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Abstract: Quality and reliability of software products can be determined through the amount of testing that is carried out on 

them. One of the metrics that are often employed in measuring the amount of testing is the coverage analysis or adequacy ratio. 

In the proposed optimized basic Genetic Algorithm (GA) approach, a concept of adaptive mutation was introduced into the 

basic GA in order for low-fitness chromosomes to have an increased probability of mutation, thereby enhancing their role in 

the search to produce more efficient search. The main purpose of this concept is to decrease the chance of disrupting a high-

fitness chromosome and to have the best exploitation of the exploratory role of low-fitness chromosome. The study reveals that 

the optimized basic GA improves significantly the adequacy ratio or coverage analysis value for Graphical User Interface 

(GUI) software test over the existing non-adaptive mutation basic GA. 
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1. Introduction 

Graphical User Interface (GUI) is a means of interaction 

between an end user and a software system. Software 

systems have gained an unprecedented popularity for so long 

and the biggest factor behind this success is Graphical user 

interface. Software developing companies and developers 

have always shown a desire for fully assured high quality 

software. In order to ensure this desire is fulfilled, software 

must go through a comprehensive testing. It seems almost 

impossible to test GUI application manually because of the 

involved complexity thereby creating the need for test data 

automation [1]. 

The quality of software products is of paramount 

importance to users. According to Pfleeger [2], quality 

software is “Software that satisfies the needs of the users 

and the programmers involved in it”. Technological 

advancements have been responsible for the complex nature 

of computer and in particular the software that drives it. 

Based on this, the correctness of the software is of high 

importance which cannot even be guaranteed by the 

developer that designs the software.  

Chayanika et al., [3] assert that the main purpose of 

software industry is to ensure that the software delivered to 

the end users is of high standard. Testing of software 

therefore cannot be overemphasized as this plays a major 

role in deciding the quality and reliability of the delivered 

software as well as ensuring the software meets the users’ 

requirements. 

Our everyday life dependence on computer; be it mobile, 

home appliances or office has rather placed an importance 

on software testing since we cannot afford to let the system 

fail us. Glenford [4] views testing as a process, or a series of 

processes, designed to make sure computer code does what 

it was designed to do and that it does not do anything 

unintended. Software should be predictable and consistent, 

offering no surprises to users. Software testing is more 

properly viewed as the destructive process of trying to find 

the errors (whose presence is assumed) in software. 

Glenford [4] opined further that a successful test case is one 

that furthers progress in this direction by causing the 

software to fail.  

In reality, planning for software testing should begin with 

the early stages of the software requirements process, and 

test plans and procedures should be systematically and 
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continuously developed (which could possibly be refined) as 

software development proceeds [5]. This is so because the 

test planning and designing activities serve as a clue to 

software designers/developers by assisting to highlight likely 

weaknesses, such as conflicts or oversights /contradictions, 

or ambiguities in the [5]. 

Coverage analysis can simply be defined as a measure of 

test case completeness. It can further be inferred as a means 

of determining how much test needs to be conducted in 

order to ascertain the quality of the developed software. Test 

coverage analysis can be done in order to determine test 

effectiveness, test suit improvement and software reliability 

estimation. Coverage is the extent to which a structure has 

been exercised as a percentage of the items being covered 

[6]. According to Muhammad et al. [6], test coverage is 

regarded as a key indicator of software quality and a crucial 

part of software maintenance which assists in carrying out 

the efficacy of testing through the provision of data on 

diverse coverage items. Test coverage is an indicator that 

gives insight to the test generators to focus on creating test 

cases that cover the areas that have not been tested. 

Genetic Algorithms (GAs) have been applied to a broad 

range of searching, optimization, and machine learning 

problems. GAs are iterative procedures implemented as a 

computerized search and optimization procedure that uses 

principles of natural selection. It performs a multi- directional 

search by maintaining a population of potential solutions 

(called individuals) and exchange information between these 

solutions through simulated evolution and forward relatively 

“good” information over generations until it finds a near 

optimal solution for specific problem [7]. More often than not, 

GA’s converge rapidly to quality solutions. Although they do 

not guarantee convergence to the single best solution to the 

problem, the processing power associated with GA’s makes 

them efficient search techniques [8]. 

There have been a number of studies that employ genetic 

algorithms for software testing. In this study, a concept of 

adaptive mutation was introduced into the basic genetic 

algorithm in order for low-fitness chromosomes to have an 

increased probability of mutation, thereby enhancing their role 

in the search to produce more efficient search. Section 2 of 

this paper highlights some related works while Section 3 gives 

the methodology for the study. In Section 4, results are 

presented and discussed and conclusion is drawn in Section 5. 

2. Related Works 

Memon, [9] in his PhD research focused on developing a 

testing framework for Graphical User interface (GUI) which 

covers the areas of testing environments, test coverage 

criteria development, test case generation, test oracles and 

regression testing. Research at that time on GUI was still at 

its infancy. So he had to adapt techniques from general 

software testing for GUI testing. The GUIs are differentiated 

from the traditional software with some characteristics like 

user events for input and graphical output and thus require 

different testing techniques.  

Capture /Replay is a popular method that is being used for 

GUI software testing. One merit offered by this method is 

that it is able to determine test cases that are usable and 

unusable in a situation that the states of the GUI is modified, 

and furthermore determines which of the unusable test cases 

can be repaired and make it usable for the modified 

graphical user interface. This attribute made it usable for 

regression testing [10]. The observed laps with the Capture / 

Replay method is that it does not provide functionality to 

evaluate the coverage of a test suite mainly because it does 

not have a global view of the GUI. 

Misurda, et al., [11] described a demand-driven 

framework for program testing having scalability and 

flexibility features. It makes use of test paths for the 

implementation of test coverage. This framework also has a 

means of ensuring performance and memory overheads are 

kept low through the use of dynamic instrumentation on the 

binary code which can be inserted and removed as at when 

required. 

Matteo et al., [12] in their own work proposed a 

framework called Covertures which is a virtualized 

execution platform meant for cross-compiled application on 

the host. This framework has the ability to carry out 

measurement of structural coverage of both object and 

source code without application instrumentation.  

Sakamoto et al., [13] proposed a framework for consistent 

and flexible measurement of test coverage. This framework 

has support for multiple programming languages and also 

provides guidelines for the support of several test coverage 

criteria. The flexibility attribute of this framework is that it 

allows for the inclusion of user defined test coverage and 

new programming language. This framework is called Open 

Code Coverage Framework (OCCF). 

Even though, models are costly to create and have a 

limited applicability, approaches based on modeling have 

been employed often in carrying out testing of software. In 

view of this fact, model based approaches are not being 

employed frequently for testing GUI software [14]. 

A Genetic Algorithm (GA) can be defined as a problem-

solving approach that is developed as a programming 

technique by imitating the theory of natural evolution of 

species as proposed by Charles Darwin. In solving a specific 

problem using the genetic algorithm concept, it begins with 

a set of individuals (solution candidates) that forms a 

population which is generated in a random way. The genetic 

algorithm now selects parents from which to generate 

offspring by using reproductive operators that are analogous 

to biological processes mainly crossover and mutation [15]. 

The resulting chromosomes are then evaluated using a 

fitness function in order to determine how strong they are, 

the fitness values are then employed in taking a decision on 

which chromosome to be eliminated or retained [15]. 

In order to generate a new set of solution candidates (new 

population), the chromosomes having a high fitness value 

are retained while those that are not fit are discarded. 

Afterwards, a check is carried out to determine an individual 

in the population that connects the same two points as the 
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newly generated individual. If not exist, new individual is 

added to the population and if yes, the old individual is 

replaced by the new one if its fit value is higher. These 

variation and selection steps are repeated until a termination 

condition is met [16]. 

A genetic algorithm is especially appropriate to the 

solution of indefinite problems or non-linear complex 

problems [17]. Jones et al. [18, 19] proposed a technique to 

generate test-data for branch coverage using genetic 

algorithm. The technique revealed good results with number 

of small programs. Though Control Flow Graph (CFG) was 

employed in guiding the search; they based the fitness value 

on branch value and branching condition. In another study 

by Michael et al. [20], a tool for generating test data was 

developed using four different algorithms, two of which are 

genetic algorithm. This tool is called Gadget. With Gadget, 

they were able to obtain good condition / decision coverage 

of C/ C++ code. 

Pargas et al. [21] also made use of genetic algorithm using 

the Control Dependence Graph (CDG) to search for test data 

that will give good coverage. They did a comparison of their 

system with random testing using six C programs of varying 

sizes. The outcome of their experiment revealed no 

difference with the smallest programs but the genetic 

algorithm based method gave a better performance for the 

three largest programs. 

Shunkun et al, [22] capitalized on the pitfalls in the 

traditional Ant Colony Optimization algorithm for test cases 

generation in software testing engineering. Some of the 

flaws are relative scarcity of early search pheromone, low 

search efficacy and simplicity of the search model. They 

came up with three improved Ant colony algorithm which 

are now integrated to form A Comprehensive Improved Ant 

Colony Optimization (ACIACO), and they were able to 

generate higher coverage results. 

Abdul Rauf et al., [14] proposed a system for GUI testing 

and coverage analysis based on traditional genetic algorithm. 

Their method is subdivided into three major blocks; Test 

data generation, path coverage analysis and optimization of 

test paths. The proposed system made use of traditional 

genetic algorithm for the optimization of test paths. 

The present study considers an improvement over the GUI 

testing coverage analysis by Abdul Rauf et al., [14]. They 

made use of the basic Genetic Algorithm to optimize the test 

paths, but here, we modify the basic Genetic Algorithm to 

optimize the test paths with the hope of achieving a higher 

coverage analysis than what they obtained. 

3. Research Methodology 

3.1. Experimental Approach 

A GUI is a hierarchical, graphical front-end to a software 

system that accepts as input user-generated and system-

generated events from a fixed set of events and produces 

deterministic graphical output. A GUI contains graphical 

objects; each object has a fixed set of properties [14]. 

To test GUI and analyse the coverage, the proposed 

methodology was divided into three major blocks listed 

below as earlier suggested by Abdul Rauf et al., [14]. 

i. Test data generation. 

ii. Path Coverage Analysis. 

iii. Optimization of Test Paths. 

The test data generation is a set of events that were 

generated from the application that was used for the 

experiment. This was generated manually by carrying out 

several test cases on the application to be used for the GUI 

test while keeping the event identities (ids) being generated 

in a text file. These event ids were then arranged to 

determine the path coverage analysis, which is the second 

block in the methodology being employed. 

This study employed the event flow graph (EFG) 

technique of the GUI test. A User defined calculator was 

built in C# programming language. This user defined 

calculator had an in-built instrumentation code that logs 

parameters like the event_id (widget id), button_name etc. as 

the application is being interacted with. Another application 

used in testing our methodology was a user defined Notepad 

that was developed with Java programming language. It also 

had an in-built instrumentation code that logs parameters 

like the event_id (widget id), button_name etc. as the 

application is being interacted with. Thereafter, we extended 

our testing to Microsoft (MS) Notepad application. 

3.2. Fitness Function Evaluation 

Given an input to a program, the fitness function returns a 

number that indicates the acceptability of the program. The 

selection algorithm uses the fitness function to determine 

which variants survive to the next iteration, and this is 

employed as a termination criterion for the search. In this 

work, our fitness function was based on how much test cases 

were successfully validated in line with Abdul et al., [14]. 

Fitness function is hereby defined as Test paths covered 

by chromosome divided by the total number of test paths i.e. 

Fitness =
�	
� 
���
 ���	�	� �� ������
��	

����� ����	� �� �	
� 
���

 (Abdul et al., [14]). 

3.3. The Modified Reproduction Operation 

There are basically two reproduction operators in genetic 

algorithm: Crossover and Mutation. In this work, the 

reproduction operators were employed in order to increase 

the coverage efficiency. However, this work is capitalizing 

on the pitfalls of the basic genetic algorithm in the area of 

reproduction operator known as Mutation. In the basic 

genetic algorithm, there is equal application of mutation 

operator which can as well be referred to as total 

randomness of mutation irrespective of their fitness. The 

implication of this action is that a very good chromosome 

(chromosome of high fitness) is equally likely to be 

disrupted by mutation as a bad one. Though we know that 

bad chromosome are less likely to produce good ones 

through crossover due to their lack of building blocks. 

After the crossover operation has been performed we 
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introduced the evaluation of the mean fitness of the 

chromosome; thereafter making a comparison of each 

chromosome to the mean fitness value. The chromosomes 

having fitness greater than or equal to the mean fitness were 

made to join the new population without passing through 

mutation exercise while those with fitness value below the 

mean fitness value were made to pass through the mutation 

exercise so that they can benefit most from the operation. 

This process continues until the termination criterion is met 

and the whole process comes to a halt and the result is 

displayed. Figure 1 shows the design and execution flow of 

basic GA [8]; while figure 2 shows the proposed modified 

GA Algorithm for optimization of paths. 

 
Figure 1. Basic Genetic Algorithms - Design and Execution Flow (Samarah, 2006). 

 
Figure 2. Execution flow of the proposed Optimized Genetic Algorithm Method for Optimization of Paths. 
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Figure 3 represents sample test cases for the calculator 

that was used to test the project while Figure 4 represents 

the widgets on the calculator with corresponding labels for 

each of the widgets. For instance, if we pick (the last entry 

in Figure 3) 4, 5, 8, 13, 5, 17 it implies 458 divide (13) 

equals (17). 

  

Figure 3. Sample Test Cases for Calculator. 

 

Figure 4. Representations of the Calculator Widgets. 

3.4. Formation of Chromosomes 

An Actions File was used to denote what each of the paths 

in the test cases file represents for ease of transformation 

from numerical value to the widget name. The test case 

having the longest length determines the length of the 

chromosomes to be generated. For instance, if the longest 

test case is having a length 10, then the length of the 

chromosomes will be 10. From Figure 3, the longest test 

case is having length 7, if that test case file is used for the 

experiment, the chromosomes to be formed will be of length 

7 i.e. consists of 7 genomes. 

3.5. Software Tools 

Earlier works in GUI software testing have explored 

several software packages for the execution of their 

experiments based on their proposed approaches. Some of 

the available packages that have been used are GUITAR 

(Graphical User Interface Testing fRamework) GUI Ripper 

(This is meant for reverse engineering), PATHS (Planning 

Assisted Tester for grapHical user interface Systems), C++, 

Java, C# (C-Sharp) and MATLAB (MATrix LABoratory). 

Software interfaces to be tested are sometimes written in 

C++, Java or C-Sharp programming languages. The tool for 

the optimization of test paths in our proposed approach was 

developed using the Java Programming Language because 

of its comprehensive and powerful exploration capabilities. 

3.6. Test Data Generation 

The use of events to produce data for the testing of GUI 

software has become a common practice since the software 

is characterized by states. The technique for the test data 

generation is based on events. We made use of user-defined 

calculator, user-defined notepad application and we 

extended it to an off –the-shelf MS Notepad application. The 

interface of our Calculator and user defined Notepad is 

shown in Figures 5 and 6 respectively. As event takes place, 

the event ids as well as the widget get stored into a notepad 

from where they will be picked up for further analysis. This 

approach made the path coverage analysis to be carried out 

easily. 

 

Figure 5. Interface of calculator application. 
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Figure 7 represents the internal labels that were used to 

represent each of the calculator widgets within the program 

for the calculator for ease of logging in order to know the 

particular calculator button that is pressed. 

 

Figure 6. Interface of User Defined Notepad. 

 
Figure 7. Event ID’s of Calculator application. 

Path coverage (%) = ((no. of paths Covered) / (total no. of 

independent paths)) × 100 

 
Figure 8. Sample of Sequence of Generated Events. 

Figure 8 is a set of sequence of events generated while 

using the calculator. The numbers displayed are the internal 

labels that were used to represent each of the widgets in the 

calculator. For instance, looking at Figure 7 that displays 

2009, 3004, 2003, 2009, it implies the following widgets on 

the calculator 9, /, 3, 9 were pressed. The formula adopted 

for calculating the Coverage is as follows: 

4. Experimental Results 

Table 1 gives a summary of the details of the parameters 

that were used during experimental run. The initial 

population was set to 100 while the number of generations 

ranges between 300 and 500 at a step of 25. The crossover 

probability was set to 0.88 while the mutation probability 

was set to 0.03. The termination criteria was used to halt 

each run of the experiment either when the coverage 

achieved is 88% or the number of generation reached the set 

threshold. 

Table 1. Parameters Used. 

Parameters Values 

Population 100 

Number of generations 300-500 

Mutation Probability 0.03 

Crossover Probability 0.88 

Termination criteria Coverage >88% or Generation = 500 

Table 2 shows the results of the coverage achieved for 

each of the three applications that were used with the Basic 

Genetic Algorithm as well as the average coverage per 

generation with generation ranging between 300 and 500 at 

a step of 25. The highest coverage obtained for Ms-Notepad, 

User Defined Notepad and User Defined Calculator at 500 

generations were 85%, 87.67% and 71.43% respectively 

which are also in line with what Abdul et al., (2010) 

obtained using the basic Genetic Algorithm except for 

calculator that was slightly higher. The average coverage 

achieved with the basic genetic algorithm after 500 

generations was 81.37%. 

Table 2. Coverage with respect to number of generations using Basic 

Genetic Algorithm. 

Number of 

Generations 

MS 

Notepad 

User 

Defined 

Notepad 

Calculator 

Coverage 

Av. 

Coverage 

300 68.00% 73.33% 50.00% 63.78% 

325 72.00% 73.33% 57.14% 67.49% 

350 76.00% 76.33% 57.14% 69.82% 

375 76.00% 76.67% 64.29% 72.32% 

400 76.00% 83.33% 64.29% 74.54% 

425 76.00% 84.67% 71.43% 77.37% 

450 80.00% 86.67% 71.43% 79.37% 

475 84.00% 87.67% 71.43% 81.03% 

500 85.00% 87.67% 71.43% 81.37% 

Table 3. Coverage with respect to number of generations using Optimized 

Basic Genetic Algorithm. 

Number of 

Generations 

MS 

Notepad 

User 

Defined 

Notepad 

Calculator 

Coverage 

Average 

Coverage 

300 72.00% 80.00% 57.14% 69.71% 

325 76.00% 80.00% 57.14% 71.05% 

350 84.00% 83.33% 64.29% 77.21% 

375 84.00% 86.67% 64.29% 78.32% 

400 84.00% 86.67% 64.29% 78.32% 

425 84.00% 86.67% 64.29% 78.32% 

450 88.00% 88.67% 72.43% 83.03% 

475 88.00% 90.00% 72.43% 83.48% 

500 92.00% 90.00% 73.43% 85.14% 

Table 3 displays the results of the coverage achieved 

using the Modified Basic Genetic Algorithm on the same 

data set as the basic genetic algorithm for each of the three 

applications that were used for the experiment. The same 

numbers of generations were used and the average coverage 

achieved was 85.14% at 500 generations starting from 300 at 

a step of 25. This result shows a significant improvement 

over that of basic genetic algorithm that gave us an average 

of 81.37%. However, looking at the obtained coverage for 
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MS-Notepad application at 500 generations, the obtained 

coverage of 92% is higher than what the Abdul et al., (2010) 

obtained with the basic genetic algorithm. This is an 

indication of better performance with our proposed 

methodology. 

Table 4 highlights a comparison of the average coverage 

of the basic and the proposed (modified) Gas. 

The results obtained for the proposed methodology from 

our experiment reveals some significant improvements over 

the results obtained from the benchmarked methodology. 

The comparisons of both methodologies are shown in 

Figures 9, 10 and 11 via graphical charts for each 

application with an average coverage of 81.37% and 85.14% 

for Basic Genetic Algorithm and Optimized Genetic 

Algorithm respectively. 

Table 4. Comparison of Basic GA and Optimized GA on Average Test Path 

Coverage. 

Number of Generations Basic G. A Optimized G. A 

300 63.78% 69.71% 

325 67.49% 71.05% 

350 69.82% 77.21% 

375 72.32% 78.32% 

400 74.54% 78.32% 

425 77.37% 78.32% 

450 79.37% 83.03% 

475 81.03% 83.48% 

500 81.37% 85.14% 

 
Figure 9. Comparison of basic and optimized GAs on test path coverage for 

MS-Notepad. 

 
Figure 10. Comparison of basic and optimized GAs on test path coverage 

for User-defined Notepad. 

 
Figure 11. Comparison of basic and optimized GAs on test path coverage 

for user-defined Calculator. 

 
Figure 12. Comparison of basic and optimized GAs based on Average Path 

Coverage for all the applications. 

The results reveal that an increase in the number of 

generations is directly proportional to an increase in percent 

coverage. The study reveals that the Optimized Basic 

Genetic Algorithm produces better results than the Basic 

Genetic Algorithm. The overall average coverage achieved 

for both methodologies is shown graphically in Figure 12. 

The implication of the achieved coverage is that there is 

still need for more testing to be carried out, which is an 

indication for the test case generators to focus on the area 

that have not been tested and generate more test cases from 

there. By this, we can be rest assured of the quality and 

reliability of the software to be delivered. 

5. Conclusion 

From the obtained result in this study, it is hereby 

concluded that the optimized Genetic Algorithm improves 

significantly the Adequacy Ratio or Coverage Analysis value 

for GUI software test over the existing non-adaptive 

mutation basic Genetic Algorithm. 
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