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Abstract: The present paper develops a probabilistic model of a cold standby system considering the failure of unit in standby 

mode. Initially the model contains one unit in operation and another identical in cold standby mode. The unit in cold standby 

mode fails after passage of pre specified time and goes under inspection for feasibility check for maintenance or replacement, 

whereas the operative unit directly goes under repair at its failure. A single service facility available in the system handles the 

tasks of repair, inspection, maintenance or replacement. The replacement of unit in standby mode, at its failure, takes some time; 

that follows certain probability distribution. The theory of semi-Markov processes and regenerative point technique are used to 

develop and analyze the system model. For illustration, the results are obtained for a particular case. 
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1. Introduction 

In case of single unit systems or configurations, the flawless 

working of the unit in operation is necessary to achieve 

desired goals. But no unit can work without failure forever. So, 

to deal with any emergency, spare units are needed to provide 

backup to the working unit. Though, introduction of spares 

requires money and space but by this practice the system 

performance in terms of availability, throughput, profit and 

reliability can be improved. Therefore, stochastic models of 

standby systems have been widely studied in literature [1-5]. 

Some studies focus on failure of service facility [6-9]. 

Moreover, some researches highlight the issue of switch 

failure [10-13]. But all these studies analyze the failure of 

operative unit only. They don’t emphasize on state of unit in 

cold-standby mode. 

As the cold-standby systems are described by operative as 

well as standby units. The best worth of standby unit is needed 

as the operative unit fails. Instantly, the standby unit switches 

in to operation and the system remains in up-state. Though 

there is no active load sharing with the standby unit in a 

cold-standby system but still there may be various factors that 

contribute to its deterioration such as temperature, moist, dust, 

corrosion, tropical changes etc. So presuming the standby unit 

as good as new, with the passage of time, is impractical. 

Despite of all these facts most of the past studies ignore this 

fact. An earlier work [14] highlights this issue however it 

studies mean time to system failure only and no-one else 

measure of system performance. 

Keeping, the practical importance in view, a stochastic 

model for a two unit cold standby system with the possibility 

of standby failure is developed. Moreover, the present paper 

generalizes the work presented in [15]. The model consists of 

two identical units; one in operation and another as cold 

standby. When the operative unit fails it goes directly under 

repair whereas after completion of a pre-specified time the 

standby unit goes under inspection to check the feasibility for 

its maintenance (low intensity repair) or replacement. A single 

service facility takes care of all the repair, maintenance or 

replacement tasks. The failure times of operative as well as 

standby unit follow exponential distributions. However, the 

repair time, maintenance time and replacement time follow 

general distribution with distinct probability distribution 

functions. All the random variables, included here, are 

statistically independent. The repairs, maintenances and 

switches are perfect. The model is developed using 

semi-Markov process [16]. The model is analyzed at different 

regeneration epochs and the expressions for various 

performance measures are derived using regenerative point 

technique of renewal theory [17-18]. A particular case is 

considered for simulation and numerical illustration of results. 
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2. Notations 

E / E  : The set of regenerative/ non regenera-tive states 

0
N

 
: The unit is operative and in normal Mode 

s
C

 
: The unit is in cold-standby 

µ  
: Failure rate of cold-standby unit 

λ  : Failure rate of operative unit 

a / b  : Probability that maintenance feasible/ replacement 

feasible 

ui UI
F / F

 : Failed unit under inspection /under inspection 

continuously from previous state 

ur UR
F / F

 : Failed unit under repair / under repair continuously 
from previous state 

wr WR
F / F

 : Failed unit waiting for repair/ waiting for repair 

continuously from previous State 

um UM
F / F

 : Failed unit under maintenance / under maintenance 

continuously from previous state 

urp URpF / F
 : Failed unit under replacement / under replacement 

continuously from previous state 

h(t) / H(t)
 

: pdf / cdf of inspection time 

g(t) / G(t)
 

: pdf / cdf of repair time of unit 

f (t) / F(t)
 

: pdf / cdf of replacement time of Unit 

m(t) / M(t)
 

: pdf / cdf of maintenance time of Unit 

ij ijq (t) / Q (t)
 

: pdf/ cdf of direct transition time from regenerative 

state 
i

S  to regenerative State
jS Or failed state 

jS

without visiting any other regenerative state in ( ]0, t  

ij.kr ij.krq (t) / Q (t)
 

: pdf/ cdf of first passage time from regenerative state

i
S to regenerative state

jS or failed state
jS visiting 

state
k

S ,
r

S once in ( ]0, t  

i
(t)µ  

: Probability that the system up initially in state 

i
S E∈  is up at time t without visiting to any 

regenerative state 

i
W (t)

 

: Probability that server busy in the state 
i

S  up to time 

t without making any transition to any other 

regenera-tive state or returning to the same state via one 

or more non-regenerative states 

[s] / [c]
 : Symbol for Laplace-Stietjes convolution/Laplace 

convolution 

~ / *  : Symbol for Laplace- stietjes Transform(LST) 

/Laplace transform (LT) 

Considering these symbols, the following are possible 

transition states of the system model (Fig. 1) 

 

Figure 1. System State Transition Diagram. 

The regenerative states (E): 

( )0 o sS N ,C ,=  

( )1 ur oS F , N ,=  

( )2 o uiS N ,F ,=  

( )3 o umS N ,F ,=  

( )4 o urpS N ,F=  

The non-regenerative states ( E ): 

( )5 UR wrS F ,F ,=  

( )6 wr UIS F ,F ,=  

( )7 wr UMS F ,F ,=  

( )8 wr URpS F ,F ,=  

( )9 WR umS F ,F ,=  

( )10 WR urpS F ,F=  

3. Modeling of the System 

3.1. Transition Probabilities and Mean Sojourn Times 

Simple probabilistic considerations yield the following 

expressions for the non-zero elements:- 

( ) ( ) ( )ij ij ij ij0
p Q q t dt Q 0

∞
= ∞ = =∫ ɶ  

01
p / ( ),= λ λ + µ  02

p / ( ),= µ λ + µ  ( )*

10
p g ,= λ  

( )*

15
p 1 g ,= − λ  ( )*

23
p ah ,= λ  ( )*

24
p bh ,= λ  

( )*

26
p 1 h ,= − λ  ( )*

30
p m ,= λ  ( )*

37
p 1 m ,= − λ  

( )*

40
p f ,= λ  ( )*

48
p 1 f ,= − λ  ( )*

51
p g 0 ,=  ( )*

69
p ah 0 ,=  

( )*

6,10
p bh 0 ,=  ( )*

71
p m 0 ,=  ( )*

81
p f 0 ,=  ( )*

91
p m 0 ,=  

( )*

10,1
p f 0 ,=  ( )*

11.5
p 1 g ,= − λ *

21.6,9
p [1 h ( )]a,= − λ  

*

21.6,10
p [1 h ( )]b,= − λ  

*

31.7p [1 m ( )],= − λ  
*

41.8p [1 f ( )]= − λ  

It can be easily verified that  

01 02 10 15 23 24 26 30 37 40 48 51
p p p p p p p p p p p p+ = + = + + = + = + = =

69 6,10 71 81 91 10,1 10 11.5 23 24 21.6,9p p p p p p p p p p p+ = = = = = + = + +

21.6,10 30 31.7 40 41.8p p p p p 1+ = + = + =  

The unconditional mean time taken by the system to transit 

to any regenerative state jS  when it is counted from epoch of 

entrance into that state i
S  is given by; 

( )*

ij ij ij
0

m td{Q (t)} q 0
∞ ′= = −∫  

And the mean sojourn time in the state i
S  is given by; 

i
0

E(t) P(T t)dt
∞

µ = = >∫ , where T denotes the time to system 

failure. 

We get, 

0
1/ ( ),µ = λ + µ *

1 [1 g ( )] / ,µ = − λ λ  
*

2 [1 h ( )] / ,µ = − λ λ  
*

3 [1 m ( )] / ,µ = − λ λ  
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*

4 [1 f ( )] / ,µ = − λ λ  *

5 g (0),′µ = −  *

6 h (0),′µ = −  

*

7 m (0),′µ = −  *

8 f (0),′µ = −  *

9 m (0),′µ = −  *

10 f (0),′µ = −  

' * *

1 (1/ ) g (0) 1 g ( ) ,′   µ = λ − − λ  
 

' * * * *

2 (1/ ) h (0) am (0) bf (0) 1 h ( ) ,′ ′ ′   µ = λ − − − − λ  
 

' * *

3 (1/ ) m (0) 1 m ( ) ,′   µ = λ − − λ  
 

' * *

4 (1/ ) f (0) 1 f ( )′   µ = λ − − λ  
 

Further 

ij i

j

m = µ∑  

01 02 0
m m ,+ = µ

10 15 1
m m ,+ = µ  23 24 26 2

m m m ,+ + = µ  

30 37 3
m m ,+ = µ  

40 48 4
m m ,+ = µ  51 5

m ,= µ  69 6,10 6m m ,+ = µ  71 7
m ,= µ

81 8
m ,= µ , 91 9

m ,= µ 10,1 10m ,= µ  
'

10 11.5 1m m ,+ = µ
'

23 24 21.6,9 21.6,10 2
m m m m ,+ + + = µ  

'

30 31.7 3m m ,+ = µ  

'

40 41.8 4m m+ = µ  

3.2. Reliability and MTSF 

Let i
(t)ϕ  be the cdf of the passage time from regenerative 

state i
S  to a failed state. Regarding the failed state as 

absorbing state, we have the following recursive relations for

i
(t)ϕ : 

0 01 1 02 2
(t) Q (t)[s] (t) Q (t)[s] (t)ϕ = ϕ + ϕ  

1 10 0 15
(t) Q (t)[s] (t) Q (t)ϕ = ϕ +  

2 23 3 24 4 26
(t) Q (t)[s] (t) Q (t)[s] (t) Q (t)ϕ = ϕ + ϕ +

3 30 0 37
(t) Q (t)[s] (t) Q (t)ϕ = ϕ +  

4 40 0 48
(t) Q (t)[s] (t) Q (t)ϕ = ϕ +  

(1) 

Taking LST of above relations (1), we get the following 

matrix form. 

1

0 01 02

151 01

262 23 24

373 30

484 40

01 Q Q 0 0

QQ 1 0 0 0

Q0 0 1 Q Q

QQ 0 0 1 0

QQ 0 0 0 1

−
 ϕ − −   
    ϕ −    
     =ϕ − −
    ϕ −    
    ϕ −    

ɶ ɶɶ

ɶɶɶ

ɶɶ ɶɶ

ɶɶɶ

ɶɶɶ

 

Here it should be noted that the argument s is omitted for 

brevity. Solving for 0
(s)ϕɶ , we get 

01 15 02 26 23 37 24 48

0

01 10 02 23 30 24 40

Q Q Q [Q Q Q Q Q ]
(s)

1 Q Q Q [Q Q Q Q ]

+ + +
ϕ =

− − +

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ

ɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶ

     (2) 

The reliability of system model can be obtained by using 

Inverse Laplace transform of as below i.e. 

1 0
1 (s)

R(t) L
s

− − ϕ =  
 

ɶ

 

The mean time to system failure (MTSF) is given by 

0

s 0

0 01 1 02 2 23 3 24 4

01 10 02 23 30 24 40

1 (s)
MTSF lim

s

p p [ p p ]
           

1 p p p [p p p p ]

→

− ϕ
=

µ + µ + µ + µ + µ
=

− − +

ɶ

       (3) 

4. Cost-Benefit Analysis 

4.1. Steady State Availability 

Let i
A (t)  be the probability that the system is in up-state 

at instant ‘t’ given that the system entered regenerative state 

i
S  at t=0. The recursive relations for i

A (t)  are as follows: 

0 0 01 1 02 2
A (t) M (t) q (t)[c]A (t) q (t)[c]A (t)= + +

1 1 10 0 11.5 1
A (t) M (t) q (t)[c]A (t) q (t)[c]A (t)= + +  

2 2 23 3 24 4

21.6,9 24.6,10 1

A (t) M (t) q (t)[c]A (t) q (t)[c]A (t)

           {q (t) q (t)}[c]A (t)

= + +
+ +

3 3 30 0 31.7 1
A (t) M (t) q (t)[c]A (t) q (t)[c]A (t)= + +  

4 4 40 0 41.8 1
A (t) M (t) q (t)[c]A (t) q (t)[c]A (t)= + +  

(4) 

i
M (t)  be the probability that system is up initially in state 

i
S E∈  is up at time t without visiting any other regenerative 

state, we have 

( ) t

0M (t) e ,− λ+µ=  
t

1M (t) e G(t),−λ=  
t

2M (t) e H(t),−λ=  
t

3M (t) e M(t),−λ=  
t

4M (t) e F(t),−λ=  

Taking LST of above relation (4) and putting them in matrix 

form, we get 

1
* ** *

01 020 0

* ** *

10 11.51 1

* * * ** *

21.6,9 21.6,10 23 242 2

* ** *

30 31.73 3

* ** *

40 41.84 4

1 q q 0 0A M

q [1 q ] 0 0 0A M

0 [q q ] 1 q qA M

q q 0 1 0A M

q q 0 0 1A M

−
    − −
    − −    
    = − + − −
    
− −    
    − −    

 

Solve the matrix form for 
*

0A (s) , we get the steady state 

availability as 

*

0 0
s 0

10 0 02 23 30 24 40 1 02 10 2 23 3 24 4

' ' ' '

10 0 02 23 30 24 40 1 02 10 2 23 3 24 4

A ( ) limsA (s)

p [1 p (p p p p )] p p [ p p ]
 

p [1 p (p p p p )] p p [ p p ]

→
∞ =

µ + − + µ + µ + µ + µ
=

µ + − + µ + µ + µ + µ
  (5) 

4.2. Busy Period Analysis for Server 

4.2.1. Due to Inspection 

Let 
I

iB (t)  be the probability that the server is busy in 

inspection of the unit due to cold-standby failure at an instant 

‘t’ given that the system entered state i
S  at time t=0. The 
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recursive relations for 
I

iB (t)  are as follows: 

I I I

0 01 1 02 2B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

I I I

1 10 0 11.5 1B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

I I I I

2 2 23 3 24 4B (t) W (t) q (t)[c]B (t) q (t)[c]B (t)= + +  

I

21.6,9 21.6,10 1
          {q (t) q (t)}[c]B (t)+ +  

I I I

3 30 0 31.7 1B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

I I I

4 40 0 41.8 1B (t) q (t)[c]B (t) q (t)[c]B (t) = +  

(6) 

I

iW (t)  be the probability that the server is busy in state i
S  

due to inspection for failure of cold-standby unit up to time t 

without making any transition to any other regenerative state 

or returning to the same via one or more non-regenerative 

states and so 

I t t

2W (t) e H(t) ( e [c]1)H(t)−λ −λ= + λ  

Taking LST of above relation (6), we get the relations in 

following matrix form. 

1
* **I

01 020

* **I

10 11.51

*I* * * ** I

221.6,9 21.6,10 23 242

* **I

30 31.73

* ** I

40 41.84

01 q q 0 0B

0q [1 q ] 0 0 0B

  W0 [q q ] 1 q qB

0q q 0 1 0B

0q q 0 0 1B

−
   − −  
    − −    
    = − + − −
    
− −    
    − −     

 

Solve above matrix form for 
*I

0B (s) , we get the time for 

which server is busy due to inspection as: 

I * I

0 0
s 0

*I

2 02 10

' ' ' '

10 0 02 23 30 24 40 1 02 10 2 23 3 24 4

B ( ) limsB (s)

W (0)p p

p [1 p (p p p p )] p p [ p p ]

→
∞ =

=
µ + − + µ + µ + µ + µ

  (7)

 

4.2.2. Due to Maintenance 

Let 
M

iB (t)  be the probability that the server is busy in 

maintenance of the unit due to failure of cold standby unit at 

an instant ‘t’ given that the system entered state i
S  at time 

t=0. The recursive relations for 
M

iB (t)  are as follows: 

M M M

0 01 1 02 2B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

M M M

1 10 0 11.5 1B (t) q (t)[c]B (t) q (t)[c]B (t)= +
M M M

2 23 3 24 4B (t) q (t)[c]B (t) q (t)[c]B (t)= + +  

M

21.6,9 21.6,10 1
             {q (t) q (t)}[c]B (t)+  

M M M M

3 3 30 0 31.7 1B (t) W (t) q (t)[c]B (t) q (t)[c]B (t)= + +  

M M M

4 40 0 41.8 1B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

(8) 

M

iW (t)  be the probability that the server is busy in state 

i
S  due to maintenance of unit up to time t without making 

any transition to any other regenerative state or returning to 

the same via one or more non-regenerative states and so 

M t t

3W (t) e M(t) ( e [c]1)M(t)−λ −λ= + λ  

Taking LST of above relation (8), we get the relations in 

following matrix form. 

1
* **M

01 020

* **M

10 11.51

* * * ** M

21.6,9 21.6,10 23 242

*M* **M

330 31.73

* ** M

40 41.84

01 q q 0 0B

0q [1 q ] 0 0 0B

00 [q q ] 1 q qB

Wq q 0 1 0B

0q q 0 0 1B

−
   − −  
    − −    
    = − + − −
    
− −    
    − −     

 

Solve above matrix form for 
*M

0B (s) , we get the time for 

which server is busy due to maintenance as given below. 

M * M

0 0
s 0

*M

3 02 10 23

'

10 0 02 23 30 24 40 1 02 10

' ' '

2 23 3 24 4

B ( ) limsB (s)

W (0)p p p
            

p [1 p (p p p p )] p p

                                    [ p p ]

→
∞ =

=
µ + − + µ +

µ + µ + µ

    (9)

 

4.2.3. Due to Replacement 

Let 
Rp

iB (t)  be the probability that the server is busy in 

replacing the standby unit at its failure at an instant ‘t’ given 

that the system entered regenerative state i
S  at time t=0. The 

recursive relations for 
Rp

iB (t)  are as follows: 

Rp Rp Rp

0 01 1 02 2B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

Rp Rp Rp

1 10 0 11.5 1B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

Rp Rp Rp

2 23 3 24 4 21.6,9
B (t) q (t)[c]B (t) q (t)[c]B (t) {q (t)= + +  

Rp

21.6,10 1
            q (t)}[c]B (t)+  

Rp Rp Rp

3 30 0 31.7 1B (t) q (t)[c]B (t) q (t)[c]B (t)= +  

Rp Rp Rp Rp

4 4 40 0 41.8 1B (t) W (t) q (t)[c]B (t) q (t)[c]B (t)= + +  

(10) 

Rp

iW (t)  be the probability that the server is busy in state 

i
S  due to replacing of unit up to time t without making any 

transition to any other regenerative state or returning to the 

same via one or more non-regenerative states and so 

Rp t t

4W (t) e F(t) ( e [c]1)F(t)−λ −λ= + λ  

Taking LST of above relation (10), we get the relations in 

following matrix form. 

1
* **Rp

01 020

* **Rp

10 11.51

* * * **Rp

21.6,9 21.6,10 23 242

* **Rp

30 31.73

*Rp* **Rp
440 41.84

01 q q 0 0B

0q [1 q ] 0 0 0B

00 [q q ] 1 q qB

0q q 0 1 0B

Wq q 0 0 1B

−
   − −  
    − −    
    = − + − −
    
− −    
    − −     

 

Solve the matrix form for 
* Rp

0B (s) , we get the time for 

which server is busy due to replacement is given by 
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][                                       

)](1[

)0(

)(lim)(

'

424

'

323

'

2

1002

'

14024302302010

241002

*

1

*

0
0

0

µµµ
µµ

pp

pppppppp

pppW

ssBB

Rp

Rp

s

Rp

++
++−+

=

=∞
→

     (11) 

4.2.4. Due to Repair 

Let )(tB R

i  be the probability that the server is busy in 

repairing the unit due to failure at an instant ‘t’ given that the 

system entered regenerative state iS  at time t=0. The 

recursive relations for )(tB R

i  are as follows: 

 

 

 

 

 

 

(12) 

)(tW R

i  be the probability that the server is busy in state iS  

due to repairing of unit up to time t without making any 

transition to any other regenerative state or returning to the 

same via one or more non-regenerative states and so 

)()1][()()(1 tGcetGetW ttR λλ λ −− +=  

Taking LST of above relation (12), we get the relations in 

following matrix form. 
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Solve above matrix form for )(*

0 sB
R

, we get the time for 

which server is busy due to repair as below:  
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4.3. Expected Number of Inspections of the Standby Unit 

Let )(tI i  be the expected number of inspection of the 

failed unit by the server in (0, t] given that the system entered 

the regenerative state iS  at t=0. The recursive relations for 

)(tI i  are given as: 

 (14) 

 

 

 

 

 

Taking LST of above relation (14), we get the relations in 

following matrix form. 
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Solve the matrix form for )(
~

0 sI , we get the expected 

number of inspections per unit time by the server as follows: 
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4.4. Expected Number of Repairs of the Unit

 
Let )(tRi  be the expected number of repairs of the failed 

unit by the server in (0, t] given that the system entered the 

regenerative state iS  at t=0. The recursive relations for 

)(tRi  are given as: 

 

 

 

 

(16) 

Taking LST of above relation (16), we get the relations in 

following matrix form. 























+























−−
−−

−−+−
−−

−−

=






















−

0

0

0

]
~~

[

0

100
~~

010
~~

~~
1]

~~
[0

000]
~

1[
~

00
~~

1

~

~

~

~

~

5.1110

1

8.4140

7.3130

242310,6.219,6.21

5.1110

0201

4

3

2

1

0

QQ

QQ

QQ

QQQQ

QQ

QQ

R

R

R

R

R

 

Solve the matrix form for )(
~

0
sR , we get the expected 

number of repairs per unit time by the server as given below: 

)(])[()(])[()( 2021010 tBctqtBctqtB RRR +=

)(])[()(])[()()( 15.1101011 tBctqtBctqtWtB
RRRR ++=
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4.5. Expected Number of Maintenances of the Standby Unit 

Let )(tM i  be the expected number of maintenances of the 

failed unit by the server in (0, t] given that the system entered 

the regenerative state iS  at t=0. The recursive relations for 

)(tM i  are given as: 

 

 

 

 

 

 

(18) 

Taking LST of above relation (18), we get the relations in 

following matrix form. 
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Solve the above matrix form for )(
~

0 sM , we get the 

expected number of maintenances per unit time by the server 

as given below: 
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4.6. Expected Number of Replacements of Standby Unit 

Let )(tRC

i  be the expected number of replacements of the 

unit failed in cold-standby by the server in (0, t] given that the 

system entered regenerative state i
S  at time t=0. The 

recursive relations for )(tRC

i  are as follows: 

 

 

 

 

 

 

(20) 

Taking LST of above relation (20), we get the relations in 

following matrix form. 
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Solve above matrix form for )(
~

0 sR C , we get the expected 

number of replacements per unit time to cold-standby failure 

is given by 
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4.7. Profit Analysis 

System Profit=Total System Revenue- Total System Cost 

So the Profit incurred to the system model in (0,t] is given 

as below: 
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As t→∞, we obtain the profit attained in steady state i.e. 
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Where 

0K = Revenue per unit up-time of the system 

1C =Cost per unit time for which server is busy in 

inspection of cold-standby unit 

2C = Cost per unit time for which server is busy due to 

maintenance 

3C = Cost per unit time for which server is busy due to 

replacement 

4C = Cost per unit time for which server is busy due to 

repair 

)(])[()(])[()( 2021010 tMstQtMstQtM +=
)(])[()(])[()( 15.110101 tMstQtMstQtM +=
++= )(])[()(])[()( 4243232 tMstQtMstQtM

)(])[()](1][)[(         110,6.2119,6.21 tMstQtMstQ ++

)](1][)[()](1][)[()( 17.310303 tMstQtMstQtM +++=
          )(])[()(])[()( 18.410404 tMstQtMstQtM +=

)(])[()(])[()(
2021010

tRstQtRstQtR CCC +=

)(])[()(])[()( 15.110101 tRstQtRstQtR
CCC +=

])[()(])[()(])[()( 9,6.214243232 stQtRstQtRstQtR CCC ++=

)](1][)[()(           110,6.211 tRstQtR CC ++

)(])[()(])[()( 17.310303 tRstQtRstQtR CCC +=

      )](1][)[()](1][)[()( 18.410404 tRstQtRstQtR
CCC +++=
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5C = Cost per unit inspection of the unit 

6C = Cost per unit repair of the unit 

7C = Cost per unit maintenance of the unit 

8C = Cost per unit replacement of the unit 

5. Example (Exponential Case) 

For numerical illustration let us suppose that the different 

random variables follow exponential distribution with 

different probability density function given as teth  )( αα −= , 

tetg  )( ββ −= , tetm  )( θθ −= , tetf  )( γγ −= . For the sake of 

convenience we pretend the following values for different 

parameters as: a=0.4, b=0.6, α=0.1, β=0.5, θ=0.3, µ=0.4, 

γ=3.5, ,001.0=λ  ,50000
0

=K  ,1001 =K  ,1000
2

=K  

,35000
3

=K  ,20004 =K  ,180
5

=K  ,30006 =K  

,2307 =K  6000
8

=K  

For this, we obtained the values for different measures of 

system performance as follows: 

MTSF=1219.5  

Availability=0.9916 

Busy period due to inspection=0.713 

Busy period due to maintenance=0.094076 

Busy period due to replacement=0.012096 

Busy period due to repair=0.001983 

Expected number of inspections of standby=0.0712627 

Expected number of repairs=0.000992 

Expected number of maintenances of standby=0.028505 

Expected number of replacements of standby=0.042758 

System profit=49087.59 

6. Simulation Study 

For simulation, we consider the numerical values of 

different parameters as assumed above. The simulation results 

are presented in Table1 and Fig. 2. Table 1 shows the trends of 

system performance measures w.r.t. λ for different possible 

combinations of other parameters. Evidently, it can be 

observed that 

 

Figure 2. System profit for different values of parameters vs. revenue per unit 

up time. 

Table 1. Effect of α, β, θ, µ & γ on system performance w.r.t. λ (a=0.4,b=0.6,α=0.1,β=0.5,θ=0.3,µ=0.4,γ=3.5). 

Performance Index λ  α=0.2 β=0.8 θ=0.6 µ=0.9 γ=5.5 

 0.01 123.9 140.3 123.9 125.3 110.6 124.0 

 0.02 63.0 71.1 63.1 63.7 55.8 63.1 

MTSF 0.03 42.7 48.0 42.8 43.2 37.5 42.7 

 0.04 32.5 36.4 32.6 32.9 28.4 32.6 

 0.05 26.4 29.5 26.5 26.7 22.9 26.5 

 0.01 0.9236 0.9614 0.9232 0.9264 0.9152 0.9236 

 0.02 0.8616 0.9271 0.8606 0.8666 0.8465 0.8618 

Availability 0.03 0.8105 0.8966 0.8085 0.8171 0.7897 0.8107 

 0.04 0.7676 0.8692 0.7647 0.7755 0.7421 0.7678 

  0.05 0.7310 0.8444 0.7272 0.7400 0.7015 0.7313 

 0.01 45648.96 47324.66 45643.68 45810.51 45179.00 45664.72 

Profit 0.02 42514.14 45571.91 42482.24 42778.55 41708.79 42531.75 

 0.03 39921.89 44005.31 39853.49 40265.66 38839.96 39941.05 

 0.04 37743.54 42595.99 37634.97 38149.39 36429.12 37764.03 

 0.05 35887.95 41320.65 35738.96 36342.88 34375.02 35909.58 

 

(i) All indices decline with increasing values of λ . This 

implies that the system performance declines with increasing 

rate of failure of operative unit. 

(ii) As the value of α increase from α =0.1 to α =0.2 the 

mean time to system failure, availability and profit increase 

rapidly, though the rate of increase is less with higher values of

λ . This indicates that system performance improves with 

increase in rate of inspection of unit in standby mode. 

(iii) A slight increase in the values of performance indices is 

observed as β increase from β =0.5 to β =0.8. So 

increasing the repair rate of operative unit at its failure results 

improved system performance. 

(iv) The rising trend remains with value of θ  changes 

from θ =0.3 to θ =0.6 and γ =3.5 to 5.5 respectively. After 

inspection maintenance of standby unit enhances system 

performance. 

(v) Simultaneously, it can be observed that the values of all 

performance measures decline with increase in the value of µ . 

As µ increase from µ =0.4 to µ =0.9 a sharp declining trend 

of MTSF, availability and profit can be observed. This trend 

reflects that increase in the rate with which the cold standby 

fails reduce system performance. 

The Fig. 2 gives the cutoff points of profit for different 

levels of other parameters. As usual, irrespective of other 

parameters, the system profit increases with 0
K . It is evident 

from the graph that the system remains profitable (keeping 
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other parameters fix) if 

0
K ≥ 980, =a 0.6 

0
K ≥ 990, =β 0.8 

0
K ≥ 1050, =γ 5.5 

0
K ≥ 1190, =µ 0.9 

0
K ≥ 1200, =α 0.2 

The effect of µ  on system profit is more than that of α  if, 

0
K ≤ 1300. The system is equally profitable for given values 

of µ  and α if 1300 ≤ 0
K ≤ 1350. However, as 0

K ≥ 1350, 

the system profit due to effect of α crosses the same due to 

effect of µ . Further for given values of γβθ  and  ,  the rate of 

increase of profit w.r.t 0
K is almost same. 

7. Discussion 

The paper investigates a two unit cold standby system with 

the possibility of failure of the cold standby. It explores laws 

of probability theory to develop the stochastic model. The 

expressions for various system performance measures are 

derived. The numerical illustration of the study through an 

example and a simulation study reveals its practical 

importance. The results thus obtained indicate that a two unit 

cold standby system can be made more reliable and profitable 

by deploying a skilled service facility with higher inspection 

rate, repair rate and maintenance rate. Though the failures 

cannot be completely avoided but certain preventive measures 

can be taken to reduce the impact, such as periodic inspections, 

preventive maintenances etc. 

This paper may provide suggestive guidelines for the 

professionals working in various safety and /or profit making 

installations such as space-satellite organizations, power 

generation companies, defense manufacturing and robotics 

etc. 
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