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Abstract: Several methods have been proposed to adjust bookmakers’ implied probabilities, including an additive model, a 

normalization model, and an iterative method proposed by Shin. These approaches have one or more defects: the additive 

model can give negative adjusted probabilities, normalization does not account for favorite long-shot bias, and both the 

normalization and Shin approaches can produce bookmaker probabilities greater than 1 when applied in reverse. Moreover, it 

is shown that the Shin and additive methods are equivalent for races with two competitors. Vovk and Zhadanov (2009) and 

Clarke (2016) suggested a power method, where the implied probabilities are raised to a fixed power, which never produces 

bookmaker or fair probabilities outside the 0-1 range and allows for the favorite long-shot bias. This paper describes and 

applies the methods to three large bookmaker datasets, each in a different sport, and shows that the power method universally 

outperforms the multiplicative method and outperforms or is comparable to the Shin method. 
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1. Introduction 

Bookmaker odds have a useful role for sports performance 

research and commercial applications. Bookmaker odds have 

been repeatedly shown to provide improved expectations 

about outcomes in sport [1-2], which can be used by 

practitioners to set more realistic expectations before and 

after competitive events. Efficiency in bookmaker odds is 

fundamental to the success of sports betting firms, an 

industry that continues to grow and have an influence on all 

professional sports [3].  

Sports researchers and professionals can get the most use 

out of bookmaker odds if they have an accurate method to 

convert odds into event probabilities [4]. The probabilities πi 

implied by bookmakers odds, or prices, invariably sum to 

more than 1. The total π of the implied probabilities is known 

as the booksum, and the excess π-1 the overround. The 

overround determines the expected return to punters, which 

is 1/π in the long run. Due to the overround, the implied 

probabilities from bookmaker odds require an adjustment to 

obtain the actual probability expectations of bookmakers. 

While the need to remove the overround to estimate fair or 

true probabilities pi is the most common situation in sport 

research, Clarke [5] gives an example of the reverse process. 

This previous study considered the commercial application of 

a major betting agency, in which a mathematical model 

produced fair probabilities for the number of runs in the next 

over of cricket. With only a small window while players 

changed ends to set odds and take bets, a mathematical 

formula was needed to convert the true probabilities to 

bookmaker odds with the required overround. In a second 

application the same process was used to set odds for the 

point score in the next game of tennis. With the expansion of 

sports betting, many bookmakers or exchanges now use 

mathematical models plus an adjustment for overround to 

determine initial prices. As the event nears, further 

adjustments are then made due to the weight of money on 

placed bets.  

The present paper discusses and compares four methods 

for removing (or incorporating) overround. For simplicity 
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racing terminology is used, but the analysis applies to any 

experiment (race, match, contest, etc.) with n outcomes on 

which betting takes place. Section 2 describes four 

adjustment methods of distributing the overround: additive, 

normalization, Shin and the power method. Section 3 

compares the performance of each method on various data 

sets, and is followed by the conclusion.  

2. Adjustment Methods 

Four methods of adjustment for overround have been used 

in the literature. In the following subsections each method is 

described and its distinguishing features summarized. 

2.1. The Additive Method 

Better described as the additive method, additive uses an 

additive model where the overround is split evenly between 

the n outcomes. Thus, the true probability for the ith 

outcome, pi, is �� = �� −	(� − 1)/� and �� =	�� +	(� − 1)/�       (1) 

Although used by Viney et al. and others [4], the additive 

method is rarely used in the literature, as the changes 

between the implied and adjusted probabilities for outsiders 

can be quite dramatic. Not infrequently, the additive method 

can produce negative probabilities for rank outsiders. In fact, 

this will occur whenever the ratio of the overround and 

implied probability is greater than the number of competitors, (� − 1)/�� > � . The reverse process can also produce 

bookmaker probabilities greater than 1 for hot favorites.  

2.2. The Multiplicative Method 

The multiplicative or normalization method allocates the 

overround proportionally. So that, �� = ��/� or �� =	��� .                         (2) 

Because of its simplicity, this is the most commonly used 

method. While seemingly appropriate for totalisator data, an 

automated betting system that allocates the same proportion 

of the pool for all horses, it fails to account for the favorite 

longshot bias, where it is well known that long-shots tend to 

be overbet while favorites are underbet. Thus a greater 

proportion of overround needs to be removed/added to 

longshots than favorites. It also suffers from sometimes 

producing probabilities greater than 1 for favorites in the 

conversion from fair to bookmaker’s probabilities. 

2.3. The Shin Method 

Shin [6-7] proposed a correction method based on an 

assumed fraction z of knowledgeable punters. As given in 

[8], this results in �� = ���� + (1 − �)���∑ ���� + (1 − �)�������     (4) 

or 

�� =	�
����(���)��� �� 	�	�

�(���)
                          (5) 

where 

� = 	∑ �����(���)��� �� 	 �!" ��
���	

                     (6) 

To create bookmakers odds from fair odds requires using 

(4) and (6) and iterating on z to produce the required 

overround. To adjust bookmaker’s odds to produce fair odds 

requires using iteration on (5) and (6).  

This method helps to protect against the favorite longshot 

bias, and has been shown to produce better predictive true 

probabilities than normalization [9-10]. However, it is shown 

in the Appendix that in the case of two outcomes the Shin 

method is equivalent to the simple additive method, and as 

such can adjust outsiders too much. While (5) implies it can 

never produce negative true probabilities, (4) can produce 

bookmaker’s probabilities greater than 1 for hot favorites.  

2.4. The Power Method 

A natural extension of the additive method used in the 

additive approach (where probabilities are adjusted by a 

constant addition), and the multiplicative method used in 

normalization (where probabilities are adjusted by a constant 

multiplier), is to raise the probabilities to a constant power. 

Clarke [11] gives details of this method, used in a 

commercial application described in [5]. It was also 

described in Vovk and Zhdanov [12] and attributed to Victor 

Khutsishvili. The power approach proposed by these authors 

can be written as,  �� = ��# or �� = ��("$)                        (7) 

The logic behind this method stems from the idea that 
bookmaker probabilities derived from fair probabilities for 
joint events should satisfy the usual multiplicative law for 
independent events. In practical terms, this condition implies 
that the return to a punter from investing his winnings on 
subsequent events is the same as a single investment on the 
joint event. When the n competitors are all equally likely, the 

value for k is calculated as, % = &'((�)&'(	( )) . However, in most 

cases iteration on k is necessary to ensure ∑�� = 1, or the 
required booksum.  

A clear advantage of the power method is that it can never 

produce probabilities outside the [0, 1] range. Similarly, it 

can be applied directly to prices, as the fair and adjusted 

prices follow the same power law with the same k as the true 

and implied probabilities. The power method also ensures a 

greater change to outsider probabilities than favorites. 

However, when compared to Shin it adjusts favorites and 

longshots more but middle-of-the-range priced horses less.  
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3. Methods 

The operational characteristics of each method are shown 

with several illustrative examples. Analyses are then 

presented on the actual predictive performance of each 

method on large-scale sports datasets for 3 different sports.  

Historical bookmaker odds were gathered for 3 different 

sporting events: tennis, greyhound racing, and horse racing. 

These datasets were chosen to represent a range of 

competitor numbers and overround characteristics. The ATP 

dataset included nearly 15,000 men’s singles matches from 

2000 to the present. Bookmaker prices for this dataset were 

the average betting odds reported by Oddsportal. The 

greyhound data comprised tote data (from over 27,000 races) 

at 2,206 meetings in New Zealand between 1/8/2011 and 

18/8/2016. The final dataset was gallop data that consisted of 

closing prices from the Victorian Tote on Australian 

thoroughbred races in the first half of 2008. Together, these 

datasets range from 2 to 12 competitor events and have 

average overrounds ranging between 6% and 27% (Table 1). 

Table 1. Description of Datasets used in Performance Evaluation. 

Dataset Events 
Average Number of 

Competitors 

Average Overround 

(95% Interval) 

ATP 14,925 2 6.1 (4.7 – 7.0) 

Gallop 4,663 12 27.2 (9.0 – 78.2) 

Greyhound 20,206 8 19.5 (11.1 – 22.2) 

Three measures of performance were evaluated. The first 

was the distribution in the adjusted win probability assigned 

to the winning competitor. The higher the mean and the 

lower the variance in this probability, the better the predictive 

performance of the adjustment method. We also report the 

logloss, which is a loss measure that is closely connected to 

the Kelly betting criterion [13]. This measure is unique in 

that it penalizes inaccurate predictions that are made with 

higher confidence. For the non-binary events, a binary 

classifier was created that assigned one category to the 

winner and all other competitors to the losing category. Using 

the same binary classifier, we also evaluated the root-mean 

squared error, or Brier score, for each method. As with the 

logloss, a lower square-error indicates a superior prediction 

method. 

4. Results 

4.1. Operational Characteristics 

Tables 2 and 3 show an example of transforming 

probabilities in both directions using the four adjustment 

methods. These tables clearly show the shortcomings of the 

additive method, and the varying degree to which the Shin 

and Power method adjust favorites and longshots. Later we 

compare the efficacy of the predictive power of the 

probabilities produced by these two methods. 

Table 2. Comparison of 4 Methods of Adjusting 1.25 Booksum to Produce Fair Probabilities. 

Prices and their Implied probs 
Calculated True Probabilities Calculated Fair Prices 

Add. Mult. Shin Power Add. Mult. Shin Power 

$1.15 0.870 0.828 0.696 0.769 0.825 $1.21 $1.44 $1.30 $1.21 

$5.00 0.200 0.158 0.160 0.148 0.110 $6.31 $6.25 $6.78 $9.12 

$10.00 0.100 0.058 0.080 0.059 0.042 $17.12 $12.50 $16.94 $23.63 

$20.00 0.050 0.008 0.040 0.020 0.016 $118.97 $24.99 $49.84 $61.23 

$50.00 0.020 -0.022 0.016 0.004 0.005 -$46.31 $62.48 $264.78 $215.54 

$100.00 0.010 -0.032 0.008 0.001 0.002 -$31.65 $124.96 $1,026.96 $558.47 

Total  1.250 1.000 1.000 1.000 1.000     

Again Table 3 shows the possibility of both the multiplicative and Shin method producing probabilities greater than 1 for 

short priced favorites. Since probabilities in [0, 1] remain in [0, 1] when raised to any positive power, the power method 

always produces realistic transformations. 

Table 3. Comparison of 4 Methods of Adjusting true Probabilities to Produce a 1.25 Booksum. 

True Probs  Fair Prices 
Adjusted Probabilities Boookmaker Prices 

Add. Mult. Shin Power Add. Mult. Shin Power 

0.01  $100.00  0.052 0.013 0.033 0.040 $19.35 $80.00 $30.74 $24.93 

0.015  $66.67  0.057 0.019 0.041 0.053 $17.65 $53.33 $24.44 $18.78 

0.02  $50.00  0.062 0.025 0.048 0.065 $16.22 $40.00 $20.64 $15.36 

0.025  $40.00  0.067 0.031 0.055 0.076 $15.00 $32.00 $18.02 $13.15 

0.03  $33.33  0.072 0.038 0.062 0.086 $13.95 $26.67 $16.08 $11.57 

0.9  $1.11  0.942 1.125 1.010 0.929 $1.06 $0.89 $0.99 $1.08 

1  1.250 1.250 1.250 1.250     

 
The findings indicate that the power method has some 

advantage over the other three methods in that it never 

produces improper probabilities. The Appendix shows that the 

additive and Shin method are equivalent for two-competitor 

races. The following subsection explores the predictive power 

of the probabilities produced by the various methods.  

4.2. Predictive Performance 

The results for the ATP data, with only two outcomes, 

confirmed in the Appendix, in that the additive and Shin 

methods always had the same result. In all three measures the 

Clarke power method achieved the best or equal best result, 
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with the multiplicative method the worst (Table 4). For the 

gallop data, the additive model was superior, followed by 

Shin. The multiplicative model was the worst performing on 

all measures. Results for the greyhound data were more 

variable. The multiplicative model was again the worst 

performer on two measures, but second on the log loss 

measure, with Shin being the second worst on all measures. 

The additive method proved the best on the probability 

assigned to winner and RMSE, but only third on log loss. 

The power method was either first or second on each 

measure.  

Table 4. Performance Comparison of Alternative Methods of Removing Overround. 

Performance Measure ATP Gallop Greyhound 

Prob. Assigned to Winner, Mean (95% Interval)    

Power 62.8 (18.1 - 97.3) 19.2 (1.5 – 47.4) 24.8 (3.3 – 67.5) 

Additive 62.4 (19.2 – 95.6) 20.4 (0.8 – 48.7) 25.6 (2.3 – 68.8) 

Multiplicative 61.7 (21.1 – 93.4) 18.2 (2.4 – 44.6) 23.5 (4.0 – 59.4) 

Shin 62.4 (19.2 – 95.6) 19.2 (1.6 – 46.7) 24.6 (3.1 – 64.4) 

LogLoss    

Power 0.548 1.971 1.686 

Additive 0.548 1.968 1.696 

Multiplicative 0.550 1.994 1.692 

Shin 0.548 1.968 1.696 

RMSE    

Power 74.39 79.14 155.28 

Additive 74.41 78.12 154.14 

Multiplicative 74.50 79.75 156.90 

Shin 74.41 79.03 155.42 

 
Clearly the additive method has performed surprisingly 

well, but as pointed out earlier it does have some problems in 

producing probabilities outside the range [0, 1]. The 

multiplicative generally does very poorly. The power method 

outperforms the multiplicative method on all data sets on 

each measure. Similarly it universally outperforms or equals 

Shin, with the exception of the RMSE measure on the 

Greyhound data.  

5. Conclusions 

This is the first paper to give a complete description of the 

most popular methods for adjustment of bookmaker odds and 

provide the most comprehensive comparison of their 

performance with actual sporting data. While simple to 

apply, the additive method can produce negative 

probabilities, and the multiplicative or normalization method 

performed badly on all predictive performance measures. On 

the data sets analysed, the power method generally 

performed better than the Shin approach. It also performed 

better than all other methods on the ATP dataset, which is the 

only dataset obtained from bookmakers.  

Given the comparability in performance between the Shin 

and power method, ease-of-implementation will be a critical 

consideration for practitioners and industry. Both the Shin 

and the power method require iteration. As with Shin, the 

power method has an underlying logical basis for its 

derivation. However, as a natural extension of the additive 

and multiplicative transformation the power method is 

conceptually simpler and generally easier to implement than 

Shin.  

Past commercial applications also indicate an industry 

preference for the power method. Clarke [5] has used the 

power method successfully in a commercial application to 

incorporate overround into probabilities estimated from a 

mathematical model. To the authors’ knowledge, at least two 

Australian companies currently use the power method to 

transform bookmakers’ prices as a means to obtain an 

estimate of market knowledge about specific competitive 

events (personal communication).  

There are multiple adjustment methods available to sports 

researchers and professionals for translating bookmaker odds 

into true event expectations. Considerations of performance, 

ease-of-implementation, and commercial record make the 

power adjustment method a strong competitor among 

approaches for correcting for overround.  
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Appendix: Equivalence of Shin and the 

Additive Method for 2 Outcomes 

Many events on which betting takes place have only two 

outcomes, usually win or loss. Betting on the line (whether a 

score will exceed or not exceed a given value), or laying 

(betting on an event not occurring) can reduce events with 

multiple outcomes to one with only two outcomes. Strumbelj 

[8] notes that in this special case, equation (5) above has a 

tractable solution. While this may be of interest in calculating 

the proportion of knowledgeable punters, it is not necessary 

to calculate z to find pi, as we show here that for n = 2 the 

Shin probabilities are given by the additive method. 

Specifically,  �� 	= �� −	 (	���)� ,	and �� 	= 	�� −	 (	���)�  
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Proof: For n = 2, we have π1 and π2 are bookmaker prices 

that sum to π and pi are Shin adjusted prices that sum to 1. 
To simplify let 

+� = ��� + 4(1 − �) �-�� 	                         (A1) 

So from equation (6)  

�� =	 (+� − 	�) 2(1 − �)�                        (A2) 

So +� 	= � + 2(1 − �)��  
From (A2), ���-���=

(/"���/"����)�(���)� -
(/����/�����)�(���)�  

So, (�� − ��	)(�� + ��) = 	 (+�� − +��) − 2�(	+� − +�)4(1 − �)�  

= {�� + 4(1 − �) �"�� −	�� − 4(1 − �) ���� − 	2�(� + 2(1 − �)�� − � − 2(1 − �)��)}/4(1 − �)� = {4	(1 − �)(�"�� − ���� )−	4�(1 − �)	(�� −	��)}/4(1 − �)� 

So, �� − ��={	(�� − ��)−	(�(�� −	��)}/(	1 − �) 
Since � =	�� + �� and �� + �� = 1. 

Then, (�� − ��	) 	= 	 (�� − ��) 
Solving using �� + �� = 1	 gives �� 	= 	 (1 +	�� − ��) 21 ,�� 	= 	 (1 +	�� − ��) 21  

or alternatively that �� 	= �� −	(	�� + �� − 1) 21 , 	�� 	=	�� −	(	�� + �� − 1) 21  

as required 

Alternatively, there is similar proof using (4) 

Again for simplicity let 2� =	���� + (1 − �)��� 

Then �� −	�� = 2�(	2� + 2�) − 	2�(	2� + 2�) 
= 2��- 2�� 

= z(��-��)+(1-z) (���-���) 

= (��-�� )(z +1-z) since ��+ ��=1 

=(��-��)=(2��-1)=(1-2��) 

But �� 	+ 	�� = � 

Solving gives �� =�� + 
(� − 1) 21 , �� =�� -

(� − 1) 21  as 

required. 

Note it is easily seen that this can result in π‘s greater than 

1. 
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