemblance to 

the curves obtained by their draftsmen using a mechanical 

spline- a thin flexible rod with a groove and a set of weights 

called “ducks” used to position the rods at points through 

which it was derived to draw smooth interpolating curves 

passing through prescribed points. The basic idea dates back at 

least to [16]. More recent papers on the subject include [6, 12, 

and 14] among others. 

The available literature in statistics indicates that the 

approaches mostly used in estimation of population total 

include the model-based, the design-based and the 

model-assisted approaches. The non-parametric approach has 

also picked up especially with such works as of [5, 10] on the 

Kernel estimation. The spline smoothing is another 

non-parametric approach to estimation of finite population 

total. However, not much literature is available on this 

approach and neither has there been a lot of its application on 

estimation of population, as compared to the previous 

approaches. This study therefore sought to estimate finite 

population total using spline functions while using ratio 

estimator, local polynomial estimator and Kernel functions for 

a numerical comparison to determine whether the patterns of 

estimation would be as accurate as those derived from the use 

of previous approaches. To measure the performance of each 

estimator, we considered three aspects namely: bias, the 

efficiency by use of the average mean square error and the 

robustness using the rate of change of efficiency. 

2. The Estimators 

2.1. Ratio Estimator (Model-Based) 

The prediction approach is based on a model. Royall [9] 

summarizes the philosophy behind this approach. Suppose the 

number of the units N  in the finite population is known and 

that in each unit is associated a number
i
y . The general 

problem is to choose some of the units as a sample, observe 

they ’s for the sample units and then use those observations to 

estimate the value of some function ( )1 2
, ,...,

N
f y y y  of all the



 American Journal of Theoretical and Applied Statistics 2015; 4(5): 396-403 397 

 

y ’s in the population. The prediction approach treats the 

numbers 
1 2
, ,...,

N
y y y  as realized values of random variables

1 2
, ,...,

N
Y Y Y . After the samples have been observed, 

estimating ( )1 2
, ,...,

N
f y y y  entails predicting a function of 

the unobserved y ’s. The relationships among the random 

variables both the auxiliary variable x  and the survey 

variable y  are expressed in a model. The general model 

being 

�� = ����� + 	�                (1) 

Where ( )im x  is the mean function and 	�  a random error 

term. After selecting and observing a sample, the y ’s for the 

sample units get to be known but the values for the 

non-sample units remain unknown. The ignorance of the 

non-sample y  values implies that some functions of those 

values must be mathematically predicted in order to have an 

estimator or predictor for the full population. Suppose the 

study of the scatter diagram reveals that the n  sample points 

are clustered around straight line passing through the origin. 

Then, the ratio /
i i
y x , i s∈  are more or less the same. We 

may then postulate the approximate relation. 

ii
i si s

i i
i s i s

yy

x x

∉∈

∈ ∉

=
∑∑

∑ ∑
. Hence we can write 

( ) i i
i s i s

T y y y
∈ ∉

= +∑ ∑             (2) 

From which we can suggest an estimator of ȳ as

ˆ
i

i s

i
i s

y

y x
x

∈

∈

    =      

∑
∑

�
 

( )
( )

y s
x

x s

 
 

=  
 
  

                   (3) 

where ( )y s
�

 and ( )x s
�

 refer to the sample means for y and 

x , respectively. The x
�

 is assumed to be known before hand. 

This estimator in (3) is popularly known as the Ratio 

Estimator [7]. The estimator of the population total using the 

model-based approach (prediction approach) thus becomes 

ˆ ˆ ˆ
∈ ∉

= +∑ ∑i i

i s i s

T y y                  (4) 

Where 

( ){ /
ˆ i i

i

y x

i y
y

Ε= i s

i s

∉
∈                   (5) 

substituting equation (5) in (4) gives 

ˆ ˆ i

i
i s i s i

y
T y

x∈ ∉

  = + Ε    
∑ ∑             (6) 

we take ( ) ( )/
i i i
y x m xΕ =  for the non-sample where 

( )im x  is linear and ( ) 1
i

v x =  i.e. homoscedastic [9]. Let 

( )ˆ
i

m x  be the predictor of ( )im x of the non sample values 

which is given as ( )ˆ
i

i s

i i
i si

i s

y

m x x
x

∈

∉
∈

 
     =     
  

∑
∑∑

 

Thus, our estimate of the population total under Royall’s 

prediction model is 

( )ˆ
i

i s

re i
i si

i s

y

NT ny s x
x

∈

∉
∈

 
     = +     
  

∑
∑∑

 
Therefore, 

( )
( )

ˆ .
re

y s
T X

x s
=                  (7) 

ˆ
re

T is the ratio estimator for the population total 

2.2. The Local Polynomial Regression Estimator (Model–

Assisted) 

Breidt and Opsomer [2], assumed that the population is 

generated by the super population model: ( )i i i
y m x= + ℓ  

where 
i
ℓ  is an independent sequence of random variables 

with mean zero and the variance is a smooth function ofx . 

They employed local polynomial smoothing techniques to 

obtain a model-assisted regression estimator for the finite 

population total. We consider a finite population of N  units 

with label set { }1,2,...,U N=  an auxiliary variable 
i
x  is 

observed. A probability sample s  is drawn from U  

according to a fixed size sampling design ( ).P  where ( )P s  

is the probability of drawing the sample s . Let n  be the size 

of s . Assume { }
:

( ) 0
i

s i s

p i s p sπ
∈

= ∈ = >∑  

And 

{ }
: ,

, ( ) 0
ij

s i j s

p i j s p sπ
∈

= ∈ = >∑ ,i j U∀ ∈ . 

The study variable 
i
y  is observed for each i s∈ . The goal 

is to estimate
y i

i U

T y
∈

=∑  

Let 1
i
I =  if i s∈  and 0

i
I =  otherwise. 

[ ]
i i

Ep I π= , where [.]Ep  denotes expectation with 
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respect to the sampling design i.e. averaging over all possible 

samples from the finite population. 

Using this notation, an estimator ˆ
y

T  of 
y

T  is said to be 

design-unbiased if 

ˆ
y y

Ep T T  =    

A well known design-unbiased estimator of
y

T  is the 

Horvitz-Thompson estimator, 

ˆ i i i

y
i s i Ui i

y y I
T

π π∈ ∈

= =∑ ∑ [4]             (8) 

The variance of the Horvitz Thompson estimator under the 

sampling design is 

( ) ( )
,

ˆ i j

y ij i j
i j U i j

y y
Var T π π π

π π∈

= −∑         (9) 

An estimator motivated by modeling the finite population 

of 
i
y ’s, conditioned on the auxiliary variable 

i
x , as a 

realization from a super population ξ , in which �� =

����� + 	� is proposed. Given
i
x , ( )im x  is called the 

regression function, while ( )iV x  is the variance function. 

Let k  denote a continuous kernel function and let h  

denote the bandwidth. We begin by defining the Local 

polynomial Kernel estimator of degree q  based on the entire 

finite population. Let 
U i

Y Y i U = ∈    be the N-vector of 

i
y ’s in the finite population. 

Define the ( )1N q× +  matrix as 

( )
( ) ( )1 1

1, ...

1, ...
1, ...

q

i i

q

n i n i

qx x x x

Ui j i j i
x x x x

j U

X x x x x
− −

− − ∈

   
 = = − − 
       

and define the n n×  matrix, 

1

1

j i

Ui

j U

x x
w diag k

h h

i n
∈

   −   =        
≤ ≤

the Kernel weights where 

0h >  is the smoothing parameter (bandwidth). Let 
r
ℓ  

represent a vector with a 1 in the 
thr  position and 0 elsewhere. 

The local polynomial kernel estimator of the regression 

function at 
i
x , based on the entire finite population is then 

given by 

( ) 1' ' '
i i Ui Ui Ui Ui Ui U Ui U

m x w x x w x w y
−

= =ℓ (10) 

which is well defined as long as '
Ui Ui Ui

x w x  is invertible. 

Since only 
i
y  in s U⊂  are known, 

i
m  is replaced by a 

sample-based consistent estimator to make its calculation 

possible. 

Let 
s i i s
y y

∈
 =     be the n-vector 

i
y ’s obtained in the 

sample. 

Define the ( )1n q× +  matrix, 

( )1, ...
q

si j i j i
j s

x x x x x
∈

 
= − − 

  
 

And define the n n×  matrix, 

1 j i

si

j
j s

x x
w diag k

h hπ
∈

   −   =        
a sample design-based 

estimator of 
i

m  is then given by

( ) 11

1
ˆ ' ' '
i si si si si si s si s

m x w x x w y w y
−

= =ℓ as long as 

'
si si si

x w x  is invertible. ( )1

1
1, 0,0,..., 0=ℓ which is a 

( )1a q +  vector. 

The above shows that the local polynomial estimators linear 

smoothers are of the form ( )
1

n

i i
i

w x y
=
∑  

The coefficient of the linear combination depends on the 

degree q  of the polynomial approximation. We note that for

0q = , the estimator reduces to the Nadaraya-Watson 

estimator [1]. Now, based on the proposed estimator in 

equation (6) ˆ i

i s i

y
T

π∈

=∑ , and assuming that 0q =  

throughout, due to mathematical complexity, then the local 

polynomial regression estimator for the finite population total 

is given by 

( ) ( )
1

ˆ
ˆ ˆ

N
i i

lp i
i s ii

y m x
T m x

π∈ =

−
= +∑ ∑        (11) 

where ( )ˆ
i

m x  is the sample estimator for ( )im x . 

Substituting equation (9) in (11) above gives 

'

'

1

ˆ
N

i si s

lp si s
i s ii

y w y
T w y

π∈ =

−
= +∑ ∑          (12) 

2.3. Kernel Estimation 

We consider the Nadaraya-Watson Kernel estimator. It is 

assumed that the auxiliary information is available for the 

entire population and the auxiliary variable x  and the study 

variable y  are related in a more general way. The studies of 

the properties of the proposed estimator are conditional on the 

available sample and non-sample values of the auxiliary 

variable x . A conceptually simple approach to a 

representation of the weight sequences 

( ){ }, 1,2,...,
i

w x i n=  is to describe the shape of the weight 

function ( )i
w x  by a density function with a scale parameter 
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that adjusts the size and the form of the weights near x . This 

function is commonly referred to as Kernel K . The Kernel is 

continuous, bounded and symmetric function which integrates 

to one, 

( ) 1K u du =∫               (13) 

To estimate ( )m x  in model (1) one method is to average 

the nearby values of 
i
y  where “nearby” is measured in terms 

of the distance | | .
i
x x−  

Let ( ) 1

h

u
K u h K

h

−
  =    

 be the Kernel with bandwidthh . 

The weight sequences for the Kernel smoothers (for one 

dimensional x) is given by 

( )
( )
( )

1

h i

i

h i

i

K x x
w x

K x x
=

−
=

−∑             (14) 

This form of Kernel weights (13) was proposed by [8, 15]. 

The Nadaraya-Watson estimator of ( )m x  in (1) is 

( ) ( )ˆ
i i

i

m x w x y=∑                (15) 

On substituting (13) in (14) we get 

( )
( )

( )
1

1

ˆ

n

h i i
i

n

h i
i

K x x y

m x

K x x

=

=

−
=

−

∑

∑
           (16) 

The shape of the Kernel weights is determined by k . One 

unique feature of the size of the bandwidth is that the smaller it 

is the more concentrated are the weights around x. 

Selection of the bandwidth is the important part of the 

Kernel estimation method. When selecting the bandwidth we 

need to consider the error in our selection. This is the deeper 

reason why precision has to be measured in terms of point 

wise Mean Squared Error (MSE), the sum of variance and 

squared bias. The MSE is given by 

( ) ( )
2

ˆE m x m x −   which tends to zero for the Kernel 

estimator. 

ˆ
k

m , if h → ∞ and 0
h

n
→ . 

The non-parametric regression-based estimator, ˆ
np

T , for 

the population total T is given by 

( )
1

ˆ ˆ
n

np i i
i i s

T y m x
= ∉

= +∑ ∑            (17) 

where ( )m̂ x  is the Nadaraya-Watson estimator in (15). 

Therefore the Nadaraya-Watson estimator of the population 

total is given by substituting (15) in (16) which gives 

( )

( )
1

1

ˆ

n

n i i
i

nw i n
i s i s

h i
i

k x x y

T y

k x x

=

∈ ∉

=

   −    = +    −     

∑
∑ ∑

∑
        (18) 

where ˆ
nw

T  represents the Nadaraya-Watson estimator of the 

population total. 

2.4. The Spline Smoothing 

A measure of the rapid local variation of a curve can be 

given by a roughness penalty such as the integrated square 

second derivative. Various penalties have been suggested and 

used. For example, [3], but ( )
2

''m∫  is most convenient for 

our purpose. Using this measure, we define the modified sum 

of squares as 

( ) ( ){ } ( )
2 2

''
i i

s m y m x m x dxλ= ∑ − + ∫      (19) 

The idea behind spline estimation then, is to find the 

function ( )m x  such that the following minimization 

problem is solved 

( )
( )( ) ( )( )

min
2 2

1.

''
n

i i
im

y m x m x dxλ
=

   − +    
∑ ∫ [3]    (20) 

The parameter 0λ >  is a smoothing parameter which 

controls the trade-off between smoothness and goodness of fit 

to the data. Ifλ → ∞  the minimization of (21) gives a linear 

fit whereas letting 0λ →  gives a wiggly function. The larger 

the value of λ , the more the data will be smoothed to produce 

the curve estimate. However, the basic underlying idea of 

penalising a measure of goodness of fit by one of roughness 

was described by [16].Equation (21) shows that the function to 

be minimized consists of two components: first, the deviation 

of the fitted function from the observed values should be 

minimized which gives the goodness of the fit. Second, 

complex functions are penalised by the second term in (21), as 

measured by the second order derivative. From [3] and from 

the quadratic nature of equation (21), the spline smoother 

( )m̂ x  is linear in the observations 
i
y  in the sense that there 

exists a weight function ( ),G s x  such that 

( ) ( )
1

1
ˆ ,

n

i ii
m x G s x y

n =
= ∑           (21) 

Where, 

( )
( ) ( ) ( )
1 1

, .
s x

G s x K
f x n x n x

  −  =     
        (22) 



400 Gladys Gakenia Njoroge:  Estimation of Population Total Using Spline Functions  

 

with the Kernel function K  given by 

( ) ( ) ( )1
exp | | / 2 sin | | / 2 4
2

K u u u π= − + [14]  (23) 

and the local bandwidth ( )h x  satisfies 

( ) ( )
1 1 1

4 4 4h x n f xλ
− −

=              (24) 

It has been assured that n  is large and that the design 

points have local density ( )f x , in that the proportion of 
i
x  in 

an interval of length dx  near x  is approximately ( )f x dx . 

Equation (23) above applies for large n  provided s  is not 

too near the edge of the interval on which the data lie, and λ  

is not too big or too small. 

After obtaining the spline smoother ( )m̂ x  in equation 

(22), we then can substitute this value in the equation (16) to 

obtain the population total as from ( ) ( )
1

1
ˆ ,

n

i i
i

m x G s x y
n =

= ∑
and 

( )
( ) ( ) ( )
1 1

, .
s x

G s x k
f x h x h x

  −  =     
 

( )
( ) ( ) ( )1

1 1 1
ˆ .

n

i
i

s x
m x y k

n f x h x h x=

  −  =     
∑

 

substituting in ( )ˆ ˆ
np i i

i s i s

T y m x
∈ ∉

= +∑ ∑  

we get the smoothing spline estimator of the population total,

ˆ
ss

T as 

( ) ( ) ( )1

1 1 1ˆ .
n

ss i i
i s i s i

s x
T y k y

n f x h x h x∈ ∉ =

  −  = +     
∑ ∑ ∑     (25) 

While the periodic Spline Estimator of the Population Total 

ˆ
ps

T  is obtained as 

1

1

ˆ

i

i

n

i
i

ps i
ni s i s

i

x
G s y

n
T y

x
G s

n

=

∈ ∉

=

       −     = +        −        

∑
∑ ∑

∑
       (26) 

3. Empirical Study 

We present the analysis and results of the five estimators i.e. 

the ratio, the local polynomial, the Nadaraya-Watson Kernel, 

the spline smoother and the periodic spline. We used four 

natural and two artificial populations in the study. 

3.1. Description of the Study Populations 

In artificial population I, we generated 100 data points 

according to the linear homoscedastic model: 

0.25
i i i
y x= + ℓ with ( )~ 0,1

i
Nℓ  and ~ [0,1]

i
x U  

In artificial population II, we again generated 100 data 

points according to the quadratic homoscedastic model: 
20.5 0.25 1.5

i i i i
y x x= + + + ℓ with ( )~ 0,1

i
Nℓ

~ [0,1]
i
x U  

We obtained the natural populations from the Kenya 

Central Bureau of Statistics ofbetween 2006and 2014. The 

description of each of the populations is given in the table 3.1 

below. 

Table 3.1. Description of the four natural populations. 

Population Data Points Description 

  
i
y  

i
x  

I 100 

Value (in millions) 

of Road Transport 

equipment Imported. 

Quantity (number) 

of Road Transport 
Equipment 

Imported. 

II 126 
Value in thousands 
of principle articles 

traded. 

Quantity (units) of 
principle Articles 

Traded. 

III 130 

Total number of 

employees engaged 
per industry. 

Total number of 
firms and 

Establishments per 

industry. 

IV 130 

Total outputs per 

industry in a 

manufacturing 
sector. 

Total inputs per 

Industry in the 

manufacturing 
sector. 

Scatter plots drawn for each of the four natural populations 

(Population I-IV) were used to deduce the form of the 

population structures as below: 

Population I: the structure of the population could be 

non-linear and heteroscedastic 

Population II: the structure of the population could be linear 

and heteroscedastic. 

Population III: the structure of the population could be 

linear and heteroscedastic 

Population IV: the structure of the population could be 

linear and homoscedastic. 

Population V and IV were the artificial populations with 

known population structures: 

Population V: is of a linear homoscedastic model and 

passing through the origin. 

Population VI: is of a quadratic homoscedatic model. 

3.2. Design of the Study 

For each of the six populations, 500 samples of size 50 were 

drawn by Simple Random Sampling without replacement. The 

Epanechnikov Kernel defined as 

( ) ( )23
1
4

0

u

K u
−

= 

| | 1if u

Otherwise

≤
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was used in the study for the Local Polynomial Estimator and 

the Nadaraya-Watson Kernel Estimator. An optional 

bandwidth for Nadaraya-Watson smoother within the interval 

1 1

5 5

3

4 2

h

n n

σ σ
 
 
 ≤ ≤
 
  

 was sought where σ  is the standard 

deviation of 
i
x ’s. The Kernel function used in the spline 

smoothing and periodic spline is

( ) 1
exp sin
2 42 2

u u
K u

π
   
   = − +   
      

[14], with the local 

bandwidth ( )h x  satisfying ( ) ( )
1 1 1

4 4 4h x n f xλ
− −

=  

3.3. Description of the Computation Procedure 

For each of the six populations, we computed the true 

population total 
1

N

i
i

T y
=

=∑ , where N  is the number of 

units in each population. The estimator of population total ˆ
ik

T , 

was then obtained for each population using the five different 

estimators as follows; 
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Smoothing Spline: 
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Periodic Spline: 
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To compare the five estimators, the average biases and the 

average Mean Square Errors (MSE) for each population were 

calculated. For population five and six, the relative change in 

efficiency was calculated to measure the robustness of the 

estimators. The Average Bias for each estimator was 

calculated as; 

Average Bias ( )
500

1

ˆ
ˆ

500
ik

k
i

T T
T

=

−
=∑  where k  denotes 

the different estimators. 

The Average Mean Square Error for each estimator was 

obtained from 

Average MSE ( )
( )2500

1

ˆ
ˆ

500
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k
i

T T
T

=

−
=∑ . 

The Relative change in efficiency (RCE) for each estimator 

was given by 

RCE=
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3.4. Results 

The results of this study were summarized in Tables 3.2, 3.3, 

3.4, 3.5 and 3. 6 below: 

Table 3.2. True Population Totals. 

 Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6 

Population Sums 131.002 598.124317 510.177 178.7683 12.18925 111.4207 

Table 3.3. Estimates of Population Totals. 

 Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 6 

Nadaraya-Watson 135.4742 617.397269 509.3305 186.1202 11.53005 111.2965 

Smoothing Spline 90.64416 1836.954517 317.3828 295.2271 22.32936 211.1834 

Local Polynomial 131.8575 484.6628646 395.1619 139.7997 12.23147 113.7409 

Ratio Estimator 163.0781 623.9877722 534.3458 188.1737 16.65574 152.2789 

Periodic Spline 129.4973 598.0745695 449.508 173.8463 11.23823 104.4373 

Table 3.4. Average Bias. 

Nadaraya-Watson 4.472212 19.27295201 -0.84652 7.351878 -0.6592 -0.12418 

Smoothing Spline -40.3578 1238.8302 -192.794 116.4588 10.1401 99.7627 

Local Polynomial 0.855476 -113.461452 -115.015 -38.9686 0.042218 2.320245 

Ratio Estimator 32.07607 25.86345519 24.16878 9.405401 4.466489 40.85822 

Periodic Spline -1.5047 -0.0497475 -60.669 -4.92197 -0.95103 -6.98339 
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Table 3.5. Average Mean Square Error. 

Nadaraya-Watson 372.2935 19113.57612 3152.551 508.5213 0.965757 25.60268 

Smoothing Spline 2157.35 1714144.509 43854.85 16611.31 103.8781 9994.21 

Local Polynomial 4168.499 109812.6846 6061.498 1345.238 20.49219 1731.601 

Ratio Estimator 332.4187 24818.69519 15134.26 1791.341 0.568978 31.90509 

Periodic Spline 2448.407 18474.74869 110964 675.3513 1.418111 70.75136 

Table 3.6. Relative Change in Efficiency (RCE). 

Estimator Nadaraya-Watson Smoothing spline Local polynomial Ratio Estimator Periodic spline 

RCE 25.51048 95.21094 83.50053 55.07438 48.89127 

 

3.5. Discussion of the Results 

For population I which is approximately non-linear and 

heteroscedastic, the bias of local polynomial estimator ( )ˆlpT  is 

the smallest compared to the rest, making it the best estimator 

for this population. Periodic spline has the smallest bias for 

population II which is approximately linear and heteroscedastic. 

On the other hand, Nadaraya-Watson has the lowest bias for 

population III which is also approximately linear and 

heteroscedastic. In population four (approximately linear and 

homoscedastic), we notice that the periodic spline has the 

lowest bias, hence becoming a good estimator for this 

population. Table 3.4 shows that generally all the estimators 

have low biases in population V compared to the rest of the 

populations. The lowest bias however is of the local polynomial 

estimator which makes it a good estimator for the linear 

homoscedastic model. We further notice that Nadaraya-Watson 

estimator has the smallest bias in population VI, making it the 

best estimator for the non-linear homoscedastic model. 

We next consider the performance of each estimator across 

the six populations in terms of average biases as shown in table 

3.4. The Nadaraya-Watson estimator performed relatively well 

in all the populations. It, however, did best in populations three 

and six which are linear and heteroscedastic and quadratic and 

homoscedastic respectively. The smoothing spline on the other 

hand, had the largest bias in all the populations. It had its best 

performance with a linear homoscedastic population. For the 

Local polynomial estimator, we notice that it had the lowest 

bias in population one which is linear and heteroscedastic and 

population five which is linear and homoscedastic. Its bias in 

population six, which is quadratic and homoscedastic, is also 

relatively low. When it comes to Ratio Estimator, we notice that 

generally its performance is low compared to the other 

estimators but better than the smoothing spline. Its best 

performance is in population three which is approximately 

linear and heteroscedastic. 

Then we moved on to the Average Mean Square Error 

(AMSE) in table 3.5. The smaller the AMSE, the higher the 

efficiency of the estimator for the given population. In 

population I, the lowest AMSE was given by the Ratio 

Estimator while in population II, it was the periodic spline. 

Nadaraya-Watson had the lowest AMSE in population III and 

IV while for Population V it was the Ratio Estimator. On the 

other hand, the Nadaraya-Watson was the most efficient 

estimator for the non-linear homoscedastic population VI. 

Finally, we compared the Relative Change in Efficiency 

(RCE) among the five estimators. We noticed from table 3.6 

that the Nadaraya-Watson had the lowest RCE. The implication 

here was that it is the least sensitive to the change of structure of 

the population and hence the most Robust among the five 

estimators. It was then followed by the Periodic Spline, the 

Ratio Estimator and the Local polynomial. The Smoothing 

Spline was the least Robust among them. 

4. Summary, Conclusions and 

Recommendations 

4.1. Summary of the Findings 

The research set out to estimate population total using spline 

functions. However, other estimators of the population total 

were also involved for comparative purposes. In all the six 

populations considered, the Periodic spline had a smaller 

average bias, had less average AMSE and was found to be more 

robust than the Smoothing Spline. The Nadaraya-Watson 

estimator performed generally well in terms of the average bias, 

efficiency and robustness. It had very small biases in both linear 

and non-linear homoscedastic models. The bias in 

heteroscedastic models was also relatively low. Its efficiency 

was equally higher in most of the populations and it also had the 

lowest RCE value out of the five estimators considered. 

The local polynomial estimator was found to be almost 

unbiased for a linear homoscedastic model. Its bias however 

goes up when a non-linear homoscedastic population is 

considered. In terms of efficiency, the estimator is far more 

efficient in a linear homoscedastic model than a non-linear one. 

It has a high RCE value. 

We observed that this estimator is relatively highly biased 

across the six populations considered. However in terms of 

efficiency, it was the most efficient of the five estimators for a 

linear homoscedastic model. The efficiency went down when a 

non-linear homoscedastic population was considered. The RCE 

value is relatively high. We also observed that the periodic 

spline and the Nadaraya-Watson estimators gave results that 

were quite similar in terms of bias, efficiency and robustness. 

4.2. Conclusions and Recommendations 

We observed from this study that the two spline functions 

considered perform quite differently. The periodic spline 

performed better than the smoothing spline in all the aspects 

considered: bias, efficiency and robustness. We, therefore, 
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concluded that the periodic spline is a better estimator than the 

smoothing spline in a case of a linear homoscedastic model and 

even when the model assumptions have been violated. It was 

also shown that the Nadaraya-Watson estimator performed well 

in the linear homoscedastic model and also when the conditions 

were violated. It had the lowest RCE value. Therefore, we came 

to the conclusion that, Nadaraya-Watson estimator was the most 

robust of the five estimators. The results also showed the 

periodic spline and the Nadaraya-Watson estimators to be quite 

similar. Thus, we concluded from both the theoretical results 

and the empirical study that spline smoothing corresponds 

approximately to smoothing by a Kernel method thus 

concurring with the theoretical observation made by [13]. 

The local polynomial estimator was very sensitive to model 

assumption violation and we therefore concluded that it is not 

robust. The results also indicated that the radio estimator was 

the most efficient of the five estimators for a linear 

homoscedastic model. Nevertheless, when these conditions are 

violated, the estimator completely breaks down. We conclude 

that this estimator is not robust to the violation of the linear and 

homoscedastic conditions. 

From the findings of the study, we gave the following 

recommendations: 

1. Both the ratio estimator (model-based) and the local 

polynomial (model -assisted) estimator should be used 

within the confines of a linear homoscedastic model. They 

are not appropriate for use when the model is unspecified 

or when the linear and homoscedastic assumptions are 

violated. 

2. The Nadaraya-Watson and the periodic spline estimators, 

both of which are non-parametric, should be used in case 

of a linear and homoscedastic model and even when the 

model assumptions are violated. Their sensitivity to the 

change of structure of the population is relatively low and 

hence are highly robust. The Nadaraya-Watson, however, 

is even more robust than the periodic spline. 
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