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Abstract: For last two decades, clustering is well-recognized area in the research field of data mining. Data clustering plays 

the major research at pattern recognition, Signal processing, bioinformatics and Artificial Intelligence. Clustering process is an 

unsupervised learning techniques where it generates a group of object based on their similarity in such a way that the objects 

belonging to other groups are similar and those belonging to other are dissimilar. This paper analysis the three different data 

types clustering techniques like K-Means, Principal components analysis (PCA) and Independent component analysis (ICA) in 

real and simulated data. The recent developments by considering a rather unexpected application of the theory of Independent 

component analysis (ICA) found in data clustering, outlier detection and multivariate data visualization. Accurate identification 

of data clustering plays an important role in statistical analysis. In this paper we explore the connection among these three 

techniques to identify multivariate data clustering and develop a new method k-means on PCA or ICA then the result shows 

that ICA based clustering performs well than others. 
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1. Introduction 

Data clustering is an active research area for exploring and 

grouping set of data objects into multiple groups or clusters 

so that objects within the cluster have high similarity, but are 

very dissimilar to objects in the other clusters. It is probably 

fair to say that in the last 10 years, clustering techniques has 

become a standard tool in data mining and in the field of 

artificial intelligence [22]. There are various clustering 

algorithms have been developed and are categorized from 

several aspects such as partitioning methods, hierarchical 

methods, density-based methods, and grid-based methods 

[1,3,7]. In partitioning method, a division data objects into 

non-overlapping clusters such that each data object is in 

exactly one subset. Most common partitioning method is K-

means and mixture models [7]. The recent developments by 

considering a rather unexpected application of the theory of 

Independent component analysis (ICA) found in multivariate 

data analysis such as outlier detection, data clustering, data 

visualization etc [25, 27]. 

Independent component analysis (ICA) is a Statistical and 

computational technique in which the goal is to find a linear 

projection of the data that the source signals or components 

are statistically independent or as independent as possible. 

Among its numerous applications, ICA is the most natural 

tool for BSS [9] in instantaneous linear mixtures when the 

source signals are assumed to be independent. The 

plausibility of the statistical independence assumption in a 

wide variety of fields, including telecommunications, finance 

and biomedical engineering, helps explain the arousing 

interest in this research area witnessed over the last two 

decades. Many methods for data clustering try to identify 

cluster. Data clustering is carried out through the use of 

Principal Components Analysis (PCA) [3]. PCA is a 

dimension reduction procedure where some of the variables 

are highly correlated with each other. If this is to be used in a 

contaminated data, the nature of the estimated principal 

components may behave differently, implemented the 

principal components as a multivariate data clustering 

method. 

Data analysis methods are essential for analyzing the ever-

growing enormous quantity of high dimensional data. Some 

literatures of cluster analysis [4, 8, 10] attempts to pass 

through data quickly to gain first order knowledge by 

partitioning data points into disjoint groups such that data 

points belonging to same cluster are similar while data points 

belonging to different clusters are dissimilar. One of the most 
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popular and efficient clustering methods is the K-means 

method [7, 18, 19] which uses prototypes to represent 

clusters by optimizing the squared error function. 

On the other end, high dimensional data are often 

transformed into lower dimensional data via the principal 

component analysis (PCA) [13] where coherent patterns can 

be detected more clearly. Such unsupervised dimension 

reduction is used in very broad areas such as neural networks, 

image processing, genomic analysis, and information 

retrieval. It is also common that PCA is used to project data 

to a lower dimensional subspace and K-means is then applied 

in the subspace [28]. In other cases, data are embedded in a 

low-dimensional space such as the Eigen space of the graph 

K-means is then applied [23]. The main basis of PCA-based 

dimension reduction is that PCA picks up the dimensions 

with the largest variances. Mathematically, this is equivalent 

to finding the best low rank approximation of the data via the 

singular value decomposition [5]. However, this noise 

reduction property alone is inadequate to explain the 

effectiveness of PCA. 

In this article, we will begin a general description of 

clustering, briefly describing the most popular methods of 

multivariate data clustering such as \k-means, PCA, ICA and 

proposed K-means on PCA and K-means on ICA. Finally, we 

compare their performance among other clustering 

techniques that found best in the literature. 

2. Data Clustering Techniques 

2.1. K-means Clustering 

K-Means is one of simplest method among all other 

partitioning based data clustering methods [1, 3, 7]. Every 

cluster is assigned with centroids. It is a partition method 

technique which finds mutual exclusive clusters of spherical 

shape. It generates a specific number of disjoint, flat (non-

hierarchical) clusters. Statically method can be used to 

cluster to assign rank values to the cluster categorical data. 

Here categorical data have been converted into numeric by 

assigning rank value [7]. K-Means algorithm organizes 

objects into k-partitions where each partition represents a 

cluster. We start out with initial set of means and classify 

cases based on their distances to their centers. Next, we 

compute the cluster means again, using the cases that are 

assigned to the clusters; then, we reclassify all cases based on 

the new set of means. We keep repeating this step until 

cluster means don’t change between successive steps. Finally, 

we calculate the means of cluster once again and assign the 

cases to their permanent clusters. 

Algorithm k-means 

a) Decide on a value for K, the number of clusters. 

b) Initialize the K cluster centers. 

c) Decide the class memberships of the N objects by 

assigning them to the nearest cluster center. 

d) Re-estimate the K cluster centers, by assuming the 

memberships found above are correct. 

e) Repeat 3 and 4 until none of the N objects changed 

membership in the last iteration. 

The strength of K-Means clustering is relatively efficient 

scalable process for huge sum of data sets and easy to 

understand and implement. It has some drawbacks that 

process begins only after the mean of a cluster is initialized, 

user defined clusters constant and hard to handle data with 

noise and outliers [16]. 

2.2. Principal Component Analysis 

Principal component analysis or PCA is one of the key 

tools in multivariate statistical analysis and is often used to 

reduce the dimension of data for easy exploration. As a 

multivariate analysis technique for dimension reduction, it 

aims to compress the data without losing much information 

the original data contains. The process of how PCA is done 

here is based on Johnson, R. [2, 3]. It is concerned with 

explaining the variance-covariance structure of a set of 

variables through a few new variables. All principal 

components are particular linear combinations of the p 

random variables with three important properties which are: 

1. The principal components are uncorrelated. 

2. The first principal component has the highest variance; 

the second principal component has the second highest 

variance, and so on. 

3. The total variation in all the principal components 

combined is equal to the total variation in the original 

variables. 

Mathematically,  

Let X and Y are � × �	matrices related by a linear 

transformation P. X is the original recorded data set and Y is 

a representation of that data set. 

PX	 = 	Y	                                     (1) 

Equation 1 represents a change of basis and thus can have 

many interpretations. 

1. P is a matrix that transforms X into Y. 

2. Geometrically, P is a rotation and a stretch which again 

transforms X into Y. 

3. The rows of P, {
�, . . . , 
�},  are a set of new basis 

vectors for expressing the columns of X. Where 

PX = �p�⋮p�� (x� x�… x�) 

Y = �p�x� ⋯ p�x�⋮ ⋱ ⋮p�x� ⋯ p�x�� 

We can note the form of each column of Y. The new 

variable Y is linear combination of original variables X. 

Y� = �p�x�⋮p�x�� 
The first PC is the linear combination of the variables that 

explains the greatest amount of the total variation in x. The 

second PC is the linear combination of the variables that 
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explains the next largest amount of variation and is 

uncorrelated with the first PC, and so on. If the first few (say, 

three) components contain most of the total variation (say, 

85%), then the original variables can be replaced by these 

components without too much loss of variance information. 

The principal components are computed from an eigen 

analysis of the covariance matrix or the correlation matrix, 

but results from the covariance matrix and the correlation 

matrix are usually not the same. If the variables are measured 

on scales with widely different ranges or if the units of 

measurement are not commensurate, it is better to perform 

PCA on the correlation matrix. The observations that are 

cluster with respect to the first few principal components or 

the major principal components usually correspond to cluster 

on one or more of the original variables. It is well known that 

PC’s are uncorrelated but doesn’t grantee the independence 

among PC’s. In such situation a recently developed 

techniques ICA can be a more powerful tool than PCA, 

where IC’s are independent. 

2.3. Independent Component Analysis 

Independent component analysis (ICA) is a statistical 

method used to discover hidden factors (sources or features) 

from a set of measurements or observed data such that the 

sources are maximally independent. The ICA algorithms are 

able to separate the sources according to the distribution of 

the data. Independent component analysis (ICA) [9], and 

projection pursuit (PP) [14], are closely related techniques, 

which try to look for interesting directions (projections) in 

the data. To achieve separation of mixed data into 

independent components ICA exploits the independence 

between the sources in order to achieve their separation from 

mixed data. In order to formally define ICA model, consider  = (!� !�⋯ !")  as a random vector, representing n 

sensor signals that are observable, and # = ($� $�⋯ $%) 
as a random vector of latent mutually independent sources, 

where 
 ≤ � .The ICA model is then given by 

X	 = 	AS 

Where A is a � × 
 matrix with full column rank, called 

the mixing matrix. A is assumed to be fixed, but unknown. 

ICA consists of estimating both the matrices A and S, when 

only X is known, i.e., finding a matrix W such that # = 	) . 
Here, S is obtained by ICA based on the following two main 

assumptions on each source signals Si in S: i) Si is 

statistically independent of Sj in S (* ≠ ,) , ii) Si is non-

Gaussian random variable. 

Although numerous application of ICA in different fields 

but its main drawback to determine order of IC’s [9]. In 

principal component analysis, PC’s are ordered by Eigen 

value where first Eigen value is first pc, second Eigen value 

second pc and so on. But in independent component analysis, 

these components have no order [9, 25].For practical reasons 

to define a criterion for sorting these components to our 

interest. One measurement which can match our interest very 

well, is kurtosis. Kurtosis is a classical measure of non-

Gaussianity, and is computationally and theoretically 

relatively simple. From purely Gaussian distributed data, no 

unique independent components can be extracted; therefore, 

ICA should only be applied to data sets where we can find 

components that have a non-Gaussian distribution. Examples 

of super-Gaussian distributions (highly positive kurtosis) are 

speech signals, because these are predominantly close to zero. 

However, for outlier identification super Gaussian 

distributions (positive kurtosis) are more interesting. 

Negative kurtosis can indicate a cluster structure or at least a 

uniformly distributed factor [21, 27]. Thus the components 

with the most negative kurtosis can give us the most relevant 

information. Since most negative kurtosis indicates cluster 

structure and highest positive kurtosis identify multivariate 

outlier [26].  

3. Proposed Method 

To overcome the limitations of K-Means clustering and 

PCA based clustering. We take an attempt to identify 

multivariate data clustering new approach K-means on PCA 

and ICA on PCA method. The main basis of PCA-based 

dimension reduction is that PCA picks up the dimensions 

with the largest variances that are PCA is used to project data 

to a lower dimensional subspace and K-Means; ICA is then 

applied in the subspace. Improving the K-Means clustering 

and PCA based clustering using ICA are given following 

steps 

Step-1: By applying PCA of original data and we have to 

assume that the most interesting information is directly 

related to the highest variance in the data. After applying 

PCA we have to retain about 80% variability of the total 

variation. 

Step-2: We then apply K-Means clustering method on PCA 

and second method can consider ICA on PCA. 

Step-3: Minimize the dependence using ICA then define a 

criterion for sorting these components to our interest using 

Kurtosis. Since negative kurtosis can indicate a cluster 

structure or at least a uniformly distributed factor. Thus in 

this stage the components should consider with the most 

negative kurtosis to identify cluster. 

4. Application 

4.1. Real Data (Iris & Crabs Data, Data Source: R) 

This famous (Fisher's or Anderson's) iris data set gives the 

measurements in centimeters of the variables sepal length 

and width and petal length and width, respectively, for 50 

flowers from each of 3 species of iris. The species are Iris 

setosa, versicolor, and virginica. The Iris dataset is a well-

known dataset for classification of various data clustering 

techniques [4]. In Iris data first three PC’s can explain 99% 

variability of the total variation. So we plot first PC’s that 

chosen according to Eigen value and comparing their 

performance IC’s. Since IC’s has no order. For this reason we 

used kurtosis measure to ordering independent components 

where highest negative kurtosis considered IC1, second 
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largest negative kurtosis consider IC2 and so on. 

It is well known that iris data has three cluster based on 

species [16]. From Fig.-1 and Fig.2, by applying K-Means 

and PCA to the total data, the graph shows two pc’s and K-

Means wrongly identified three cluster but in IC’s, and ICA 

on PC’s gives strongly identified three cluster of Iris data. 

 

Fig. 1. on the left, by applying K-Means and PCA to the total data, the result 

is worse than the result of ICA. However, by using PCA for preprocessing 

before applying K-Means and ICA, a more strongly cluster can be identified. 

It is well known that iris data has three cluster based on species. On the left, 

by applying K-Means and PCA to the total data, the graph shows two pc’s 

wrongly identified three cluster but in IC’s, and ICA on PC’s gives strongly 

identified three cluster. 

 

Fig. 2. On the left, by applying K-Means and PCA to the crab’s data, the 

result is worse than the result of ICA. However, by using PCA for 

preprocessing before applying K-Means and ICA, a more strongly cluster 

can be identified. 

 

Fig. 3. On the left, by applying K-Means and PCA to the simulated data and 

plotting first two PC’s found that PC’s couldn’t identify cluster properly 

where in K-means on PCA and K-Means on ICA detect three cluster from 

simulated data. 

4.2. Simulation Study 

In this section we conducted a simulation study and 

generate 4 variables each has 300 observations. We randomly 

generate a multivariate data where first variable come from 

normal distribution with mean 0 and standard deviation (S.D) 

1, second variable from log-normal with mean 1, S.D 0.3, 

third from student-t distribution with parameter 1, and fourth 

variable from Chi-square distribution with parameter 2. 

According to our method, at first we apply K-Means and 

PCA to the simulated data where 4 variables each 300 

observations. By applying K-Means clustering we define 

K=4 and found four cluster each size 2, 2, 171 and 125 

respectively. By applying PCA and we found that first 3 PC’s 

can explain 84% variability of the total variation, and then 

we apply K-Means to the PCA scores then 4 cluster 

generated each of size 174, 1, 123, 2 and K-Means applying 

to ICA scores produced three cluster in the fig-3. The 

kurtosis of IC’s is 18.22, 122.67, 26.30 and 282.40 

respectively. From kurtosis value of components lowest 

kurtosis value 18.22 treated as IC1 and second lowest 

kurtosis value 26.30 treated as IC2 and so on. Since most 

negative kurtosis indicates cluster structure and highest 

positive kurtosis identify multivariate outlier. 

5. Conclusion 

In this paper we have considered three techniques to 

identify multivariate data cluster includes K-Means, PCA and 

ICA. We also applied a new and novel method K-Means on 

PCA and K-Means on ICA for multivariate data clustering. 

To overcome ordering independent components we used 

classical measure of kurtosis, we then apply our measure to 

Iris data, Crabs data and simulated data, and try to examine 

the capacity of K-Means, PCA, and K-Means on PCA, ICA 

and ICA on PCA for finding cluster through normal dot plot. 

In both data sets, our proposed method K-Means on PCA and 

ICA a new visualization technique correctly diagnosis 

clusters than only PCA or only K-Means. Although in our 
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study, we considered partitioned methods to identify cluster. 

In future we have to use hierarchical methods, density-based 

methods, and grid-based methods and comparing their 

performance ICA based techniques and tries to define 

appropriate classifier with confidence interval. 
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