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Abstract: In many problems in the field of spatial statistics, when modeling the trend functions, predictors or covariates are 

available and the goal is to build a regression model to describe the relationship between the response and predictors. 

Generally, in spatial regression models, the trend function is often linear and it is assumed that the response mean is a linear 

function of predictor values in the same location where the response variable is observed. But, in real applications, the 

neighboring predictors sometimes provide valuable information about the response variable particulary when the distance 

between the locations is small. Having considered this subject matter, Heaton and Gelfand [6] suggested using kernel averaged 

predictors for modeling trend functions in which neighboring predictor information are also used. The models proposed by 

Heaton an Gelfand seemed to be bound by data normality. So, in many more application problems, spatial response variables 

follow a skew distribution. Therefore, in this article, skew Gaussian spatial regression model is studied and the performance of 

the model is presented and evaluated in comparison with Gaussian spatial regression models based on kernel averaged 

predictors using simulation studies and real examples. 
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1. Introduction 

So far, statistic methods and different models have been 

presented for the analysis of spatial data. The basics of these 

models and methods can be seen in various books including 

[2,3,4,5,6,11]. In problems in the field of spatial statistics a 

response variable is measured in different locations in the 

area under study. Response variables are dependent in space 

so that close observations in space have much more 

correlation then those of the farther. It is assumed that for the 

continuous responses the residuals are normal. But in many 

application examples, spatial variables follow a skew 

distribution. One common method for analysis of such data 

skew normal distribution. Different generalization of this 

distribution are presented by [1,7]. Since using this modeling 

method has some difficulties, zhang and El-shaarawi [12] 

analysed skew spatial data in another way while presenting a 

regression model. In this model, trend function is written as a 

linear function of the predictor values in the same location of 

response variable. But in real application, the neighboring 

predictors sometimes provide valuable information about the 

response variable particularly when the distance between 

locations is small. So, in this situation, considering mean 

based only on the predictor variable value in the same 

location is not enough and it is also necessary to use 

neighboring information. Heaton and Gelfand [8,9] presented 

application method of neighboring information in spatial 

regression model with normal errors. In this article, the 

method they have proposed for skew Gaussian regression 

model is generalized. Then, using simulation and application 

examples, performance of this model is compared and 

evaluated to the model introduced by Heaton and Gelfand. 

2. Spatial Regression Model Base on 

Kernel Averaged Predictors 

The spatial regression model is presented as follows: 

���� = ���� + �	
���� + ��
���� 
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Where Y(s) is univariate response at location � ∈ � ⊆ ��, � ≥ 1, and m(s) is a non-random function depending on s 

and used for modeling mean function. 
���� is a zero mean, 

unit variance GP with correlation function ����� and 
���� is 

a zero mean Gaussian white noise process with unit variance. 

This process is considered to study measurement error in the 

model 
���� and 
���� are viewed as independent processes. 

m(s) mean function is usually written as linear combination 

of predictor variables. Assume, we have a predictor variable 

X(s). So, 

���� = �� + ������                          (1) 

Where �� , ��  are regression coefficients. In (1) we saw 

that trend phrase is a function of predictor variable in the 

same location of s. But, as it was mentioned in the 

introduction section, we are going to apply information of 

neighboring location in the mean function structure. To 

achieve the aim, we use kernel averaged predictors on the 

whole area of study according to methods proposed by 

Heaton and Gelfand [8,9]. To show the method, assume X(s) 

follows a Gaussian processes (GP) of the form, 

���� = 	 ����� + ��
����                 (2) 

Where ����� is the mean surface location s and 
���� is a 

zero mean, unit variance GP with correlation function �����
����, 
���!�� = ����, �!|#��, where #�  denotes the 

parameter associated with ��. Unobserved local covariate at 

s in incorporating information as �$���  using a kernel 

function, i.e. 

�$��� = �%�&|'� ( )��, *|+���*��*	,               (3) 

Where )��, �′|+�  is a kernel defining a weight on the 

distance between s, and �! with parameters +, )��, �′|+� ≥ 0 

for all s, �! and ( )��, *|+��* = 1	, . Because a valid GP was 

defined for X(s), �$��� is also a valid GP with mean  

��$ ��� = / )��, *|+����*��*	
,  

And 

0�1	 2�$���, �$��!�3
= ��	)��|+�)��!|+� / / )��, *|+�)��′, *|+����*, 1��*�1	

,
	

,  

≡ ��	��$ ��, �′� 

Therefore, to account for effects of {���!�: �! ∈ �}  on 

Y(s), consider the linear model defined by 

����|����, �$��� = �� + ���$��� + �	
���� + ��
����   (4) 

3. Skew Gaussian Spatial Regression 

Based on Kernel Averaged Predictors 

Assume that response variable is non-normal one, skew 

Gaussian spatial regression model is presented as follows: 

���� = ����+��8
�9 ���8 + �	
�: ��� + ��
���� 

Where Y(s), and m(s) are defined according to section two. �	 ≥ 0 , �� ≥ 0 , and ��  are true values. 
�9 ���  is also a 

stationary Gaussian random field with a zero mean, unit 

variance and correlation function ��:�ℎ�. Three processes of 
�9 ���, 
�:��� and 
���� are considered independent. Simply, 

it is illustrated that 
��&�<=�&�

>?@:A?9:A?::  has skew normal probability 

density as 2#�C�∅�EC�  where 
E = ?9

>?@:A?:: . As it has been 

shown E has a direct relationship with ��, then �� determines 

type of data skewness. i.e. Y(s) distribution when �� > 0, is 

skew right, �� = 0, symmetric, and when �� < 0, skew is left. 

The mean and correlation of random field Y(.) is also as 

follows: 

���� = H���� = ���� + ��I2J 

��ℎ� = 2��	J K>1 − ��9	 �ℎ� + ��9�ℎ�	M�0�NO���9�ℎ�� − 1P
+ �		��:�ℎ� + ��Q{RS�} 

Therefore, to taking account the effects of neighboring 

covariates on response variable, skew Gaussian random field 

is as follows: 

����|����, �$��� = �� + ���$���+��8
�9���8 + �	
�:��� +��
����                                    (5) 

4. Comparison of Models Using 

Simulation Examples 

Assume that sample size in O
	{50,100}, data Gaussian 

model (4) with ��	 = 1  and � = �0,1�U  and correlation 

function )��, �!|+� = Q{‖&<&!‖WX}  where +
  is {0, 0/1, 0/3, 

0/5} is simulated using R. Note that sampling plan is selected 

at random and exponential correlation function of 

����, �!|#�� = exp�−#�‖� − �!‖�              (6) 

Is used with correlation parameter of #� = 10. We assume 

that location of observed responses and predictors were 

aligned with and confined to unit square in �	  but D was 

taken to be all of �	 so as to avoid difficulty in dealing with 

locations near boundary. Note that when + = 0 resulting in 

spatial regression model of point traditional predictor (PTP), 

i.e. H�����|\, �$�� = �� + ������. For each combination of �O, +�  20 data sets were simulated using an additional 25 

values of Y(s) left as a hold-out sample to determine 

predictive performance of the fitted models. Assume ]���̂), _`H���̂� , �Q����̂�  as the observed bias of the posteriori 

mean ��̂ , mean square error of ��̂ , and empirical %95 

credible interval coverage for ��  respectively. Furthermore, 
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we define _`aH = ∑ ∑ �c�d���d� − ce�f���d��		gdS�	�fS� �25 × 20�⁄  

as the average predictive mean square error width across all 

of the 25 hold-out values where c�d���d�, NjR is left observed 

from kjR  data set and c�f���d� is prediction value of it. To 

compare, two models were fitted to data. The first model was 

the kernel averaged predictor (KAP) given by (4) and the 

second one was a point traditional predictor (PTP). Discrete 

prior distributions for #�  and + were used with mass at (5, 

10, 15, 20) and (0, 0/1, 0/3, 0/5) respectively. Vague, but 

proper, conjugate prior distributions were assumed for the 

remaining parameters. Chains were run for an initial burn in 

period of 50000 draws and the following 5000 were retained 

as draws from the posterior distribution. Table 1 shows 

results of the model fitness. A sit is indicated in the table, and 

considering ]���̂ ), when + = 0 , model bias of KAP is 

outstanding ( for n=50, bias is 0/19, and for n=100 bias is 

0/16) as it is expected estimation of PTP model is relatively 

bias (for n=50, bias is -0/03; and for n=100, it is -0/01). But 

when + increases, ]���̂) value also increases for PTP model. 

For instance, even for relatively small value of + = 0/1 , 

]���̂) value under PTP for n=50 and n=100 equals to -0/19 

and -0/28 respectively which are significant values. 

Furthermore, when +  increases, _`H���̂�  value also 

increases for PTP. For example, for + = 0/3, _`H���̂� value 

in PTP model for n=50 equals to 0/42 and 0/50 respectively; 

while this standard for KAP is 0/1 and 0/08 respectively. Be 

sides that, taking account CIC, when true model is PTP, CIC 

value for KAP of both two sizes of n=50, and n=100 equals 

to 0/33 and 0/3 respectively which indicates that performance 

of the model is poor. (Note that for PTP these values equals 

to 0/90 and 0/97 respectively). But when + > 0, CIC value of 

KAP gradually becomes more when +  increases and this 

indicates that the model performs well. ( ��  is estimated 

accurately). Having considered CIC value, the performance 

of PTP becomes weak quickly when + increases. Note that 

even for relatively small amount of + = 0/1 , probable 

coverage of PTP for n=50 and n=100 equals to 0/17 and 0/05 

respectively which are not suitable values. Having a general 

look at the table, we can say that PTP when + > 0  for 

different (n) values does not present such logical answers. 

Table 1. Estimation performance comparison of the mean kernel averaged (KAP) and the point predictor models based on simulated data. 

  50 100 n model 0 0/1 0/3 0/5 0 0/1 0/3 0/5 ]���̂� KAP 0/19 -0/03 -0/18 0/23 0/16 -0/06 -0/20 -0/26 

 PTP 0/03 -0/19 -0/43 -0/56 -0/01 -0/28 -0/40 -0/48 _`H���̂� KAP 0/06 0/08 0/10 0/12 0/06  0/04 0/08 0/10 

 PTP 0/04 0/08 0/42 0/72 0/04   0/08 0/50 0/80 �Q����̂� KAP 0/33 0/90 0/95 0/90 0/30  0/94 0/95 0/97 

 PTP 0/90 0/17 0/06 0/09 0/97  0/05 0/01 0/05 

Table 2. Predictive performance comparison of KAP and PTP based on simulated data. 

 50 100 n model 0 0/1 0/3 0/5 0 0/1 0/3 0/5 

_`aH 
KAP 0/14 0/09 0/11 0/08 0/13 0/04 0/08 0/05 

PTP 0/05 0/12 0/19 0/20 0/03 0/19 0/23 0/24 

 
Table 2 shows prediction results for the two models. As it 

is observed when + > 0  KAP model has great value 

regarding MSPE standard. For example, when + = 0/1 , 

MSPE of KAP for n=50 and n=100 are 0/09 and 0/04 

respectively while for PTP, they are 0/12 and 0/19 

respectively which show weak performance of the model. 

The important point resulting from simulation is that in 

correct use of PTP and KAP can result in unsuitable answers. 

Never the less, incorrect using of PTP instead use of KAP 

make the results significantly invalid (especially for high 

value of + ). Therefore, it is necessary to pay much more 

attention to model selection in an application example. 

5. Application Example 

Air pollution refers to the existence of each kind of pollutant 

in the air, being either solid, liquid, gas or radioactive and non-

radioactive radiation; so that the amount and length of their 

presence in the air endangers quality of life for human and 

other beings, and damages to ancient relics and assets. 

Considering researches that have been conducted in this field, 

carbon monoxide (CO) is one of the pollutants that causes 

greatest damage to humans and animals. Carbon monoxide is a 

colorless and odorless gas, extremely poisonous which is 

produced by incomplete combustion of fossil fuels. In the 

process of organic material combustion, the amount of oxygen 

for combustion on is not enough, therefore, carbon monoxide 

is produced out of it. In fact, since this gas has negative effects 

on respiratory metabolism and on brain activities, so modeling 

and zoning values of co attracted a lot of attention to control 

and reduce it. Because air pollution is one of the major 

problems in Tehran metropolis, thus we consider this 

metropolis as a region for our study. It is necessary to mention 

that based on air quality control company, about one million 

and three hundred and fifty four thousand tons of carbon 

monoxide pollutant go into Tehran air annually. In this article 

we consider Co because of its great importance and its harmful 

effects. Data reviews show daily average amount of Co density 

per ppm related to the first of December from 2010 to January 

23X�  in 2011. And environment organization and quality 

control company for Tehran air have measured and recorded 

them in 37 stations of air pollutant measurement. Note that 

since some of the stations had technical problems, they did not 
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record any information. Therefore, from among 37 existing 

stations, data of only 16 station have been available. Since 

there is measurement and record error in data gathering, so it is 

logical to assume views as noised. One of the other effective 

factors influencing on air pollution including amount of co 

density is temperature. One major goal of this example is to 

study the amount of temperature effect on Co density. Notice 

that temperature data have been measured in 7 stations from 

among 16 stations so, we encounter with an misalignment 

problem. Assume ���d� and ���d� show average amount of Co 

density and temperature amount in s; location at 62 days 

respectively. To study data normality we use Shapiro-wilk test. 

Because p-value of test is nearly equals to 0/0086 and 0/1002 

for response and predictive values; the hypothesis of data 

normality has not been proved, but there is no reason to reject 

this hypothesis for predictive variable. Therefore, four models 

are fitted to data: point traditional predictor with normal error 

(NPTP), kernel averaged predictor with normal error (NKAP), 

point traditional predictor with skew normal error (SNPTP) 

and kernel averaged predictor with skew normal error 

(SNKAP). It is necessary to mention that exponential 

correlation function was used for each one of the models. 

Doing MCMC algorithm and after studying required graphs, 

20000 was determined as burn time. Then, 50000 samples 

were extracted from the posterior distribution. Out of each 10 

obtained samples, one sample has been taken as the final one. 

This means that in the end 5000 samples were used for 

inferences. It is worthy of mentioning that with sensitivity 

analysis, it was determined that results of a posterior do not 

have much sensitivity than super parameter change. To choose 

better model from among selected models, there are different 

evaluation criteria; in this article we use Deviance Information 

Criterion and Cross-Validate Criterion to compare models. 

DIC for each of the models has been presented in table 3. 

Table 3. DIC value of model compared. 

Model DIC 

NPTP 1488/275 

SNPTP 1471/036 

NKAP 1465/117 

SNKAP 1428/746 

According to the table, it is indicated that DIC value for 

NKAP is fewer than NPTP, its value for SNKAP is fewer 

than SNPTP. Since DIC statistic shows deviance from true 

model, therefore, fewer value of this statistic indicates that 

fitted model is better. Taking account value of this statistic is 

the fewest value corresponding to SNKAP, we can claim that 

the model is better than the other models compared. Besides 

that, table 4 shows estimate point and %95 confidence 

interval for �� parameter. 

Table 4. Point and Interval Estimation of �� parameter for different models. 

Model point estimation %95 confidence interval 

NPTP 0/01 (-0/04,0/06) 

SNPTP 0/03 (-0/02,0/08) 

NKAP 0/28 (0/24,0/32) 

SNKAP 0/8 (0/11,0/5) 

Based on this table we can conclude that the significant 

effect of temperature on Co amount for NKAP especially 

SNKAP. But we do not see such thing in the two other models. 

In other words, in KAP, using X(s) instead of �$��� reduces 

predictor effect on the response. _`Hop  for each model is 

presented in table 5. 

Table 5. _`Hop value of compared models. 

Model qrstu 

NPTP 2/401 

SNPTP 2/280 
NKAP 1/849 

SNKAP 1/327 

According to this table, it is indicated that _`Hop  value of 

NKAP is fewer than that of NPTP; and its value for SNKAP 

is fewer than that of SNPTP. Having considered that _`Hop  

value of SNKAP is the fewest value of all, it is claimed that 

this model is better than the other models compared. 

6. Conclusions 

In this article, we used kernel averaged predictors in 

modeling the trend function of spatial regression. Kernel is 

based upon weight between locations and is applied to 

describe the effect of covariate on response variable. The 

kernel was taken as parameter so that their function form was 

clear but dependent on unspecified parameters. Therefore, 

unobserved local covariate using intended kernel function in 

each location was defined in a manner to consider neighbor 

information. Important feature of this approach is to use 

neighbor information in the analysis and inference of the 

model without observing covariate variable. In application and 

simulation examples was shown that spatial regression model 

based on kernel averaged predictors has more effective 

performance than traditional spatial model, and it could 

display reasonable estimation of regression coefficient and 

suitable prediction. While taking account of skew normal 

distribution for error terms can get better results. Therefore, the 

following suggestions can be used for further research: 

� We used exponential correlation function in application 

and simulation examples, while it is possible to we other 

correlation functions including matern [10] and compare 

their performance. 

� We presented, skew Gaussian spatial using kernel 

averaged predictors while assuming predictor process as 

Gaussian. But, we can generalize this approach in a more 

general way so that both response and predictor 

processes are Gaussian. 

� In all models, we considered one predictor variable. 

while this approach can be generalized in cases where 

we face some predictor variables. 
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