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Abstract: In this paper, we established the number of factors (k) to retain in a factor analysis for different sample sizes 

for the method of maximum likelihood estimation using StataSE 9 package. Using simulated values, the Akaike (AIC), the 

Schwarz (SIC) and Hannan Quinne (HQIC)  Information criteria values are obtained for samples of 30, 50, and 70 when 

the number of variables considered is 10 and the number of factors to retain are 2,3, and 5. It was discovered that the AIC, 

SIC and HQIC values are smallest when k is 5 and highest when k is 2. This implies that the optimal number of factors to 

retain is 5. Also, as the sample size increases, the AIC, SIC and HQIC for all the k values increases.

Keywords: Factor Analysis, Factor Rotation, Maximum Likelihood Estimation Method, Akaike, Schwarz, 

Hannan Quinne Information Criteria

1. Introduction 

Factor analysis attempts to simplify complex and diverse 

relationships that exist among a set of observed variables 

by uncovering common dimensions or factors that link 

together the seemingly unrelated variables and 

consequently provides insight into the underlying structure 

of the data. The goal of factor analysis is to reduce a large 

number of variables to a smaller number of factors, to 

concisely describe the relationship among observed 

variables or to test theory about underlying processes 

(Comrey and Lee; 1992). 

Factor analysis can be viewed as an extension of 

principal components analysis. Both are attempts to 

approximate the covariance matrix, 

components analysis and factor-analytic model often yield 

solutions that are very similar. For this reason, many authors 

treat principal components analysis as just another many 

authors type of factor analysis. Under the factor model, 

each response variates will be represented as a linear 

function of  a small number of unobservable common

factor variates and a single latent specific variates. The 

common factors generate the covariances among the 

observable responses, while the specific terms contribute 

only to the variances of their particular responses.
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complex and diverse 

relationships that exist among a set of observed variables 

by uncovering common dimensions or factors that link 

together the seemingly unrelated variables and 

consequently provides insight into the underlying structure 

goal of factor analysis is to reduce a large 

number of variables to a smaller number of factors, to 

concisely describe the relationship among observed 

variables or to test theory about underlying processes 

wed as an extension of 

principal components analysis. Both are attempts to 

approximate the covariance matrix,  principal 

analytic model often yield 

. For this reason, many authors 

reat principal components analysis as just another many 

authors type of factor analysis. Under the factor model, 

each response variates will be represented as a linear 

function of  a small number of unobservable common-

pecific variates. The 

common factors generate the covariances among the 

observable responses, while the specific terms contribute 

only to the variances of their particular responses. 

1.1. The Mathematical Model for 

Suppose that the multiva

responses described by the observable random variables 

X1,…Xp. The Xi have a non

distribution. Since only the covariance structure will be of 

interest, we can assume without loss of generality that the 

population means of Xi  are zero (Onyegu;2003).

Let, 

Y� � µ� �  ���X� 	
Y
 � µ
 �  �
�X� 	

where, X� � j-th common-factor variates��� � parameter reflecting importance of the j

composition of ith response 

 ith specific factor variates.

In the usage of factor analysts, 

of the ith response on the jth common factor.

For matrix version of the model;

Let, 

X′ � 
x�, x�, … , x��,    
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el for Factor Structure 

ultivariate system consists of p 

responses described by the observable random variables 

The Xi have a non-singular multinormal 

distribution. Since only the covariance structure will be of 

interest, we can assume without loss of generality that the 

are zero (Onyegu;2003). 

	 � 	 ���X� 	  ��  
∶ 

	 � 	 �
�X� 	  �
 

factor variates 

parameter reflecting importance of the j-th factor in 

 

ith specific factor variates. 

In the usage of factor analysts,  is called the loading 

of the ith response on the jth common factor. 

sion of the model; 

,    y′ � 
y�, y�, … , y
� 
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ε′ � 
ε�, ε�, … , ε
�,    µ′ � 
µ
and       Λ � ���� . . ���: : :�
� . . �
��. 

Then, the factor model can be written as��� � µ� �  Λ X� 	 ε�, i � 1, … , q.  
Where q is the number of observations.  

observed  vector with p components with mean 

Λ is a &x'   matrix called the factor loadings. 

observed vector with q components, q < p 

of which are called common factors and 

unobserved error with mean  0

)��
specific factor.  X�  is assumed to follow a normal 

distribution with E
X�� �   O
,)��,  Var
X�� �  E/X�X′
the orthogonal case. 

Then, Y�/X�  follows 1 2μ� 	 ΛX�, Cov
Cov
ε�� �  ψ

� � 6789 �ψ��, … , ψ
� . 
ψ

� 7: called uniqueness or specific variance.
Consequently, a covariance structure for Y is

Σ � Cov
Y�� � E/<� � µ�=/<� � µ�=′  

� E
Λ X� 	 ε��
Λ X� 	 ε��′ � E/Λ X�Xε�X′� Λ′ 	 Λ X�ε′� 	 ε�ε′� =          � E/E/ε�X′� Λ′ = 	 E/Λ X�ε′� = 	 E/ε�ε′� = E
X�� �   0
,)��,E/X�X′� = � I
,),�, Cov ψ�, 

Then,  E/Λ X�X′� Λ′ = 	 E/ε�X′� Λ′ = 	E/ε�ε′� = � ΛΛ′ 	 ψ�, and 

Cov
<�, X�� � E/<� � µ�=X′� �  E
Λ X�
Introducing communality,  Cov
Y�� �
written as 

A8B/<CD= � Λ�D� 	  … 	 ΛED� 	 ΨD�;  GHI Λ�DΛ�J 	 … 	 ΛEDΛEJ and 

GHI/<CJ , KDJ= � ΛDJ . 

Communality is the portion of the variance of the

variable contributed by the q common factors.

Suppose the  jth  communality is  hD�, 
Var/<��= � M�� � communality 	  speciVich�� 	 ψ� � /λ��� 	 λ��� 	 � 	 λ,�� = 	 ψ�, j = 1,…, p.

The j-th communality is the sum of square of the 

of the jth variable on the q common factor. When the 

number of factors q >1, there are multiple factor loadings 

that generate the same covariance matrix.

The loading in the model above can be multiply by an 

:  Method of Maximum Likelihood Estimation of Optimal Number of Factors: 

An Information Criteria Approach 

µ�, µ� , … , µ
�, 

written as 

 

Where q is the number of observations.   Y�   is an 

observed  vector with p components with mean  and  

matrix called the factor loadings.  X�  is an 

q < p , the components 

of which are called common factors and  is an 

 and is called the 

is assumed to follow a normal 

′� = � I
,),� , that is 

Cov
ε��X , where 

  

called uniqueness or specific variance. 
Consequently, a covariance structure for Y is 

 

X′� Λ′ 	/Λ X�X′� Λ′ = 	= Recall that, Cov
ε�� � E/ε�ε′� = �
= 	 E/Λ X�ε′� = 	

	 ε��X′� . 

ΛΛ′ 	 ψ�  can be 

GHI/<CD , <CJ= �

Communality is the portion of the variance of the 

variable contributed by the q common factors. 

 then 

speciVic variance �
j = 1,…, p. 

th communality is the sum of square of the loading 

of the jth variable on the q common factor. When the 

number of factors q >1, there are multiple factor loadings 

that generate the same covariance matrix. 

The loading in the model above can be multiply by an 

orthogonal matrix without impairing their

reproduce the covariance matrix in 

Let  be any qxq orthogonal matrix. If we let 

and  X�Y � Z′X�, then X�Y has the same statistical properties 

as  X� since 

E
X�Y� � [
Z′ X�� � Z′ [

GHI
X�Y� � GHI
Z′ X�� � Z

 and Λ′  yield the same covariance because 

ΛYΛY
′.  The factor model �<� � µ� �  ΛX� 	 ε� �  Λ

produces the same covariance matrix 

ΛΛ′ 	 ψ� �  ΛZZ′ Λ 	 ψ�
A particular set of loadings needs to be chosen. A good 

set is one that is easily interpreted. This means sparse 

solution with many zero. Factor rotation i

finding the solution, as it rotates the coordinates system for 

Y on X . 

In this work, we consider four kinds of orthogonal factor 

rotations namely, varimas, equmax, quartimax and 

orthomax. 

2. The Maximum Likelihood Met

If the distribution of   and the specific factors, 

assumed to be normal, the estimates of the factor loadings 

and the uniqueness can be obtained using the maximum 

likelihood method (Johnson and Winchern, 2007). The 

distribution of Y given Λ, ψ
covariance matrix ΛΛ′ 	 ψ�

\
Λ, ψ�� ] det
Σ�_à e_ba ∑
The resulting log likelihood (LL) is

\\
Λ, Ψ� ] � d� In det
Σ� � ��µ��′  

The maximum likelihood estimates of  Λe 8f6 ψg�
)  can be obtained by maximizing the  LL. It can 

be shown that the estimates Λh
iψh�Λh �  Λh �I 	

ψg� � diag
S � ΛhΛh ′ �, Λh ′
Based on the invariance property of maximum likelihood 

estimates, the maximum likelihood estimate of the 

communality due to j-th factor is  

As a result, the proportion of the total sample variance 

due the j-th factor is  
lh1j

2 mlh2j
2 m�n11mn22m�

entry of the sample covariance matrix which is an 

estimated of the unknown population covariance  matrix, 
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orthogonal matrix without impairing their ability to 

reproduce the covariance matrix in Σ � ΛΛ′ 	 ψ�. 
be any qxq orthogonal matrix. If we let ΛY � ΛZ  

has the same statistical properties 


X�� � 0. 
Z′ GHI
X��Z � Z′ Z � I�)� 

yield the same covariance because ΛΛ′ �
ΛZZ′ X� 	 ε�  � ΛYX�Y 	 ε� , 

produces the same covariance matrix  since Σ �� � ΛYΛY
′ 	 ψ�. 

A particular set of loadings needs to be chosen. A good 

set is one that is easily interpreted. This means sparse 

solution with many zero. Factor rotation is one approval to 

finding the solution, as it rotates the coordinates system for 

In this work, we consider four kinds of orthogonal factor 

rotations namely, varimas, equmax, quartimax and 

Maximum Likelihood Method 

and the specific factors,  are 

assumed to be normal, the estimates of the factor loadings 

and the uniqueness can be obtained using the maximum 

likelihood method (Johnson and Winchern, 2007). The 

ψ�  is normal with mean 0 and �, and the likelihood is 

∑ 
�C � µ��oCp� Σ_� /�C � µ�=′ . 

The resulting log likelihood (LL) is 

�� ∑ 
�C � µ��oCp� Σ_� /�C �
The maximum likelihood estimates of Λ, ψ�  (called 

can be obtained by maximizing the  LL. It can 

Λh 8f6 ψg�
 satisfy the following; 

	 Λh′ 
ψh��_� Λh  . 
h 
ψg��_� Λh   is diagonal. 

Based on the invariance property of maximum likelihood 

estimates, the maximum likelihood estimate of the 

th factor is  �q��� 	 �q��� 	 � 	 �q,�� .. 

As a result, the proportion of the total sample variance �mlhqj
2

�mnrr, where  is the (i,i)-th 

entry of the sample covariance matrix which is an 

estimated of the unknown population covariance  matrix,   
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If  yi is standardized to be 

sC � V_ba/�C � tu=,

the covariance matrix q is given as 

v � V_ba Σ V_ba � �V_ba Λ    �V_ba Λ ′ΛwΛ′x 	 ψh�w , where V_ba  is the diagonal matrix with the 

reciprocal of the sample standard deviation on the main 

diagonal of   Based on the invariance property of 

maximum likelihood estimators, the maximum likelihood 

estimator of Q is 

v �  ΛhwΛh′x 	 ψh�w, where Λhw �  V_ba Λh
The proportion of  total standardized sample variance 

due to j-th factor is 

 ∑ lhyzar{|b}~
n� � lhbza mlhaza m�mlh�za
nbbmnaam�mnrr � lhbza mlhaza m�mlh�za

EΨh��� . 

2.1. Information Criteria 

The necessity of introducing the concept of model 

evaluation has been recognized as one of the i

technical areas and the problem is posed on the choice of 

the best approximating model among a class of competing 

models by a suitable model evaluation criterion given a 

data set. Model evaluation criteria are figures of merit, or 

performance measures for competing models. Factor 

analysis can be characterized as multivariate technique for 

analyzing the internal relationship among a set of variables. 

Based on the usual factor analysis model, choosing a model 

with too few parameters can involve makin

simple assumptions and lead to high bias, poor prediction, 

and missed opportunities for insight. Such models are not 

flexible enough to describe the sample or the population 

well. A model with too many parameters can fit the 

observed data very well, but be too closely tailored to it; 

such models may generalize poorly. Penalized

information criteria, such as Akaike’s information criterion 

(AIC), the Schwarz’s information criterion (SIC), the 

3. Comparison of AIC and SIC after Rotation at 

Different Retained Number of 

3.1. For  n=30, p =10 and k = 2 

3.1.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings

I II I 

-0.3702 -0.2308 -0.3577

-0.4130 0.2369 -0.4155

0.1917 0.9809 0.1811

0.9773 0.2086 0.9750

0.3106 -0.2791 0.3136
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=, 

	 V_ba ψh� V_ba �
is the diagonal matrix with the 

reciprocal of the sample standard deviation on the main 

Based on the invariance property of 

maximum likelihood estimators, the maximum likelihood 

Λh. 

total standardized sample variance 

h�z, whereiCC � �q��� 	

The necessity of introducing the concept of model 

evaluation has been recognized as one of the important 

technical areas and the problem is posed on the choice of 

the best approximating model among a class of competing 

models by a suitable model evaluation criterion given a 

data set. Model evaluation criteria are figures of merit, or 

ures for competing models. Factor 

analysis can be characterized as multivariate technique for 

analyzing the internal relationship among a set of variables. 

Based on the usual factor analysis model, choosing a model 

with too few parameters can involve making unrealistically 

simple assumptions and lead to high bias, poor prediction, 

and missed opportunities for insight. Such models are not 

flexible enough to describe the sample or the population 

well. A model with too many parameters can fit the 

very well, but be too closely tailored to it; 

such models may generalize poorly. Penalized-likelihood 

information criteria, such as Akaike’s information criterion 

(AIC), the Schwarz’s information criterion (SIC), the 

Hannan-Quinn information criterion (HQ

widely used for model selection. The comparison of the 

models using information criterion can be viewed as 

equivalent to a likelihood ratio test and understanding the 

differences among the criteria may make it easier to 

compare the results and to use them to make informed 

decisions (Akaike; 1973). 

AKAIKE’S information criterion is probably the most 

relevant and famous as for the comparison and selection 

between different models and is constructed on log 

likelihood 

AIC = �2�H9�
where L denotes the likelihood function of the factor 

model and k is the number of the model’s parameter/factors. �H9�8� \
�� �  � 1

2
1��H9

denotes the sample covariance matrix of Y and 

ΛJΛJ_1 	 ψ2; ΛJ is the matrix factor of factor loading. The 

first term can be interpreted as a goodness

measurement, while the second gives a growing penalty to 

increasing numbers of parameters according to the 

parsimony principle.  In the choice of model, a 

minimization rule is used to select the model with the 

minimum Akaike information criterion value.

Still in the likelihood based procedures, Schwarz (1978) 

proposed the alternative information criterion given by

i�G � ��H9�8�
Unlike the AIC. SIC considers the number of 

observations and is therefore less favourable to factors 

inclusion. 

Finally, the third criteria are

information criterion (HQC); it is a criterion for model 

selection. It is an alternative to

(AIC) and Bayesian informatio

(BIC)(Harman;1976). It is given

�v�G � ��H9�8�
where k is the number of  parameters, 

observations.. 

3. Comparison of AIC and SIC after Rotation at Different Sample Size

ber of Factors (k) 

Equamax Loadings Quartimax Loadings 

 II I II 

0.3577 -0.2347 -0.3609 -0.2297 

0.4155 0.2311 -0.4122 0.2369 

0.1811 0.9835 0.1948 0.9809 

0.9750 0.2222 0.9780 0.2086 

0.3136 -0.2747 0.3098 -0.2786 

201 193 

Quinn information criterion (HQIC) and so on are 

widely used for model selection. The comparison of the 

models using information criterion can be viewed as 

equivalent to a likelihood ratio test and understanding the 

differences among the criteria may make it easier to 

s and to use them to make informed 

AKAIKE’S information criterion is probably the most 

relevant and famous as for the comparison and selection 

between different models and is constructed on log 

�H9�8� \ 	 2�  

denotes the likelihood function of the factor 

is the number of the model’s parameter/factors. ��H9|ΣJ| 	 �BΣJ_1i� , where S 

denotes the sample covariance matrix of Y and ΣJ �
is the matrix factor of factor loading. The 

first term can be interpreted as a goodness-of-fit 

measurement, while the second gives a growing penalty to 

increasing numbers of parameters according to the 

parsimony principle.  In the choice of model, a 

ization rule is used to select the model with the 

minimum Akaike information criterion value. 

Still in the likelihood based procedures, Schwarz (1978) 

proposed the alternative information criterion given by 

�H9�8� \ 	 �� � log 1. 

AIC. SIC considers the number of N of 

observations and is therefore less favourable to factors 

criteria are the Hannan-Quinn 

information criterion (HQC); it is a criterion for model 

selection. It is an alternative to Akaike information criterion 

(AIC) and Bayesian information criterion 

given as 

�H9�8� \ 	 2� log log 1 

is the number of  parameters, N is the number of 

Different Sample Sizes and 

Orthomax Loadings 

I II 

-0.3552 -0.2385 

-0.4179 0.2267 

0.1707 0.9853 

0.9726 0.2325 

0.3165 -0.2714 
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Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax Loadings 

I II I II I II I II 

0.2343 -0.1618 0.2361 -0.1586 0.2338 -0.1618 0.2377 -0.1561 

0.0613 0.1670 0.0595 0.1678 0.0618 0.1670 0.0577 0.1684 

-0.1235 -0.1640 -0.1217 -0.1657 -0.1240 -0.1640 -0.1200 -0.1670 

0.1354 0.2694 0.1324 0.2713 0.1362 0.2694 0.1296 0.2727 

0.1303 -0.1413 0.1318 -0.1395 0.1299 -0.1413 0.1333 -0.1381 

 

3.1.2. Factor Rotation Matrix 

Varimax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.4587       0.8886 

0.8886        -0.4587 

Equamax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.4490        0.8935 

0.8935        -0.4490 

Quartimax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.4614       0.8872 

0.8872        -0.4614 

Orthomax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.4396        0.8982 

0.8982 -0.4396 

 

3.1.3. Information Criteria 

Information Criteria Values 

Log Likelihood -116.6265 

Akaike 237.2530 

Schwarz 118.1036 

Hannan Quinne 117.3042 

 

 

3.2. For  n = 30 , p = 10 and  k = 3 

3.2.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax  Loadings 

Factor 

I 

Factor     

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

-0.3596 -0.2388 0.1169 -0.3566 -0.2458 0.1116 -0.3605 -0.2369 0.1181 -0.3534 -0.2497 0.1128 

-0.4125 0.2337 0.0431 -0.4154 0.2275 0.0481 -0.4117 0.2354 0.0418 -0.4186 0.2222 0.0456 

0.1929 0.9791 0.0647 0.1805 0.9798 0.0859 0.1962 0.9788 0.0596 0.1671 0.9828 0.0788 

0.9776 0.2104 0.0079 0.9748 0.2226 0.0127 0.9783 0.2071 0.0070 0.9717 0.2358 0.0129 

0.3121 -0.2970 0.2662 0.3159 -0.2987 0.2598 0.3111 -0.2967 0.2678 0.3193 -0.2925 0.2626 

0.2339 -0.1580 -0.0552 0.2358 -0.1538 -0.0586 0.2333 -0.1591 -0.0544 0.2380 -0.1511 -0.0570 

0.0656 0.1231 0.6598 0.0641 0.1096 0.6623 0.0660 0.1263 0.6592 0.0613 0.1154 0.6616 

-0.1223 -0.1792 0.2167 -0.1200 -0.1854 0.2127 -0.1229 -0.1777 0.2176 -0.1179 -0.1854 0.2139 

0.1375 0.2498 0.3046 0.1344 0.2449 0.3100 0.1383 0.2509 0.3033 0.1304 0.2490 0.3084 

0.1267 -0.1041 -0.5539 0.1280 -0.0905 -0.5560 0.1264 -0.1074 -0.5533 0.1303 -0.0930 -0.5550 

 

3.2.2. Factor Rotation Matrix 

Varimax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.9598         0.2805         0.0128 

-0.2807       0.9575           0.0662 

0.0063        -0.0671          0.9977 

Equamax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.9562        0.2922         0.0191 

-0.2928       0.9522           0.0868 

0.0072        -0.0886          0.9960 

Quartimax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.9607         0.2772         0.0115 

-0.2774       0.9588           0.0612 

0.0059        -0.0620          0.9981 

Orthomax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

0.9521         0.3052          0.0187 

-0.3057        0.9488           0.0791 

0.6452       -0.0810          0.9967 
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3.2.3. Information Criteria 

Information Criteria Values 

Log Likelihood -112.6245 

Akaike 231.2490 

Schwarz 114.8402 

Hannan Quinne 109.9072 

 

 

 

 

3.3. For n=30, p =10, and k = 5 

3.3.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

-0.3048 -0.1789 -0.1510 -0.3019 0.3626 -0.2696 -0.2996 -0.1599 -0.1268 0.4077 

0.2245 0.0814 0.0675 -0.6254 0.0872 0.2542 -0.6117 0.0910 0.0727 0.0889 

0.9738 -0.1255 -0.0744 0.0788 -0.0250 0.9665 0.1128 -0.1273 -0.0839 -0.0799 

0.3850 0.2427 0.1088 0.7501 0.0204 0.3552 0.7662 0.2363 0.1027 -0.0492 

-0.1048 0.9879 -0.0852 0.0734 -0.0219 -0.1122 0.0757 0.9852 -0.0880 -0.0570 

-0.1445 -0.1293 0.1336 0.3524 0.2666 -0.1405 0.3567 -0.1207 0.1479 0.2594 

0.1798 0.1513 -0.3317 0.0477 0.3284 0.1985 0.0681 0.1652 -0.3154 0.3250 

-0.2144 -0.2273 -0.1283 -0.0367 0.4503 -0.1843 -0.0283 -0.2068 -0.1011 0.4801 

0.3184 0.1505 -0.0711 0.0362 0.3408 0.3364 0.0629 0.1651 -0.0557 0.3147 

-0.0542 -0.0761 0.9944 0.0391 -0.0304 -0.0524 0.0376 -0.0778 0.9917 -0.0796 

Quartimax Loadings Orthomax Loadings 

1 2 3 4 5 1 2 3 4 5 

-0.3124 -0.1831 -0.1571 -0.2980 0.3545 -0.2443 -0.1536 -0.1189 -0.1712 0.4935 

0.2156 0.0778 0.0654 -0.6289 0.0893 0.2799 0.0927 0.0769 -0.5509 0.2527 

0.9749 -0.1263 -0.0731 0.0670 -0.0170 0.9550 -0.1374 -0.1013 0.0990 -0.1598 

0.3945 0.2448 0.1101 0.7439 0.0306 0.3308 0.2290 0.0843 0.7248 -0.2960 

-0.1024 0.9885 -0.0848 0.0711 -0.0145 -0.1102 0.9851 -0.0904 0.0549 -0.0789 

-0.1430 -0.1304 0.1301 0.3537 0.2669 -0.1388 -0.1192 0.1441 0.4174 0.1492 

0.1775 0.1481 -0.3362 0.0444 0.3269 0.2039 0.1641 -0.3217 0.1611 0.2781 

-0.2197 -0.2314 -0.1351 -0.0342 0.4438 -0.1648 -0.2022 -0.0989 0.1111 0.4775 

0.3155 0.1470 -0.0758 0.0307 0.3445 0.3485 0.1635 -0.0644 0.1597 0.2621 

-0.0544 -0.0758 0.9947 0.0385 -0.0170 -0.0411 -0.0748 0.9924 0.1269 -0.0848 

 

3.3.2. Factor Rotation Matrix 

Varimax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

-0.0891        0.9550         -0.2756       0.0622       -0.0149 

-0.0897        0.2632          0.9577        0.0640        -0.0377 

0.9825        0.0973          0.0541         0.1444         -0.0376 

-0.1320        -0.0911        -0.0521        0.9853          0.0263 

0.0357           0.0302          0.0355       -0.0171         0.9981 

Equamax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

-0.0966        0.0647         0.9528        -0.2778       -0.0387 

-0.0905        0.0633         0.2607        0.9540        -0.0986 

0.9717        0.1802          0.0942       0.0428         -0.1124 

-0.1691        0.9791         -0.0990      -0.0535        0.0041 

0.0984         0.0253          0.0744       0.0894         0.9880 

Quartimax 

 Factor  1      Factor 2      Factor  3      Factor 4      factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

-0.0868        0.9555         -0.2753       0.0601       -0.0105 

-0.0892        0.2638          0.9582        0.0626        -0.0219 

0.9847         0.0969         0.0558         0.1315         -0.0252 

-0.1197        -0.0874        -0.0510        0.9873          0.0263 

0.0251           0.0206          0.0208       -0.0206         0.9990 

Orthomax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

-0.0968        0.9521        -0.2801       0.0470       -0.0585 

-0.0786        0.2636          0.9539        0.0455     -0.1112 

0.9605        0.0838          0.0237         0.1564     -0.2130 

-0.2026        -0.1028        -0.0651        0.9310    -0.2780 

0.1442 0.0801          0.0826       0.3232       0.9282 
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3.3.3. Information Criteria 

Information Criteria Values 

Log Likelihood -108.2130 

Akaike 226.4260 

Schwarz 111.9058 

Hannan Quinne 109.9072 

 
 
 
 
 
 

3.4. For  n =50 , p =10, and k =2. 

3.4.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax Loadings 

I II I II I II I II 

0.9922 -0.1243 0.9881 -0.1540 0.9933 -0.1159 0.9934 -0.1149 

-0.2951 0.7780 -0.2717 0.7865 -0.3017 0.7755 -0.3025 0.7752 

0.1655 0.1709 0.1705 0.1659 0.1640 0.1723 0.1638 0.1725 

0.0827 0.0269 0.0835 0.0244 0.0825 0.0276 0.0825 0.0276 

-0.0489 -0.0194 -0.0494 -0.0179 -0.0487 -0.0198 -0.0487 -0.0199 

0.0562 -0.1489 0.0517 -0.1505 0.0575 -0.1484 0.0576 -0.1483 

0.2249 -0.2948 0.2160 -0.3014 0.2274 -0.2929 0.2277 -0.2926 

-0.2756 -0.3872 -0.2871 -0.3787 -0.2723 -0.3895 -0.2719 -0.3898 

0.0914 0.2652 0.0993 0.2630 0.0891 0.2666 0.0888 0.2667 

0.1112 -0.0118 0.1108 -0.0152 0.1113 -0.0109 0.1113 -0.0108 

 

3.4.2. Factor Rotation Matrix 

Varimax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.9922         -0.1243 

0.1243          0.9922 

Equamax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.9881        -0.1540 

0.1540          0.9881 

Quartimax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.9933        -0.1159 

0.1159         0.9933 

Orthomax 

 Factor I      Factor II 

Factor  I 

Factor  II 

0.9934        -0.1149 

0.1149 0.9934 

3.4.3. Information Criteria 

Information Criteria Values 

Log Likelihood -237.8175 

Akaike 479.6350 

Schwarz 239.6635 

Hannan Quinne 238.7382 

 

 

 

3.5. For n =50 , p =10, and k =3. 

3.5.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax  Loadings 

Factor 

I 

Factor     

II 

Factor   

III 

Factor 

I 
Factor  II 

Factor   

III 

Factor 

I 
Factor  II 

Factor   

III 

Factor 

I 
Factor  II 

Factor   

III 

0.9998 -0.0199 -0.0026 0.9998 -0.0200 0.0047 0.9998 -0.0198 -0.0044 0.9996 -0.0202 0.0176 

-0.0792 0.1098 -0.1916 -0.0778 0.1101 -0.1920 -0.0796 0.1097 -0.1915 -0.0753 0.1087 -0.1937 

0.0384 0.0163 0.1952 0.0369 0.0160 0.1955 0.0387 0.0164 0.1951 0.0344 0.0164 0.1959 

-0.0707 -0.2210 0.0189 -0.0709 -0.2210 0.0180 -0.0707 -0.2210 0.0191 -0.0711 -0.2209 0.0187 

-0.2750 0.0242 -0.2080 -0.2735 0.0246 -0.2100 -0.2754 0.0241 -0.2076 -0.2708 0.0232 -0.2137 

-0.1164 -0.0678 -0.0494 -0.1161 -0.0677 -0.0504 -0.1165 -0.0679 -0.0492 -0.7754 -0.0681 -0.0514 

-0.0205 0.9995 0.0251 -0.0205 0.9994 0.0266 -0.0205 0.9995 0.0248 -0.0206 0.9996 0.0193 

0.1947 0.0172 0.1319 0.1937 0.0169 0.1334 0.1949 0.0172 0.1316 0.1920 0.0178 0.1357 

0.1810 0.1431 -0.1012 0.11818 0.1433 -0.0997 0.1808 0.1431 -0.1016 0.1830 0.1425 -0.0983 

-0.0067 0.0419 0.8396 -0.0129 0.0405 0.1896 -0.0052 0.0422 0.8396 -0.0236 0.0465 0.8391 
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3.5.2. Factor Rotation Matrix 

Varimax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1719       0.9848        0.0251 

0.9851         0.1719        0.0022 

0.0021          -0.0251       0.9997 

Equamax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1720       0.9848         0.0254 

0.9851        0.1718         0.0097 

-0.0052       -0.0267        0.9996 

 

 

Quartimax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1719       0.9848         0.0250 

0.9851         0.1720         0.0004 

0.0039         -0.0247        0.9997 

Orthomax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1721       0.9850        0.0162 

0.9849        0.1717        0.0211 

-0.0180       -0.0196       0.9996 

3.5.3. Information Criteria 

Information Criteria Values 

Log Likelihood -234.1150 

Akaike 474.2300 

Schwarz 236.6635 

Hannan Quinne 235.4961 

3.6. For n=30, p =10, and k = 5. 

3.6.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

-0.2795 0.0571 -0.0315 0.8106 0.0238 -0.2534 0.0564 -0.0282 0.8188 0.0379 

0.9894 -0.0043 -0.0118 -0.1384 -0.0412 0.9817 -0.0036 -0.0120 -0.1680 -0.0893 

0.1089 0.0651 -0.1572 0.1962 -0.0836 0.1107 0.0641 -0.1569 0.1937 -0.0880 

-0.0070 0.9996 -0.0084 0.0240 0.0014 -0.0078 0.9996 -0.0083 0.0250 -0.0090 

-0.0104 -0.0081 0.9997 -0.0210 0.0008 -0.0122 -0.0082 0.9996 -0.0248 -0.0066 

-0.0680 0.0455 0.0348 0.0569 0.6576 -0.0343 0.0526 0.0403 0.0571 0.6594 

-0.2466 -0.1801 -0.1940 0.2114 0.2730 -0.2260 -0.1775 -0.1911 0.2187 0.2884 

-0.2962 0.1142 0.0306 -0.3878 -0.0122 -0.3082 0.1140 0.0287 -0.3786 0.0003 

0.1796 0.1563 0.1081 0.1366 -0.3720 0.1649 0.1523 0.1058 0.1317 -0.3826 

-0.0854 -0.1362 -0.0856 0.1554 -0.1272 -0.0864 -0.1378 -0.0860 0.1585 -0.1205 

Quartimax Loadings Orthomax Loadings 

1 2 3 4 5 1 2 3 4 5 

-0.2872 0.0573 -0.0325 0.8079 0.0210 -0.2816 0.0631 -0.0282 0.8083 0.0505 

0.9911 -0.0047 -0.0120 -0.1292 -0.0295 0.9815 -0.0059 -0.0130 -0.1312 -0.1384 

0.1081 0.0653 -0.1573 0.1970 -0.0823 0.0989 0.0642 -0.1581 0.1970 -0.0925 

-0.0068 0.9997 -0.0085 0.0237 0.0039 -0.0102 0.9994 -0.0085 0.0172 -0.0254 

-0.0098 -0.0080 0.9997 -0.0197 0.0025 -0.0122 -0.0085 0.9994 -0.0246 -0.0182 

-0.0763 0.0438 0.0335 0.0559 0.6570 -0.0033 0.0641 0.0484 0.0562 0.6588 

-0.2519 -0.1807 -0.1947 0.2087 0.2693 -0.2189 -0.1711 -0.1876 0.2116 0.3048 

-0.2923 0.1143 0.0313 -0.3905 -0.0156 -0.1936 0.1110 0.0290 -0.3907 0.0133 

0.1828 0.1572 0.1085 0.1386 -0.3691 0.1402 0.1469 0.1010 0.1363 -0.3942 

-0.0854 -0.1358 -0.0855 0.1546 -0.1286 -0.0980 -0.1386 -0.0876 0.1560 -0.1125 

 

3.6.2. Factor Rotation Matrix 

Varimax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9894          -0.0058      -0.0127        -0.1384       -0.0412 

0.0087          0.9994        -0.0252         0.0222        0.0008 

0.0098          0.0257          0.9994        -0.0230       -0.0000 

0.1395          -0.0226          0.0220        0.9894        0.0242 

0.0374          -0.0004          -0.0010      -0.0297       0.9989 

Equamax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9816         -0.0051        -0.0129       -0.1680       -0.0893 

0.0079          0.9993         -0.0251        0.0228        -0.0103 

0.0078          0.0256         0.9992          -0.0275      -0.0088 

0.1704         -0.0229         0.0265          0.9846        0.0185 

0.0850           0.0105        0.0069          -0.0334       0.9957 
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Quartimax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9911          -0.0062      -0.0129        -0.1292       -0.0295 

0.0089          0.9994        -0.0253         0.0220        0.0034 

0.0104           0.0257        0.9994          -0.0216       0.0021 

0.1300          -0.0225        0.0206           0.9907        0.0264 

0.0257          -0.0031        -0.0029          -0.0300       0.9992 

 

 

 

 

Orthomax 

 Factor  1      Factor 2      Factor  3      Factor 4      factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9815          -0.0074       -0.0139        -0.1312      -0.1384 

0.0054           0.9992       -0.0253        0.0155        -0.0272 

0.0077           0.0251         0.9991        -0.0267      -0.0220 

0.1342          -0.0152         0.0261         0.9904        0.0106 

0.1361 0.0272        0.0192        -0.0291        0.9897 

3.6.3. Information Criteria 

Information Criteria Values 

Log Likelihood -230.0950 

Akaike 470.1900 

Schwarz 234.3424 

Hannan Quinne 232.3969 

 

3.7. For n=70, p =10 and k = 2 

3.7.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax Loadings 

I II I II I II I II 

1.0000 -0.0057 1.0000 -0.0048 1.0000 -0.0059 1.0000 -0.0037 

-0.0818 -0.1573 -0.0816 -0.1574 -0.0818 -0.1573 -0.0815 -0.1575 

0.0385 0.1685 0.0383 0.1685 0.0385 0.1685 0.0381 0.1686 

-0.0663 0.0006 -0.0663 0.0005 -0.0663 0.0006 -0.0663 0.0004 

-0.2759 -0.1688 -0.2757 -0.1691 -0.2759 -0.1688 -0.2755 -0.1694 

-0.1151 -0.0390 -0.1151 -0.0391 -0.1152 -0.0390 -0.1151 -0.0393 

-0.0401 0.0629 -0.0401 0.0629 -0.0401 0.0630 -0.0402 0.0629 

0.1946 0.1182 0.1945 0.1184 0.1947 0.1182 0.1944 0.1186 

0.1780 -0.0731 0.1780 -0.0730 0.1779 -0.0732 0.1781 -0.0728 

-0.0041 1.0000 -0.0050 1.0000 -0.0038 1.0000 -0.0061 1.0000 

 

3.7.2. Factor Rotation Matrix 

Varimax 

 Factor I      Factor II 

Factor  I 

Factor  II 

-0.0279       0.9996 

0.9996         0.0279 

Equamax 

 Factor I      Factor II 

Factor  I 

Factor  II 

-0.0288       0.9996 

0.9996         0.0288 

 

 

 

Quartimax 

 Factor I      Factor II 

Factor  I 

Factor  II 

-0.0277      0.9996 

0.9996        0.0277 

Orthomax 

 Factor I      Factor II 

Factor  I 

Factor  II 

-0.0299      0.9996 

0.9996 0.0299 

3.7.3. Information Criteria 

Information Criteria Values 

Log Likelihood -326.9945 

Akaike 657.9890 

Schwarz 328.8396 

Hannan Quinne 328.0586 
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3.8. For  n =70 , p =10, and k =3 

3.8.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings Quartimax Loadings Orthomax  Loadings 

Factor 

I 

Factor     

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

Factor 

I 

Factor  

II 

Factor   

III 

0.9989 -0.0199 -0.0026 0.9998 -0.0200 0.0047 0.9998 -0.0198 -0.0044 0.9996 -0.0202 0.0176 

-0.0792 0.1089 -0.1916 -0.0778 0.1101 -0.1920 -0.0796 0.1097 -0.1915 -0.0753 0.1087 -0.1937 

0.0384 0.0163 0.1952 0.0369 0.1060 0.1955 0.0387 0.1064 0.1951 0.0344 0.1074 0.1959 

-0.0707 -0.2210 0.0189 -0.0709 -0.2210 0.0180 -0.0707 -0.2210 0.0191 -0.0711 -0.2209 0.0187 

-0.2750 0.0242 -0.2080 -0.2735 0.0246 -0.2100 -0.2754 0.0241 -0.2076 -0.2708 0.0232 -0.2137 

-0.1164 -0.0678 -0.0494 -0.1161 -0.0677 -0.0504 -0.1165 -0.0679 -0.4092 -0.1154 -0.0681 -0.0514 

-0.0205 0.9995 0.0251 -0.0205 0.9994 0.0266 -0.0205 0.9995 0.0248 -0.0206 0.9996 0.0109 

0.1947 0.0172 0.1319 0.1937 0.0169 0.1334 0.1949 0.0172 0.1316 0.1920 0.0178 0.1357 

0.1810 0.1431 -0.1012 0.1818 0.1433 -0.0997 0.1808 0.1431 -0.1016 0.1830 0.1425 -0.0983 

-0.0067 0.0419 0.8396 -0.0129 0.0405 0.8396 -0.0052 0.0422 0.2933 -0.0236 0.0465 0.8391 

 

3.8.2. Factor Rotation Matrix 

Varimax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.179       0.9848        0.0251 

0.9851         0.1719        0.0022 

0.0021         -0.0251       0.9997 

Equamax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1720      0.9848         0.0254 

0.9851       0.1718          0.0097 

-0.0052      -0.0267        0.9996 

Quartimax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1719      0.9848         0.0250 

0.9851        0.1720         0.0004 

0.0039         -0.0247       0.9997 

Orthomax 

 Factor I      Factor II      Factor  III 

Factor  I 

Factor  II 

Factor  III 

-0.1721       0.9850        0.0162 

0.9849         0.1717        0.0211 

-0.0180         -0.0196       -0.9996 

3.8.3. Information Criteria 

Information Criteria Values 

Log Likelihood -323.7360 

Akaike 653.4720 

Schwarz 326.5036 

Hannan Quinne 325.3321 

 

 

 

 

3.9. For n=70, p =10, and k = 5 

3.9.1. Rotated Factor Loadings 

Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.9966 -0.0598 -0.0005 0.0554 -0.0076 0.9949 -0.0623 0.0128 0.0775 -0.0141 

-0.0639 0.0848 -0.2353 -0.1824 0.2870 -0.0544 0.0854 -0.2368 -0.1856 0.2854 

0.0365 -0.0451 0.2044 -0.0216 0.0411 0.0346 -0.0441 0.2050 -0.0222 0.0405 

-0.0659 -0.0353 -0.0008 -0.0990 -0.3618 -0.0664 -0.0346 -0.0020 -0.0967 -0.3624 

-0.2767 -0.0161 -0.2359 0.0071 0.0808 -0.2732 -0.0166 -0.2393 0.0006 0.0830 

-0.0573 0.9977 -0.0142 0.0324 -0.0085 -0.0559 0.9975 -0.0193 0.0387 -0.0082 

-0.0487 -0.0687 0.0752 0.1504 0.5611 -0.0490 -0.0690 0.0758 0.1423 0.5631 

0.2154 0.0999 0.1252 -0.2546 0.0801 0.2203 0.1019 0.1268 -0.2502 0.0755 

0.1457 0.0920 -0.0539 0.7086 0.0813 0.1312 0.0862 -0.0501 0.7116 0.0882 

-0.0080 -0.0265 0.7554 -0.0507 0.0269 -0.0164 -0.0227 0.7552 -0.0540 0.0258 

Quartimax Loadings Orthomax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.9969 -0.0592 -0.0036 0.0504 -0.0063 0.9943 -0.0633 0.0358 0.0766 -0.0165 

-0.0660 0.0847 -0.2348 -0.1817 0.2878 -0.0484 0.0799 -0.2312 -0.1917 0.2887 
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Varimax Loadings Equamax Loadings 

1 2 3 4 5 1 2 3 4 5 

0.0370 0.0454 0.2043 -0.0214 0.0412 0.0300 -0.0447 0.2066 -0.0267 0.0317 

-0.0659 -0.0355 -0.0005 -0.0996 -0.3616 -0.0677 -0.0317 -0.0182 -0.0839 -0.3651 

-0.2775 -0.0160 -0.2351 0.0085 0.0804 -0.2675 -0.0171 -0.2421 0.0028 0.0925 

-0.0577 0.9977 -0.0129 0.0308 -0.0085 -0.0533 0.9980 -0.0207 0.0266 0.0045 

-0.0485 -0.0686 0.0751 0.1524 0.5606 -0.489 -0.0732 0.0974 0.1230 0.5637 

0.2143 0.0994 0.1249 -0.2555 0.0811 0.2174 0.0976 0.1294 -0.2566 0.0628 

0.1490 0.0934 -0.0549 0.7079 0.0795 0.1338 0.0938 -0.0375 0.7077 0.1137 

-0.0060 -0.0274 0.7554 -0.0499 0.0271 -0.0332 -0.0230 0.7539 -0.0680 -0.0034 

 

3.9.2. Factor Rotation Matrix 

Varimax. 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9966          -0.0907       -0.0000        0.0542       -0.0073 

0.0885           0.9951        -0.0143        0.0407        -0.0096 

0.0236            0.0266        0.9130        -0.3987        -0.0788 

-0.0446           -0.0208       0.3988         0.8350         0.3759 

0.0290            0.0204        -0.0846         -0.3731       0.9232 

Equamax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9926         -0.0932       0.0133         0.0759        -0.0138 

0.0896          0.9945        -0.0175        0.0503        -0.0104 

0.0204          0.0336         0.9118         -0.4000       -0.0842 

-0.0657         -0.0249        0.4012         0.8280        0.3853 

0.0453           0.0233        -0.0848         -0.3822      0.9188 

Quartimax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor 5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9947          -0.0901       -0.0032       0.0493        -0.0060 

0.0882         0.9952          -0.0135       0.0384         -0.0095 

0.0244          0.0249          0.9133        -0.3982        -0.0776 

-0.0397         -0.0198         0.3981         0.8367         0.3735 

0.0255           0.0197          -0.0844       -0.3708        0.9243 

Orthomax 

 Factor  1      Factor 2      Factor  3      Factor 4      Factor  5 

Factor  1 

Factor  2 

Factor  3 

Factor  4 

Factor  5 

0.9919          -0.0942       0.0363         0.0754        -0.0166 

0.0922           0.9949        -0.0155       0.0380         0.0021 

-0.0008          0.0302         0.9006       -0.4137        -0.1298 

-0.0722          -0.0183        0.4289        0.8078         0.3975 

0.494 0.0083         -0.0584      -0.4114        0.9082 

3.9.3. Information Criteria 

Information Criteria Values 

Log Likelihood -319.8686 

Akaike 649.7370 

Schwarz 324.4814 

Hannan Quinne 322.5287 

4. Discussion of Results and Conclusion 

When the sample size (n) is 30 and the number of 

variables (p) is 10, the values of the Akaike (AIC) and 

Schwarz (SIC) Information criteria for different number of 

retained factors are as follows: for k = 2, AIC, SIC and 

HQIC values are 237.2530, 118.1036, and 117.304 

respectively; for k = 3 AIC is 231.2490, SIC is 114.8402 

and HQIC is 109.9072; for k = 5, AIC is 226.4260, SIC is 

111.9058 and HQIC is 109.9072. 

On increasing the sample size to 50 and retaining the 

same number of variables i.e. 10; for k =2, AIC is 479.6350, 

SIC is 239.6635 and HQIC is 238,7380; for k = 3, AIC is 

474.2300, SIC is 236.6635 and HQIC is 235.4961 and 

finally if  k = 5, AIC is 470.1910, SIC is 234.3424 and 

HQIC is 232.3969. 

Finally, when the sample size is increased to 70 and the 

same number of variables maintained, for k = 2, AIC is 

657.9890, SIC is 328.8396 and HQIC is 328.0586; for k = 

3, AIC is 653.4720. SIC is 326.5036 and HQIC is 325.3321; 

then for k = 5, AIC is 649.7370, SIC is 324.4814 and HQIC 

is 322.5287. 

The factor rotation matrix for all the sample sizes and the 

number of parameters retained as considered is almost the 

same for all the four methods of rotation considered here. 

In conclusion based on the results above, it shows that 

the values for both AIC, SIC and HQIC all decreases for all 

the sample sizes considered as k increases. Again, as we 

moved from on sample size to the other, the values of the 

AIC, SIC and HQIC increases as the sample size increases 

for all the number of retained factors considered. Also, 

since in the information criteria model selection, the model 

with the least values of AIC, SIC and HQIC is considered 

as the best model. Here, the AIC, the SIC and the HQIC 

values are least for      k =5 for all the sample sizes 

considered. Hence, the optimal number of factors to using 

the Maximum Likelihood Estimation method based on the 

simulated data used is five (5). 
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