

American Journal of Software Engineering and Applications
2016; 5(2): 7-14

http://www.sciencepublishinggroup.com/j/ajsea

doi: 10.11648/j.ajsea.20160502.11

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

An Improved Genetic Algorithm-Based Test Coverage
Analysis for Graphical User Interface Software

Asade Mojeed Adeniyi, Akinola Solomon Olalekan

Department of Computer Science, University of Ibadan, Ibadan, Nigeria

Email address:
princedeniyiasade@hotmail.com (M. A. Asade), akinola.olalekan@dlc.ui.edu.ng (S. O. Akinola)

To cite this article:
Asade Mojeed Adeniyi, Akinola Solomon Olalekan. An Improved Genetic Algorithm-Based Test Coverage Analysis for Graphical User

Interface Software. American Journal of Software Engineering and Applications. Vol. 5, No. 2, 2016, pp. 7-14.

doi: 10.11648/j.ajsea.20160502.11

Received: January 22, 2016; Accepted: February 3, 2016; Published: April 6, 2016

Abstract: Quality and reliability of software products can be determined through the amount of testing that is carried out on

them. One of the metrics that are often employed in measuring the amount of testing is the coverage analysis or adequacy ratio.

In the proposed optimized basic Genetic Algorithm (GA) approach, a concept of adaptive mutation was introduced into the

basic GA in order for low-fitness chromosomes to have an increased probability of mutation, thereby enhancing their role in

the search to produce more efficient search. The main purpose of this concept is to decrease the chance of disrupting a high-

fitness chromosome and to have the best exploitation of the exploratory role of low-fitness chromosome. The study reveals that

the optimized basic GA improves significantly the adequacy ratio or coverage analysis value for Graphical User Interface

(GUI) software test over the existing non-adaptive mutation basic GA.

Keywords: Software Test Coverage Analysis, Graphical User Interface, Quality Software, Genetic Algorithm

1. Introduction

Graphical User Interface (GUI) is a means of interaction

between an end user and a software system. Software

systems have gained an unprecedented popularity for so long

and the biggest factor behind this success is Graphical user

interface. Software developing companies and developers

have always shown a desire for fully assured high quality

software. In order to ensure this desire is fulfilled, software

must go through a comprehensive testing. It seems almost

impossible to test GUI application manually because of the

involved complexity thereby creating the need for test data

automation [1].

The quality of software products is of paramount

importance to users. According to Pfleeger [2], quality

software is “Software that satisfies the needs of the users

and the programmers involved in it”. Technological

advancements have been responsible for the complex nature

of computer and in particular the software that drives it.

Based on this, the correctness of the software is of high

importance which cannot even be guaranteed by the

developer that designs the software.

Chayanika et al., [3] assert that the main purpose of

software industry is to ensure that the software delivered to

the end users is of high standard. Testing of software

therefore cannot be overemphasized as this plays a major

role in deciding the quality and reliability of the delivered

software as well as ensuring the software meets the users’

requirements.

Our everyday life dependence on computer; be it mobile,

home appliances or office has rather placed an importance

on software testing since we cannot afford to let the system

fail us. Glenford [4] views testing as a process, or a series of

processes, designed to make sure computer code does what

it was designed to do and that it does not do anything

unintended. Software should be predictable and consistent,

offering no surprises to users. Software testing is more

properly viewed as the destructive process of trying to find

the errors (whose presence is assumed) in software.

Glenford [4] opined further that a successful test case is one

that furthers progress in this direction by causing the

software to fail.

In reality, planning for software testing should begin with

the early stages of the software requirements process, and

test plans and procedures should be systematically and

8 Asade Mojeed Adeniyi and Akinola Solomon Olalekan: An Improved Genetic Algorithm-Based

Test Coverage Analysis for Graphical User Interface Software

continuously developed (which could possibly be refined) as

software development proceeds [5]. This is so because the

test planning and designing activities serve as a clue to

software designers/developers by assisting to highlight likely

weaknesses, such as conflicts or oversights /contradictions,

or ambiguities in the [5].

Coverage analysis can simply be defined as a measure of

test case completeness. It can further be inferred as a means

of determining how much test needs to be conducted in

order to ascertain the quality of the developed software. Test

coverage analysis can be done in order to determine test

effectiveness, test suit improvement and software reliability

estimation. Coverage is the extent to which a structure has

been exercised as a percentage of the items being covered

[6]. According to Muhammad et al. [6], test coverage is

regarded as a key indicator of software quality and a crucial

part of software maintenance which assists in carrying out

the efficacy of testing through the provision of data on

diverse coverage items. Test coverage is an indicator that

gives insight to the test generators to focus on creating test

cases that cover the areas that have not been tested.

Genetic Algorithms (GAs) have been applied to a broad

range of searching, optimization, and machine learning

problems. GAs are iterative procedures implemented as a

computerized search and optimization procedure that uses

principles of natural selection. It performs a multi- directional

search by maintaining a population of potential solutions

(called individuals) and exchange information between these

solutions through simulated evolution and forward relatively

“good” information over generations until it finds a near

optimal solution for specific problem [7]. More often than not,

GA’s converge rapidly to quality solutions. Although they do

not guarantee convergence to the single best solution to the

problem, the processing power associated with GA’s makes

them efficient search techniques [8].

There have been a number of studies that employ genetic

algorithms for software testing. In this study, a concept of

adaptive mutation was introduced into the basic genetic

algorithm in order for low-fitness chromosomes to have an

increased probability of mutation, thereby enhancing their role

in the search to produce more efficient search. Section 2 of

this paper highlights some related works while Section 3 gives

the methodology for the study. In Section 4, results are

presented and discussed and conclusion is drawn in Section 5.

2. Related Works

Memon, [9] in his PhD research focused on developing a

testing framework for Graphical User interface (GUI) which

covers the areas of testing environments, test coverage

criteria development, test case generation, test oracles and

regression testing. Research at that time on GUI was still at

its infancy. So he had to adapt techniques from general

software testing for GUI testing. The GUIs are differentiated

from the traditional software with some characteristics like

user events for input and graphical output and thus require

different testing techniques.

Capture /Replay is a popular method that is being used for

GUI software testing. One merit offered by this method is

that it is able to determine test cases that are usable and

unusable in a situation that the states of the GUI is modified,

and furthermore determines which of the unusable test cases

can be repaired and make it usable for the modified

graphical user interface. This attribute made it usable for

regression testing [10]. The observed laps with the Capture /

Replay method is that it does not provide functionality to

evaluate the coverage of a test suite mainly because it does

not have a global view of the GUI.

Misurda, et al., [11] described a demand-driven

framework for program testing having scalability and

flexibility features. It makes use of test paths for the

implementation of test coverage. This framework also has a

means of ensuring performance and memory overheads are

kept low through the use of dynamic instrumentation on the

binary code which can be inserted and removed as at when

required.

Matteo et al., [12] in their own work proposed a

framework called Covertures which is a virtualized

execution platform meant for cross-compiled application on

the host. This framework has the ability to carry out

measurement of structural coverage of both object and

source code without application instrumentation.

Sakamoto et al., [13] proposed a framework for consistent

and flexible measurement of test coverage. This framework

has support for multiple programming languages and also

provides guidelines for the support of several test coverage

criteria. The flexibility attribute of this framework is that it

allows for the inclusion of user defined test coverage and

new programming language. This framework is called Open

Code Coverage Framework (OCCF).

Even though, models are costly to create and have a

limited applicability, approaches based on modeling have

been employed often in carrying out testing of software. In

view of this fact, model based approaches are not being

employed frequently for testing GUI software [14].

A Genetic Algorithm (GA) can be defined as a problem-

solving approach that is developed as a programming

technique by imitating the theory of natural evolution of

species as proposed by Charles Darwin. In solving a specific

problem using the genetic algorithm concept, it begins with

a set of individuals (solution candidates) that forms a

population which is generated in a random way. The genetic

algorithm now selects parents from which to generate

offspring by using reproductive operators that are analogous

to biological processes mainly crossover and mutation [15].

The resulting chromosomes are then evaluated using a

fitness function in order to determine how strong they are,

the fitness values are then employed in taking a decision on

which chromosome to be eliminated or retained [15].

In order to generate a new set of solution candidates (new

population), the chromosomes having a high fitness value

are retained while those that are not fit are discarded.

Afterwards, a check is carried out to determine an individual

in the population that connects the same two points as the

 American Journal of Software Engineering and Applications 2016; 5(2): 7-14 9

newly generated individual. If not exist, new individual is

added to the population and if yes, the old individual is

replaced by the new one if its fit value is higher. These

variation and selection steps are repeated until a termination

condition is met [16].

A genetic algorithm is especially appropriate to the

solution of indefinite problems or non-linear complex

problems [17]. Jones et al. [18, 19] proposed a technique to

generate test-data for branch coverage using genetic

algorithm. The technique revealed good results with number

of small programs. Though Control Flow Graph (CFG) was

employed in guiding the search; they based the fitness value

on branch value and branching condition. In another study

by Michael et al. [20], a tool for generating test data was

developed using four different algorithms, two of which are

genetic algorithm. This tool is called Gadget. With Gadget,

they were able to obtain good condition / decision coverage

of C/ C++ code.

Pargas et al. [21] also made use of genetic algorithm using

the Control Dependence Graph (CDG) to search for test data

that will give good coverage. They did a comparison of their

system with random testing using six C programs of varying

sizes. The outcome of their experiment revealed no

difference with the smallest programs but the genetic

algorithm based method gave a better performance for the

three largest programs.

Shunkun et al, [22] capitalized on the pitfalls in the

traditional Ant Colony Optimization algorithm for test cases

generation in software testing engineering. Some of the

flaws are relative scarcity of early search pheromone, low

search efficacy and simplicity of the search model. They

came up with three improved Ant colony algorithm which

are now integrated to form A Comprehensive Improved Ant

Colony Optimization (ACIACO), and they were able to

generate higher coverage results.

Abdul Rauf et al., [14] proposed a system for GUI testing

and coverage analysis based on traditional genetic algorithm.

Their method is subdivided into three major blocks; Test

data generation, path coverage analysis and optimization of

test paths. The proposed system made use of traditional

genetic algorithm for the optimization of test paths.

The present study considers an improvement over the GUI

testing coverage analysis by Abdul Rauf et al., [14]. They

made use of the basic Genetic Algorithm to optimize the test

paths, but here, we modify the basic Genetic Algorithm to

optimize the test paths with the hope of achieving a higher

coverage analysis than what they obtained.

3. Research Methodology

3.1. Experimental Approach

A GUI is a hierarchical, graphical front-end to a software

system that accepts as input user-generated and system-

generated events from a fixed set of events and produces

deterministic graphical output. A GUI contains graphical

objects; each object has a fixed set of properties [14].

To test GUI and analyse the coverage, the proposed

methodology was divided into three major blocks listed

below as earlier suggested by Abdul Rauf et al., [14].

i. Test data generation.

ii. Path Coverage Analysis.

iii. Optimization of Test Paths.

The test data generation is a set of events that were

generated from the application that was used for the

experiment. This was generated manually by carrying out

several test cases on the application to be used for the GUI

test while keeping the event identities (ids) being generated

in a text file. These event ids were then arranged to

determine the path coverage analysis, which is the second

block in the methodology being employed.

This study employed the event flow graph (EFG)

technique of the GUI test. A User defined calculator was

built in C# programming language. This user defined

calculator had an in-built instrumentation code that logs

parameters like the event_id (widget id), button_name etc. as

the application is being interacted with. Another application

used in testing our methodology was a user defined Notepad

that was developed with Java programming language. It also

had an in-built instrumentation code that logs parameters

like the event_id (widget id), button_name etc. as the

application is being interacted with. Thereafter, we extended

our testing to Microsoft (MS) Notepad application.

3.2. Fitness Function Evaluation

Given an input to a program, the fitness function returns a

number that indicates the acceptability of the program. The

selection algorithm uses the fitness function to determine

which variants survive to the next iteration, and this is

employed as a termination criterion for the search. In this

work, our fitness function was based on how much test cases

were successfully validated in line with Abdul et al., [14].

Fitness function is hereby defined as Test paths covered

by chromosome divided by the total number of test paths i.e.

Fitness =
�	
�
���
 ���	�	� �� ������
��	

����� ����	� �� �	
�
���

 (Abdul et al., [14]).

3.3. The Modified Reproduction Operation

There are basically two reproduction operators in genetic

algorithm: Crossover and Mutation. In this work, the

reproduction operators were employed in order to increase

the coverage efficiency. However, this work is capitalizing

on the pitfalls of the basic genetic algorithm in the area of

reproduction operator known as Mutation. In the basic

genetic algorithm, there is equal application of mutation

operator which can as well be referred to as total

randomness of mutation irrespective of their fitness. The

implication of this action is that a very good chromosome

(chromosome of high fitness) is equally likely to be

disrupted by mutation as a bad one. Though we know that

bad chromosome are less likely to produce good ones

through crossover due to their lack of building blocks.

After the crossover operation has been performed we

10 Asade Mojeed Adeniyi and Akinola Solomon Olalekan: An Improved Genetic Algorithm-Based

Test Coverage Analysis for Graphical User Interface Software

introduced the evaluation of the mean fitness of the

chromosome; thereafter making a comparison of each

chromosome to the mean fitness value. The chromosomes

having fitness greater than or equal to the mean fitness were

made to join the new population without passing through

mutation exercise while those with fitness value below the

mean fitness value were made to pass through the mutation

exercise so that they can benefit most from the operation.

This process continues until the termination criterion is met

and the whole process comes to a halt and the result is

displayed. Figure 1 shows the design and execution flow of

basic GA [8]; while figure 2 shows the proposed modified

GA Algorithm for optimization of paths.

Figure 1. Basic Genetic Algorithms - Design and Execution Flow (Samarah, 2006).

Figure 2. Execution flow of the proposed Optimized Genetic Algorithm Method for Optimization of Paths.

 American Journal of Software Engineering and Applications 2016; 5(2): 7-14 11

Figure 3 represents sample test cases for the calculator

that was used to test the project while Figure 4 represents

the widgets on the calculator with corresponding labels for

each of the widgets. For instance, if we pick (the last entry

in Figure 3) 4, 5, 8, 13, 5, 17 it implies 458 divide (13)

equals (17).

Figure 3. Sample Test Cases for Calculator.

Figure 4. Representations of the Calculator Widgets.

3.4. Formation of Chromosomes

An Actions File was used to denote what each of the paths

in the test cases file represents for ease of transformation

from numerical value to the widget name. The test case

having the longest length determines the length of the

chromosomes to be generated. For instance, if the longest

test case is having a length 10, then the length of the

chromosomes will be 10. From Figure 3, the longest test

case is having length 7, if that test case file is used for the

experiment, the chromosomes to be formed will be of length

7 i.e. consists of 7 genomes.

3.5. Software Tools

Earlier works in GUI software testing have explored

several software packages for the execution of their

experiments based on their proposed approaches. Some of

the available packages that have been used are GUITAR

(Graphical User Interface Testing fRamework) GUI Ripper

(This is meant for reverse engineering), PATHS (Planning

Assisted Tester for grapHical user interface Systems), C++,

Java, C# (C-Sharp) and MATLAB (MATrix LABoratory).

Software interfaces to be tested are sometimes written in

C++, Java or C-Sharp programming languages. The tool for

the optimization of test paths in our proposed approach was

developed using the Java Programming Language because

of its comprehensive and powerful exploration capabilities.

3.6. Test Data Generation

The use of events to produce data for the testing of GUI

software has become a common practice since the software

is characterized by states. The technique for the test data

generation is based on events. We made use of user-defined

calculator, user-defined notepad application and we

extended it to an off –the-shelf MS Notepad application. The

interface of our Calculator and user defined Notepad is

shown in Figures 5 and 6 respectively. As event takes place,

the event ids as well as the widget get stored into a notepad

from where they will be picked up for further analysis. This

approach made the path coverage analysis to be carried out

easily.

Figure 5. Interface of calculator application.

12 Asade Mojeed Adeniyi and Akinola Solomon Olalekan: An Improved Genetic Algorithm-Based

Test Coverage Analysis for Graphical User Interface Software

Figure 7 represents the internal labels that were used to

represent each of the calculator widgets within the program

for the calculator for ease of logging in order to know the

particular calculator button that is pressed.

Figure 6. Interface of User Defined Notepad.

Figure 7. Event ID’s of Calculator application.

Path coverage (%) = ((no. of paths Covered) / (total no. of

independent paths)) × 100

Figure 8. Sample of Sequence of Generated Events.

Figure 8 is a set of sequence of events generated while

using the calculator. The numbers displayed are the internal

labels that were used to represent each of the widgets in the

calculator. For instance, looking at Figure 7 that displays

2009, 3004, 2003, 2009, it implies the following widgets on

the calculator 9, /, 3, 9 were pressed. The formula adopted

for calculating the Coverage is as follows:

4. Experimental Results

Table 1 gives a summary of the details of the parameters

that were used during experimental run. The initial

population was set to 100 while the number of generations

ranges between 300 and 500 at a step of 25. The crossover

probability was set to 0.88 while the mutation probability

was set to 0.03. The termination criteria was used to halt

each run of the experiment either when the coverage

achieved is 88% or the number of generation reached the set

threshold.

Table 1. Parameters Used.

Parameters Values

Population 100

Number of generations 300-500

Mutation Probability 0.03

Crossover Probability 0.88

Termination criteria Coverage >88% or Generation = 500

Table 2 shows the results of the coverage achieved for

each of the three applications that were used with the Basic

Genetic Algorithm as well as the average coverage per

generation with generation ranging between 300 and 500 at

a step of 25. The highest coverage obtained for Ms-Notepad,

User Defined Notepad and User Defined Calculator at 500

generations were 85%, 87.67% and 71.43% respectively

which are also in line with what Abdul et al., (2010)

obtained using the basic Genetic Algorithm except for

calculator that was slightly higher. The average coverage

achieved with the basic genetic algorithm after 500

generations was 81.37%.

Table 2. Coverage with respect to number of generations using Basic

Genetic Algorithm.

Number of

Generations

MS

Notepad

User

Defined

Notepad

Calculator

Coverage

Av.

Coverage

300 68.00% 73.33% 50.00% 63.78%

325 72.00% 73.33% 57.14% 67.49%

350 76.00% 76.33% 57.14% 69.82%

375 76.00% 76.67% 64.29% 72.32%

400 76.00% 83.33% 64.29% 74.54%

425 76.00% 84.67% 71.43% 77.37%

450 80.00% 86.67% 71.43% 79.37%

475 84.00% 87.67% 71.43% 81.03%

500 85.00% 87.67% 71.43% 81.37%

Table 3. Coverage with respect to number of generations using Optimized

Basic Genetic Algorithm.

Number of

Generations

MS

Notepad

User

Defined

Notepad

Calculator

Coverage

Average

Coverage

300 72.00% 80.00% 57.14% 69.71%

325 76.00% 80.00% 57.14% 71.05%

350 84.00% 83.33% 64.29% 77.21%

375 84.00% 86.67% 64.29% 78.32%

400 84.00% 86.67% 64.29% 78.32%

425 84.00% 86.67% 64.29% 78.32%

450 88.00% 88.67% 72.43% 83.03%

475 88.00% 90.00% 72.43% 83.48%

500 92.00% 90.00% 73.43% 85.14%

Table 3 displays the results of the coverage achieved

using the Modified Basic Genetic Algorithm on the same

data set as the basic genetic algorithm for each of the three

applications that were used for the experiment. The same

numbers of generations were used and the average coverage

achieved was 85.14% at 500 generations starting from 300 at

a step of 25. This result shows a significant improvement

over that of basic genetic algorithm that gave us an average

of 81.37%. However, looking at the obtained coverage for

 American Journal of Software Engineering and Applications 2016; 5(2): 7-14 13

MS-Notepad application at 500 generations, the obtained

coverage of 92% is higher than what the Abdul et al., (2010)

obtained with the basic genetic algorithm. This is an

indication of better performance with our proposed

methodology.

Table 4 highlights a comparison of the average coverage

of the basic and the proposed (modified) Gas.

The results obtained for the proposed methodology from

our experiment reveals some significant improvements over

the results obtained from the benchmarked methodology.

The comparisons of both methodologies are shown in

Figures 9, 10 and 11 via graphical charts for each

application with an average coverage of 81.37% and 85.14%

for Basic Genetic Algorithm and Optimized Genetic

Algorithm respectively.

Table 4. Comparison of Basic GA and Optimized GA on Average Test Path

Coverage.

Number of Generations Basic G. A Optimized G. A

300 63.78% 69.71%

325 67.49% 71.05%

350 69.82% 77.21%

375 72.32% 78.32%

400 74.54% 78.32%

425 77.37% 78.32%

450 79.37% 83.03%

475 81.03% 83.48%

500 81.37% 85.14%

Figure 9. Comparison of basic and optimized GAs on test path coverage for

MS-Notepad.

Figure 10. Comparison of basic and optimized GAs on test path coverage

for User-defined Notepad.

Figure 11. Comparison of basic and optimized GAs on test path coverage

for user-defined Calculator.

Figure 12. Comparison of basic and optimized GAs based on Average Path

Coverage for all the applications.

The results reveal that an increase in the number of

generations is directly proportional to an increase in percent

coverage. The study reveals that the Optimized Basic

Genetic Algorithm produces better results than the Basic

Genetic Algorithm. The overall average coverage achieved

for both methodologies is shown graphically in Figure 12.

The implication of the achieved coverage is that there is

still need for more testing to be carried out, which is an

indication for the test case generators to focus on the area

that have not been tested and generate more test cases from

there. By this, we can be rest assured of the quality and

reliability of the software to be delivered.

5. Conclusion

From the obtained result in this study, it is hereby

concluded that the optimized Genetic Algorithm improves

significantly the Adequacy Ratio or Coverage Analysis value

for GUI software test over the existing non-adaptive

mutation basic Genetic Algorithm.

References

[1] Abdul R., Aleisa E. and Bakhsh I. (2013). GUI Test Coverage
Analysis using NSGA II, The Proceeding Of International
Conference on Soft Computing and Software Engineering
[SCSE’13], San Francisco State University, CA, U. S. A.,
March 2013.

14 Asade Mojeed Adeniyi and Akinola Solomon Olalekan: An Improved Genetic Algorithm-Based

Test Coverage Analysis for Graphical User Interface Software

[2] Pfleeger S. L. (2001). Software Engineering Theory and
Practice, Prentice Hall.

[3] Chayanika S., Sangeeta S. and Ritu S. (2013). A Survey on
Software Testing Techniques using Genetic Algorithm,
International Journal of Computer Science Issues, Vol. 10,
Issue 1, No 1, January 2013.

[4] Glenford J. M. (2004). The Art of software Testing, Second
Edition, Revised and Updated by Tom Badgett and Todd M.
Thomas with Corey Sandler, John Wiley & Sons, Inc. 2004.

[5] Pierre B. and Richard E. F. (2014). Guide to the Software
Engineering Body of Knowledge V3.0, A project of IEEE
computer Society 2014.

[6] Muhammad S., Suhaimi I. and Mohd N. M. (2011). A Study
on Test Coverage in Software Testing, International
conference on Telecommunication Technology and
Applications, Proc of CSIT Vol. 5 IACSIT Press, Singapore,
2011.

[7] Michalewics Z. (1992). Genetic Algorithm + Data Structures
= Evolution Programs, Springer, 1992.

[8] Samarah Amer (2006). Automated Coverage Directed Test
Generation Using a Cell-Based Genetic Algorithm (An
Unpublished publication).

[9] Memon A. M. (2001). A Comprehensive Framework for
Testing Graphical User Interfaces, Ph. D. Thesis, University
of Pittsburgh, Pittsburg, PA.

[10] Memon A. M. and Soffa M. (2003). Regression Testing of
GUI’s, Proceeding of European Software Engineering
Conference /FSE’03. Sep. 2003.

[11] Misurda J., Clause J. A., et al. (2005). Demand-driven
structural testing with Dynamic instrumentation, In
Proceedings of 27th International Conference on Software
Engineering, 2005 ICSE 2005, pp. 165-175.

[12] Matteo B, Cyrille C., Tristan G., Jerome G., Thomas Q. and
Olivier H. et al., (2009). Covertures: an Innovative Open
Framework for code coverage analysis of safety critical
applications, Covertures Open Repository at Open-DO.org,
http://forge.open-do.org/projects/couverture.

[13] Sakamoto K., Washizaki H., et al. (2010). Open Code
Coverage Framework: A Consistent and Flexible Framework
for Measuring Test Coverage Supporting Multiple
Programming Languages, 10th International Conference on
Quality Software, QSIC, 2010, pp. 262-269.

[14] Abdul R., Arfan, J. and Arshad A. S (2010). Fully Automated
GUI test coverage analysis using GA, Seventh International
conference on information technology. IEEE 2010, pp. 1057-
1063.

[15] Wen-Yang L., Wen-Yuan L. and Tzung-Pei H (2003).
Adapting Crossover and Mutation in Genetic Algorithms”
Journal of Information Science and Engineering, 19, 889-903
2003.

[16] Benjamin D., Edda H. and Christian K. (2008). Crossover
Can Provably be Useful in Evolutionary Computation.

[17] Wu, Y., Ji P. and Wang T. (2008). An empirical study of a
pure genetic algorithm to solve the capacitated vehicle
routing problem, ICIC Express Letters, Vol. 2, No. 1, pp. 41-
45, 2008.

[18] Jones B. F., Sthamer H. H. and D. E. Eyres (1996). Automatic
structural testing using Genetic algorithms, The Software
Engineering Journal, Vol. 11, No. 5, pp. 299-306, 1996.

[19] Jones, B. F., Eyres D. E. and Sthamer H. H., (1998). A
Strategy for using genetic algorithms to automate branch and
fault-based testing, The Computer Journal, Vol. 41, No. 2, pp.
98-107, 1998.

[20] Michael C. C., McGraw G. and Schatz M. A. (2001).
Generating software test data by evolution, IEEE
Transactions on Software Engineering, Vol. 27, No. 12, pp.1
085-1110.

[21] Pargas R., Harrold M. J. and Peck R. (2008). Test-data
generation using genetic algorithms, Journal of Software
Testing, Verification and reliability, Science and Software
Engineering, Vol. 9, No. 4.

[22] Shunkun Y., Tianlong M. and Jiaqi X. (2014). Improved Ant
Algorithms for Software Testing Cases Generation, the
Scientific World Journal Vol. 2014, Article ID 392309, 9
pages Hindawi Publishing Corporation.

