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Abstract: Process capability analysis has been widely used to monitor the performance of industrial processes. In practice, 

lifetime performance index C� is a popular means to assess the performance and potential of their processes, where L is the 

lower specification limit. This study constructs the maximum likelihood (ML) and the Bayesian estimators of C� for the 

exponentiated Frechet (EF) model with progressive first-failure-censoring scheme. These estimates are then used for 

constructing a confidence interval for C�. The MLE and the Bayesian estimators of C� are then utilized to develop a new 

hypothesis testing procedure in the condition of known L. Finally, we give a practical example and the Monte Carlo simulation 

study to illustrate the use of the testing procedure under given significance level. 

Keywords: Exponentiated Frechet Distribution, Progressive First-Failure Censored Samples, Lifetime Performance Index, 
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1. Introduction

Statistical distributions are very useful in identifying and 

predicting real world phenomena. One of them is the extreme 

value distribution. It has been extensively used to model 

natural phenomena, modeling lifetimes and also in material 

strengths. The Frechet distribution is one of three kinds of 

general extreme value distribution, known as the extreme 

value distribution of type II. It was first developed and applied 

to the flood flows by Frechet [1]. It is widely used in many 

disciplines such as earthquake engineering, floods, rain fall, 

queues in supermarkets, sea currents, wind speeds and track 

race records, see Kotz and Nadarajah [2]. 

In recent years, several standard life time distributions have 

been generalized via exponentiation. Examples of such 

exponentiated distributions are the exponentiated Weibull 

family, the exponentiated exponential, the exponentiated 

Rayleigh, the exponentiated Gumbel and the exponentiated 

Pareto family of distributions. Nadarajah and Kotz [3] 

introduced a new lifetime model named the Exponentiated 

Frechet distribution (EF). It is a generalization of the standard 

Frechet distribution. The EF distribution is referred to in the 

literature as the inverse of exponentiated Weibull distribution. 

In this article, we focus on a two-parameter exponentiated 

Frechet (EF) distribution. For a full discussion and some of its 

mathematical properties, see Nadarajah and Kotz [3]. The 

probability density function (PDF), cumulative distribution 

function (CDF) of a random variable X  having two 

parameter EF distribution are respectively given by 

( 1) 1
( ) (1 ) , 0

x xf x x e e x
α αα θθα

− −− + − − −= − > ,   (1) 

and 

,   (2) 

where and are shape parameters. In this paper, a 

distribution will be denoted by EF ( ). 

Before a new product is launched to the market, life tests are 

( ) 1 (1 ) , 0,  , 0xF x e x
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often required to assess its reliability. In life testing 

experiments, the experimenter may not always be in a position 

to observe the life times of all the products or items put on test. 

This may be because of time limitation or other restrictions 

such as money, material resources, mechanical or 

experimental difficulties on data collection. Therefore, the 

need for censoring has thus arisen and the censored samples 

are thus obtained. There exist various types of censored 

samples including Type-II and progressive Type-II, 

progressive first-failure censored samples. Among the 

different censoring schemes, the progressive Type-II 

censoring scheme has most widely been used particularly in 

reliability analysis and survival analysis. It is preferred to 

traditional Type-II censoring scheme. Progressive censoring is 

useful in both industrial life testing applications and clinical 

settings; it allows the removal of surviving experimental units 

before the termination of the test. It is seen by many 

experimenters as an efficient way of reducing costs due to 

total time on test, or due to failing units. It is also used widely 

due to its flexibility in experimental design, and the fact that it 

contains the usual order statistics and Type-II right censoring 

as special cases. There has been a considerable discussion on 

progressive censoring and its applications in the literature; see 

Balakrishnan and Aggarwala [4] and Balakrishnan [5]. 

In some cases, the lifetime of products is quite long and so 

the experimental time of the Type-II censoring scheme can 

still be too long. In order to give an efficient experiment, the 

other test methods are proposed by statisticians where one of 

them is the first-failure censoring scheme, introduced in 

Johnson [6]. In this censoring scheme, nm×  items are 

divided to m  equal groups. Then, the life test is conducted 

by testing each of these groups simultaneously and terminated 

when the first failure is observed in each groups. The 

first-failure-censored sampling plan has an advantage in terms 

of shorter test time and a saving of resources. But, it does not 

allow for sets to be removed from the test at the points other 

than the final termination point. Hence Wu and Kus [7] 

combined the first-failure censored scheme and progressively 

type II right censored scheme in order to propose a new life 

test plan called the progressive first-failure censoring scheme 

which is more efficient in lifetime studies. Therefore, the new 

scheme has an advantage in terms of shorter test time, a saving 

of resources, and in which a specific fraction of individuals at 

risk may be removed from the experiment at each of several 

ordered failure times. The progressive first-failure-censored 

sampling plan is illustrated as follows: 

Suppose that  is the number of failures observed 

before termination and  independent groups with  

items within each group are put in a life test.  groups and 

the group in which the first failure is observed are randomly 

removed from the test as soon as the first failure say  has 

occurred,  groups and the group in which the second 

failure is observed are randomly removed from the test as 

soon as the first failure say  has occurred, and finally 

 groups and the group in which the  th 

failure is observed are randomly removed from the test as 

soon as the  th failure say  has occurred. Then 

 are called the progressive 

first-failure-censored order statistics with censoring scheme

, where . The familiar 

complete, type II right censored, first-failure-censored, and 

progressively type II right censored samples are special cases 

of the progressive first-failure-censored sampling plan. If 

, then the progressive first- failure- 

censored sampling plan reduces to the first-failure-censored 

sampling plan. If , then the progressive first- failure 

censored sampling plan reduces to the progressively type II 

right censored sampling plan. If  and 

( ) then, the progressive 

first-failure-censored sampling plan reduces to the complete 

sampling plan. Also, if ,  and 

 then the progressive first-failure-censored 

sampling plan reduces to type II right censored sampling plan. 

For more details see Wu and Kus [7]. 

If the failure times of the  items originally in the 

test are from a continuous population with distribution 

function  and probability density function , the 

joint probability density function for 

is given by 
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Statistical inferences on the parameters of failure time 

distributions under progressive first-failure censoring have 

been studied by several authors such as Wu and Huang [8] and 

Soliman et al. [9]. 

In the manufacturing industry, process capability indices 

are utilized to assess whether product quality meets the 

required level. For instance, Montgomery [10] or Kane [11] 

proposed the process capability index LC  for evaluating the 

lifetime performance of electronic components, where L  is 

the lower specification limit, since the lifetime of electronic 

components exhibits the larger the better quality characteristic 

of time orientation. In recent years, there have been many 

works on the statistical inference for 
LC  based on some 

different samples from different Statistical distributions. For 

instance, Tong et al. [12] constructed the uniformly minimum 

variance unbiased estimator (UMVUE) of 
LC  and proposed 

a hypothesis testing procedure for the complete sample from a 

one-parameter exponential distribution. For a type II right 

censored sample with a two-parameter exponential 

distribution, Wu et al. [13] provided the maximum-likelihood 

estimator of 
LC  and utilized this estimator to construct a 

m
n k
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hypothesis testing procedure. Lee et al. [14] also proposed a 

hypothesis testing procedure based on a MLE of 
LC  to 

evaluate product quality for exponential distribution under the 

progressively type II right censored sample. Based on 

progressively first-failure censored sample coming from the 

Weibull distribution with a known shape parameter Ahmadi et 

al. [15] obtained the statistical inference for 
LC  and 

developed a hypothesis testing procedure. Lee et al. [16] 

constructed MLE and Bayesian estimator of 
LC  under 

assuming the conjugate prior distribution and SE loss function, 

LINEX loss function, and GE loss function based on the upper 

record values from the Rayleigh distribution. Also, Ahmadi et 

al. [17] have discussed the Bayesian and non-Bayesian 

procedures for the estimation of the lifetime performance 

index based on generalized order statistics from exponential 

distribution. 

In this paper, we assume that the lifetimes of products 

follow two-parameter EF distribution and develop statistical 

inference for the unknown lifetime performance index LC  

based on progressive first-failure-censored. The rest of the 

paper is organized as follows. In Section 2, some properties of 

the lifetime performance index LC  under the EF distribution 

and its relationship with the conforming rate rP  are 

presented. In Sections 3, 4 and 5 we consider the problems of 

estimating and hypotheses testing on the 
LC based on a 

progressive first-failure-censored sample via the ML and 

Bayesian approaches. Two illustrative examples and Monte 

Carlo simulation study are given in Section 6 to assess the 

behavior of the lifetime performance index
LC . Finally, 

concluding remarks are given in Section 7.  

2. The Lifetime Performance Index and 

the Conforming Rate 

Suppose that the lifetime  of products has the 

two-parameter EF distribution with the PDF and CDF, given 

respectively by (1) and (2). Using the transformation

, the distribution of  is a 

exponential distribution with the PDF and CDF as  

,   (4) 

and 

.   (5) 

And the failure rate function  is defined by 

             (6) 

The data transformation , for 

X > 0, is one-to-one and strictly increasing, so data set of X 

and transformed data set of Y have the same effect in assessing 

the lifetime performance of products. 

Let  be the lower specification limit for the lifetime of 

products. Montgomery [10] developed a capability index 

 as follows: 

               (7) 

where µ  denotes the process mean and σ  represents the 

process standard deviation. This lifetime performance index 

can be used to assess the performance of the lifetime of 

products. The mean and standard deviation of the new lifetime 

of products are given by ( ) 1
E yµ

θ
= =  and ( )2

2

1
Var yσ

θ
= = . 

Hence the capability index 
LC  can be reduced as 

1

1
1L

L
C L,θ θ

θ

−
= = −                 (8) 

we can see that the index  when  and 

 when . We can also see that the 

smaller the failure rate , the larger is the lifetime 

performance index . Therefore, the lifetime performance 

index  can accurately assess the lifetime performance of 

products. If the new lifetime of a product exceeds the lower 

specification limit (i.e.  ), then the product is labelled 

as a conforming product. Otherwise, the product is labelled 

as a non-conforming product. The conforming rate can be 

defined as 

  (9) 

Apparently, there is a strictly increasing relationship 

existing between conforming rat and the lifetime 

performance index . The values of  and the 

corresponding conforming rates  are listed in Table 1. 

3. Maximum Likelihood Estimation of 

LC  

Let  be the progressive 

first-failure censored sample from the two parameter EF 

distribution with PDF and CDF  and , 

respectively. Substituting from (1) and (2) into (3), the 

likelihood function is given by 

( )
( 1) 1

1

1

( , | ) e 1 e
i

i i

k Rm
X xm m m

x i
i

L x Ck x
α α

θ
αα θ θ α

− −
+ −

− −− −

=

= −∏ .  (10) 

The log-likelihood function can be obtained from (10) as  

.  (11) 

X
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Consequently, likelihood equations of  and θ  are 

obtained as 

   (12) 

and 

. (13) 

It follows, from Equation (13), that 

( )ˆ

1

ˆ

( 1) ln 1 e
ML

i
ML

xm
i i

m

k R
αθ

−
=

= −
+ −∑

.      (14) 

And ˆ
M L

α  is the solution of 

  (15) 

We can use iterative techniques such as a Newton- 

Raphson type algorithm to obtain the estimate ˆ
M L

α , once we 

obtain ˆ
M L

α , the maximum likelihood estimators of θ  ( ˆ
M Lθ ) 

can be obtained from (14). The initial values for the 

parameters are important but are not hard to obtain by using 

graphical techniques, see Balakrishnan and Kateri (2008). 

By using the transformation , 

we assume that  is known which can be obtained by using 

the graphical method or by using ML method.  

will be the corresponding 

progressive first-failure censored sample from the one- 

parameter exponential distribution with PDF (4) and 

censoring scheme . Substituting from (4) 

and (5) into (3), the likelihood function is then given by 

    (16) 

The log-likelihood function of  is obtained from (16) as  

        (17) 

To find the value of  that maximizes (17), we 

differentiate (17) with respect to  and set the resulting 

equation to zero. Therefore the MLE of θ  is 

                     (18) 

By the invariance property of the ML estimators, the ML 

estimator for  is obtained from Equation (8) as 

                (19) 

It can be notice that  follows the chi-square 

distribution with  degrees of freedom, denoted by , 

see for instance Ahsanullah [18] and Ahmadi et al. [15]. 

4. Bayes Estimation of CL  

Based on such a progressive first-failure censored sample, 

in this section we apply the Bayesian approach to compute 

estimates for and . In lifetime data analysis, such 

prior knowledge is usually summarized into a prior density, 

denoted by . For the Exp ( ) distribution, a natural 

conjugate prior density for  is the gamma prior density, 

i.e. 

Table 1. The lifetime performance index LC  v.s. the conforming rate rP . 

LC
  rP

 LC
 rP

  LC
 rP

 LC
 rP

 

-∞ 0.00000 -3.00 0.01832 0.15 0.42741 0.60 0.67032 

-9.00 0.00004 -2.50 0.03019 0.20 0.44933 0.65 0.70469 

-8.00 0.00012 -2.00 0.04979 0.25 0.47237 0.70 0.74082 

-7.00 0.00033 -1.50 0.08208 0.30 0.49659 0.75 0.77880 

-6.00 0.00091 -1.00 0.13534 0.35 0.52205 0.80 0.81873 

-5.00 0.00248 -0.50 0.22313 0.40 0.54881 0.85 0.86071 

-4.50 0.00409 0.00 0.36788 0.45 0.57695 0.90 0.90484 

-4.00 0.00673 0.05 0.38674 0.50 0.60653 0.95 0.95123 

-3.50 0.01111 0.10 0.40657 0.55 0.63763 1.00 1.0000 

   (20) 

where the hyperparameters � and � are chosen to reflect 

prior knowledge about the unknown parameter .  

An easy way for choosing the � and � is to consider the 

mean and the variance of the prior distribution of the lifetime 

performance index . Let  and , 

where  and . Hence 

 and  

A joint density function of the data Y and can be 

obtained by combining the likelihood function in (16) and the 

prior density (20) as below. 

     (21) 

Bayesian inference is based on the posterior distribution 

α
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which is simply the ratio of the joint density function to the 

marginal distribution function. Hence, the posterior density 

function of given the data is 

    (22) 

that is,  gamma  . 

Lemma1: It can be notice that If 

 then follows the 

chi-square distribution with  degrees of freedom, 

denoted by ��(�	
)
� . 

Proof: 

Let  and by using the change of variables 

(see [Casella and Berger [19], pp. 184--185]), we obtain the 

PDF of  as 

  (23) 

So we have . The posterior density 

function of  given the data is 

  (24) 

The Bayes estimator shall be considered under loss 

function which is also essential in Bayesian estimations. One 

of loss functions is the squared error loss function (SEL) 

which is symmetrical in nature. This loss function gives 

equal weight to estimation errors that are the same regardless 

of whether the loss obtained has either overestimated or 

underestimated the parameter or the problem being 

investigated. It is well known that the Bayes estimator for the 

parameter under SEL loss function  is 

the mean of the posterior density. Then, under the SEL 

function, and by using (24) the Bayes estimate of , is 

given by 

 (25) 

5. Hypotheses Testing Procedure for the 
CL  

In this section, we construct a statistical testing procedure 

to assess whether the lifetime performance index reaches the 

required level. Let the required level be . The process is 

capable if the lifetime performance index is larger than . 

Then, the statistical hypothesis is set up as follows: 

�
: �� ≤ � (the process is not capable) vs. ��: �� > �  (the 

process is capable). Testing the above hypothesis with 

significance level �  is equivalently finding the 

 lower confidence bound for . 

5.1. Testing Procedure for the  Based on MLE 

By using , the MLE of  as the test statistic, 

given the specified significance level �, the level ( ) 

one-sided confidence interval for  can be derived as 

follows. 

By using the pivotal quantity , and 

 which represents the lower  

percentile of , we obtain 

 

(26) 
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for  can be derived  
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      (27) 

If the performance index value,  it is 

concluded that the lifetime performance index of the product 

meets the required level. 

5.2. Testing Procedure for the 
LC  Based on Bayes Estimate 

By using , the Bayes estimate of  as the test 

statistic, the level (1 − �) one-sided confidence interval for 

 can be derived as follows. From Lemma 1 and Eq. (23), 

we have 
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Then, 

( ) 2ˆ1 1 1 .
2( )

L LB
c

P C C
a m

γ
  ≥ − − = −  +  

   (29) 

Where  is the function 

which represents the lower 100(1 − �) the percentile of 

��(�	
)
� . 

Therefore, the level 100(1 − �)% lower credible bound 

for  can be derived 

       (30) 

In the Bayesian approach, the managers can then employ 

the confidence interval to determine whether the business 

performance adheres to the required level. The proposed 

testing procedure about  can be organized as follows: 

Step 1: Let the data transformation                      

  for progressive first- failure 

censored sample. 

Step 2: Determine the lower lifetime limit for products 

and performance index value , then the testing null 

hypothesis  and the alternative hypothesis

 is constructed. 

Step 3: Specify a significance level	�. 

Step 4: Calculate the level  one- sided credible 

interval  for , using (30)  

Step 5: The decision rule of statistical test is provided as 

follows: If the performance index value , it is 

concluded that the lifetime performance index of the 

Product meets the required level. 

6. Numerical Computations 

Modern statistical problems require a mix of theoretical and 

application techniques for implementing and understanding 

statistical inferential methods. Previous sections dealt with the 

analytical technique and this section focuses on the numerical 

one through real and simulated examples. Also; we perform 

extensive Monte Carlo simulations to compare the 

performance of the different estimators, mainly with respect to 

their mean-squared errors (MSEs) for different sample sizes 

and for different parameter values. 

6.1. Illustrative Examples 

Wingo data (Real data): In this example, a complete sample 

from a clinical trial describe a relief time (in hours) for 50 

arthritic patients given by Wingo [20] and used recently by 

Wu et al. [21] is selected. The data are given in Table 2. We 

have computed the Kolmogorov-Smirnov (KS) distance 

between the empirical and the fitted distribution functions. It 

is 0.11 and the associated p- value is 0.53. Since the p- value is 

quite high, we cannot reject the null hypothesis that the data is 

coming from the EF distribution. Also, we plot both the 

empirical survival function (ESF) and the estimated survival 

functions in Fig.1 and we found that the EF fits the data very 

well. 

Table 2. Relief time (in hours) for 50 arthritic patients. 

0.70 0.84 0.58 0.50 0.55 0.82 0.59 0.71 0.72 0.61 

0.62 0.49 0.54 0.36 0.36 0.71 0.35 0.64 0.84 0.55 

0.59 0.29 0.75 0.46 0.46 0.60 0.60 0.36 0.52 0.68 

0.80 0.55 0.84 0.34 0.34 0.70 0.49 0.56 0.71 0.61 

0.57 0.73 0.75 0.44 0.44 0.81 0.80 0.87 0.29 0.50 

 
Fig 1. Empirical (bold line) and the estimated. (dotted lines) survival 
functions for [22]. 

Table 3. Original and transformed progressive first-failure samples for Wingo [21] data-set. 

i  1 2 3 4 5 6 7 8 

, ,ix m n  0.29 0.35 0.44 0.44 0.46 0.49 0.49 0.50 

, ,iy m n  0.001 0.004 0.023 0.023 0.030 0.043 0.043 0.047 

i  9 10 11 12 13 14 15  

, ,ix m n  0.52 0.55 0.55 0.59 0.61 0.64 0.80  

, ,iy m n  0.058 0.075 0.075 0.100 0.114 0.136 0.272  

 

To illustrate the computation of the method proposed in 

previous sections, a progressive first-failure censoring scheme 

was conducted with , and censoring 

scheme , is generated from the 

original data. The observed and transformed data using the 

transformation ( )( )ˆ
: : : :ln 1 exp ,i m n i m nY X −= − − − α  are presented in 

2 C H IIN V (1 , 2( ))c m aγ= − +

CL

( ) 2ˆ1 1 .
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B LB
c

LB C
a m

 
= − −  + 
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0 : LH C c≤

1 : LH C c>
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a m
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= − −  + 

[ , )Bc LB∉ ∞

2, 25 , 15k n m= = =

1 1 0 , 0 , 2 , . . .iR R i m= = =
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Table 3, where  is the estimate value of �, which 

can be obtained by using the graphical method introduced by 

Balakrishnan and Kateri [22]. 

From (18), the MLE of the unknown parameter θ  is 

7.1537. Hence, using (19), the MLE of  is 0.8999. The 

lower lifetime limit  is assumed to be 0.01399, i.e. if the 

lifetime (in hours) of relief for arthritic patients exceeds 

0.4078 , then a relief time for arthritic patients is defined as a 

conforming product. To deal with the product purchasers' 

concerns regarding operational performance, the conforming 

rate  of products is required to exceed . Referring to 

Table 1, the  value is required to exceed . Thus, the 

performance index value is set at . The testing 

hypothesis:  

 vs.  is constructed. 

From (23) the level  lower confidence bound 

for  is We observed the 

performance index value , hence the 

null hypothesis . is rejected. Thus one can 

conclude that the lifetime of relief for arthritic patients does 

meet the required level.  

By using gamma prior given by (20) with hyperparameters 

are , using (25) the Bayes estimate of  is 

0.9232. From (30), with significance level , the 

95% lower confidence bound for  is 

 

Because of the performance index value

, we reject the null hypothesis

. Hence, we can also conclude that the 

lifetime of relief for arthritic patients does meet the required 

level for the Bayesian approach. 

Example 2. (Simulated Data): For given  and 

, a progressive first-failure-censored sample was 

generated from EF distribution (1). By taken 
2 5 , 1 5 , 2 ,n m k= = =  0, 1, 2, ... ,iR i m= =  8i ,≠  and 

8 10R = . And by using the following transformation:  

 

The observed and the transformed data are listed in Table 4. 

Here; the lower lifetime limit  is assumed to be 0.06667. 

The conforming rate  of operational performances is 

required to exceed 80%. Referring to Table 1, the  

value will exceed 0.80. Thus, the performance index value is 

set at . Based on the generated progressive first 

failure censored sample , using (18) the 

MLE of the unknown parameter θ is computed to be 1.5356 

and from (19) . Then the 95% lower 

confidence bound ( ) for  is . Because 

of the performance index value , 

the null hypothesis �
: �� ≤ 0.80 is rejected. Thus one can 

conclude that the lifetime performance index of the product 

does meet the required level. 

For Bayesian computation it is assumed that the prior 

distribution of θ has gamma distribution given by Eq. (20) 

with � = 2 and � = 2. With , using (25) the 

Bayes estimate of  is 0.9037. From (30), with 

significance level , the  lower confidence 

bound ( ) for  is 0.8623. Also, since

, the null hypothesis �
: ��! ≤ 0.80 is 

rejected. Thus, we can conclude that the lifetime performance 

index of the product meets the required level. 

6.2. The Monte Carlo Simulation Study 

In this subsection, we report the obtained results of a 

simulation study, which was carried out by software 

Mathematica Version 8, to compare the performances of the 

MLEs and Bayes estimates based on the progressive 

first-failure censored schemes. This simulation has done by 

different values of " (number of groups), different effective 

sample sizes , different number of items in each group , 

and by choosing  and  in all the 

cases. We have used four progressive censoring schemes as: 

Scheme 1:  for   

Scheme 2:  for   

And 

Scheme 3:  for   

To generate progressively first-failure censored samples 

from Exponentiated Frechet (EF) distribution, we used the 

algorithm proposed by Balakrishnan and Aggarwala [5], with 

the fact that, the progressive first-failure censored sample 

with distribution function 

, can be viewed as a progressive type II censored 

sample from a population with distribution function 

 . For each case the ML and Bayes estimates 

of lifetime performance index  are computed based on 

1000 replications. We evaluated Bayesian estimates under the 

assumption that hyperparameters take values as: (  )

(1,1), (2,2) and (4,4). With , the average means 

(first entry), mean squared errors (MSEs) (second entry) and 

the coverage probabilities (third entry) of  for some 

selected choices of ,  and , are reported in Tables 

5 and 6. It is observed that as  (sample size) and  

(effective sample size) increases the performances become 

better in terms of MSEs in all cases considered. From Tables 

5 and 6 we can see that the Bayes estimates are better than 

their corresponding maximum likelihood estimates for the 

considered cases. Moreover, it is observed that the coverage 

probabilities of one-sided credible interval and one-sided 

confidence interval for lifetime performance index  

close to the desired level of . Also the censoring 

scheme is most efficient for all choices; 

it usually provides the smallest MSE for all estimators. 
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Table 4. The generated progressive first-failure censored sample for Example 2. 

i  1 2 3 4 5 6 7 8 

, ,ix m n  0.4059 0.4725  0.5354  0.5731 0.6215 0.6453 0.6574 0.6636 

, ,iy m n  0.0135 0.0350 0.0660 0.0889 0.1224 0.1403 0.1497 0.1546 

i  9 10 11 12 13 14 15  

, ,ix m n  0.6749 0.7603 0.7636 0.7853 0.9151 0.9875 1.4276  

, ,iy m n  0.1636 0.2362 0.2392 0.2585 0.3786 0.4468 0.8445  

Table 5. Average mean, the corresponding MSEs and coverage probabilities of LC , with 2k = . 

n m Scheme MLE Bayes MLE Bayes MLE Bayes 

    a=b=2  a=b=1  a=b=4 

25 15 0(10,14 )  0.9839 0.9851 0.9839 0.9846 0.9838 0.9859 

   0.1867 0.0975 0.2124 0.1448 0.2065 0.0735 

   (0.949) (0.935) (0.954) (0.945) (0.957) (0.922) 

  0 0(7 ,10,7 )  0.9841 0.9853 0.9839 0.9846 0.9837 0.9858 

   0.2011 0.1064 0.2250 0.1497 0.2264 0.0771 

   (0.952) (0.938) (0.946) (0.942) (0.946) (0.926) 

  0(14 ,10)  0.9838 0.9851 0.9839 0.9846 0.9836 0.9858 

   0.2190 0.1090 0.2210 0.1490 0.2296 0.0774 

   (0.955) (0.943) (0.953) (0.951) (0.947) (0.922) 

35 25 0(10,24 )  0.9844 0.9851 0.9844 0.9848 0.9845 0.9857 

   0.0952 0.0653 0.1068 0.0867 0.1075 0.0599 

   (0.962) (0.947) (0.957) (0.951) (0.943) (0.912) 

  0 0(12 ,10,12 )  0.9843 0.9850 0.9842 0.9846 0.9845 0.9857 

   0.1257 0.0838 0.1146 0.0913 0.1110 0.0606 

   (0.938) (0.926) (0.966) (0.963) (0.95) (0.918) 

  0
(24 ,10)  0.9844 0.9851 0.9844 0.9848 0.9841 0.9854 

   0.1053 0.0720 0.1083 0.0877 0.1291 0.0637 

   (0.946) (0.935) (0.953) (0.948) (0.959) (0.924) 

45 35 0
(10,34 )  0.9847 0.9851 0.9847 0.9850 0.9846 0.9855 

   0.0635 0.0491 0.0692 0.0605 0.0737 0.0475 

   (0.96) (0.951) (0.943) (0.934) (0.956) (0.926) 

  0 0(17 ,10,17 )  0.9846 0.9851 0.9845 0.9847 0.9846 0.9854 

   0.0701 0.0540 0.0743 0.0637 0.0754 0.0478 

   (0.951) (0.935) (0.957) (0.952) (0.953) (0.926) 

  0(34 ,10)  0.9846 0.9851 0.9845 0.9847 0.9845 0.9854 

   0.0721 0.0555 0.0779 0.0668 0.0755 0.0471 

   (0.951) (0.933) (0.953) (0.945) (0.955) (0.920) 

Note: Corresponding to each scheme, the first figure represents the average estimates, with the corresponding MSEs reported below it in parentheses and 

multiply by 41 0 −  
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Table 6. Average mean, the corresponding MSEs and coverage probabilities of LC  , with 4k =  . 

n m Scheme MLE Bayes MLE Bayes MLE Bayes 

    a=b=2  a=b=1  a=b=4 

25 15 0(10,14 )  0.9838 0.9851 0.9838 0.9845 0.9839 0.9859 

   0.2100 0.1070 0.2000 0.1390 0.1978 0.0732 

   (0.951) (0.941) (0.955) (0.949) (0.953) (0.929) 

  0 0(7 ,10,7 )  0.9837 0.9850 0.9838 0.9846 0.9838 0.9859 

   0.2260 0.1100 0.2380 0.1600 0.2200 0.0789 

   (0.956) (0.949) (0.949) (0.941) (0.947) (0.922) 

  0(14 ,10)  0.9835 0.9849 0.9838 0.9845 0.9841 0.986 

   0.2400 0.1180 0.2200 0.1500 0.2040 0.0781 

   (0.956) (0.943) (0.956) (0.947) (0.947) (0.921) 

35 25 0(10,24 )  0.9842 0.9849 0.9845 0.9848 0.9843 0.9855 

   0.1100 0.0732 0.0957 0.0781 0.1080 0.0574 

   (0.956) (0.948) (0.956) (0.950) (0.960) (0.928) 

  0 0(12 ,10,12 )  0.9842 0.985 0.9844 0.9848 0.9843 0.9855 

   0.1140 0.0753 0.1066 0.0861 0.1160 0.0610 

   (0.962) (0.952) (0.955) (0.949) (0.945) (0.928) 

  0
(24 ,10)  0.9844 0.9851 0.9843 0.9847 0.9844 0.9856 

   0.1200 0.0820 0.1100 0.0900 0.1158 0.0620 

   (0.943) (0.932) (0.949) (0.947) (0.950) (0.923) 

45 35 0(10,34 )  0.9846 0.985 0.9845 0.9848 0.9846 0.9855 

   0.0707 0.0540 0.0760 0.0655 0.0724 0.0466 

   (0.941) (0.928) (0.948) (0.945) (0.945) (0.922) 

  0 0(17 ,10,17 )  0.9846 0.9851 0.9846 0.9848 0.9845 0.9854 

   0.0711 0.0544 0.076 0.0658 0.0788 0.0497 

   (0.947) (0.933) (0.939) (0.930) (0.948) (0.922) 

  0(34 ,10)  0.9845 0.9850 0.9845 0.9847 0.9846 0.9855 

   0.0730 0.0557 0.0800 0.0690 0.0734 0.0475 

   (0.946) (0.935) (0.949) (0.945) (0.947) (0.925) 

Note: Corresponding to each scheme, the first figure represents the average estimates, with the corresponding MSEs reported below it in parentheses and multiply 

by 41 0 −  

7. Conclusions 

In this paper, adopting Bayesian and non-Bayesian 

approaches, various estimators for  were derived based 

on progressive first-failure censoring samples arising from 

the EF distribution. A ML procedure at level  and a 

Bayesian rule for testing the null hypothesis against the 

alternative  were provided. Also, various 

 confidence and credible intervals for  

using Bayesian and non-Bayesian approaches were 

constructed. 
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