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Abstract: In order to solve the vehicle routing problem, this paper introduces the Gauss mutation, which is based on the 

common particle swarm algorithm, to constitute an improved particle swarm algorithm (NPSO). In the process of solving vehicle 

routing problem, the NPSO is encoded by integer and proposes a new way to adjust the infeasible solutions. The particles are 

divided into two overlapping subgroups, and join the two-two exchange neighborhood search to iterate. Finally, the simulation 

experiments show that the proposed algorithm can get the optimal solution faster and better, and it has a certain validity and 

practicability. 
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1. Introduction 

Routing Problem Vehicle (VRP) is a typical NP-hard 

problem, and proposed first by Dantzig and Ramser in 1959. 

Recent years, it has been a hot research field in computer 

science, operations research and combination optimization. 

Many problems in our daily life can be abstracted as vehicle 

routing problem, such as logistics distribution, power dispatch, 

postal delivery, school bus and routing problem, etc. This 

problem is full of important theoretical significance and 

engineering value on improving production efficiency and 

improving economic efficiency. Those years, many scholars 

have tried to introduce the general heuristic algorithm, genetic 

algorithm, ant colony algorithm for VRP problems and have 

achieved some good results [1-3]. 

Particle swarm optimization (PSO) is a global optimization 

evolutionary algorithm, which was put forward by Kennedy 

and Eberhart first in 1995 to solve the optimization problem of 

continuous domain function [4-5]. PSO is affected by the 

history optimum and global optimum of the particles, which 

can quickly converge to the global optimum or the local 

optimum. Since PSO has the characteristics of easy 

implementation, simple structure and strong robustness, many 

scholars have used it to solve the problem of discrete domain 

in recent years. For example, shop scheduling problems, etc. 

Based on the quantum particle swarm algorithm, crossover 

and mutation operation are added in [6] to improve the local 

search ability of the algorithm. In [7], a two-way vehicle 

scheduling problem model is established with the basis of the 

particle swarm algorithm and the mountain climbing 

operation is introduced, which effectively solves the problem 

of logistics distribution; In paper [8], a new particle swarm 

optimization algorithm is designed, which introduces the local 

neighbor mechanism and can optimize infeasible solutions. 

The algorithm obtains comparatively satisfactory results in 

solving the vehicle routing problem with time window. Paper 

[9] introduces multigroup parallel way and different initial 

methods are applied for each subgroup, besides the opposite 

population poor particle will be replaced by memory particle 

to solve the vehicle routing problem with time windows. 

In this paper, based on the basic particle swarm algorithm, a 

new algorithm (NPSO) with the Gauss mutation is proposed. 

In the process of solving the vehicle routing problem, we 

introduce a series measures including the integer encoding 

(see [6]), how to deal with the infeasible solution and the 

neighborhood search so as to improve the ability of the 

particle to jump out of the unfeasible solution region and the 

local optimal position. 

2. Vehicle Scheduling Problem 

Description and Mathematical Model 

This paper investigates Capacity Vehicle Routing Problem 

for short vehicle routing problem, which is the most basic 



2 Ting Xiang et al.:  Vehicle Routing Problem Based on Particle Swarm  

Optimization Algorithm with Gauss Mutation 

problem in all vehicle scheduling problems. Specifically 

described as follows: 

There are a central warehouse with No.0 and k vehicles in 

total with the capacity ),2,1( kiq
i

⋯= ; Moreover, N customer 

point transportation tasks needs to be completed with No.1 to 

N with customer demand N
ggg ⋯,,

21 . Each vehicle from the 

central warehouse deliver to each customer and finally back to 

the central warehouse; ij
c represents the distance between the 

customer i and customer j . Moreover the mathematical model 

in [2] is introduced in this paper. 

First, define the 0-1 variable: 
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The constraints in the model ensure that the carrying 

capacity of each vehicle is not over the load, and each 

customer will receive the service until the last service is 

finished. Therefore, vehicle routing problem is just the 

minimum path in these conditions. 

3. Particle Swarm Optimization 

Algorithm with Gauss Mutation 

The standard particle swarm optimization algorithm is an 

optimization algorithm based on population, in which the 

individual is called particle and each particle's trajectory is 

determined by the Global best position ( Gbest ) and the 

particles’ historical optimal solution ( Pbest ). 

Let particle ),,()(
21 iDiii

xxxtX ⋯= for the t generation in a 

D dimensional space. The velocity is ),,,,()(
21 iDiii

vvvtV ⋯=
global best position ),,,(

21 gDgg
PPPGbest ⋯= particle’s past best 

position ),,(
21 iDiii

PPPPbest ⋯= . In the iterative process, the 

position )(tX
i

is updated by the velocity )(tV
i

 with the next 

iteration via the following equation: 

),1()()1( ++=+ tVtXtX
iii                 (2) 

while velocity )(tV
i can be calculated as below: 

)).()(1,0())()(1,0()()1(
21

tXGrandctXPrandctVwtV
ibestibestiii

−×+−×+×=+                     (3) 

The learning constant 1
c and 2

c are popularly equal to 2. The 

inertia parameter w is an important parameter, which affects 

the performance of the algorithm. To make the algorithm 

better convergence to global optimal solution, we generally set

9.0=w initially and gradually decrease to 0.4 in a linear way 

with the increase of iteration t , furthermore, it follows the 

equation as blow: 

,5.09.0
T

t
w ∗−=                    (4) 

whereT is the maximum iteration number. 

From the particle's position change formula (2) and (3), 

the update information of each particle is derived from itself 

and the whole group. The particle can rapidly move to the 

global optimum and the local optimal in the iterative process. 

But in the late stage, the group diversity is reduced and 

particles are easy to fall into local optimum. In order to 

improve the particle swarm optimization algorithm, this 

paper, based on the original individual, introduces a Gauss 

perturbation term. Specific way is: set a mutation probability

c
P and randomly select individuals about c

PNP× from the 

population with NP in total. Gauss mutation is applied for 

each individual in the j-th dimension under the mutation 

formula : 

,)1,0(
ijijij

XNLXX ××+=                 (5) 

where ij
X  is the j-th dimension of particle i

X , j is a 

random integer, L  is the parameter of Gauss mutation;

)1,0(N  is a random vector of the Gauss distribution, which 

is subject to a mean of 0 and 1 of the variance. 

There is something that we have to mention here.

ij
XNL ×× )1,0(  in formula (5) is Gauss random perturbation 

term, which makes full use of the known information of the 

current such that it does not increase the diversity of the 

group and has advantageous to jump out of the local optima 

to carry on the global search, but also improves the search 

speed. 
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4. Improved Algorithm for Vehicle 

Routing Problem 

4.1. Particles of Encoding and Decoding 

Using the particle swarm algorithm to solve practical 

problems, what we need to do first is the particle encoding. In 

this paper, we use the integer encoding method in [6].  

Step1. The central warehouse with No. 0, N customer with 

No. 1 to N. Each particle is represented by a N dimensional 

integer vector ],[
,21 N

aaaX ⋯= , where i
a  is an integer from 

1 to N, corresponding to the i
a -th customer. 

Step2. Each particle according to the customer loading is 

not more than the vehicle capacity principle, and ultimately in 

accordance with the vehicle arrangement of customers to get 

the solution vector. if

121121 1111
 and qggggqggg

bbb aaaaaaa
>++++≤+++

+
⋯⋯ , 

then 1-th vehicle’s customer order is ],,[
121 b

aaa ⋯ ; similarly if 

 and 
222111

qggg
bbb aaa

≤+++
++
⋯

22111 bbb aaa
ggg +++

++
⋯

212
qg

ba
>+

+ , the 2-th vehicle’s customer order is

],,[
22111 bbb

aaa ⋯++ . In this way, when vehicle passes all the 

customer point, the customer order is obtained and 

corresponding solutions vector is ],2,1[ bkbbM ⋯= . 

For example, there are 2 vehicles in total with the capacity 

of 8, 8 customer points with demand ]2,2,4,1,2,1,2,1[ . If the 

position vector of a particle is ]8,6,7,2,5,4,3,1[=X , according 

to the above method, the corresponding distribution plan is: 

Path 1: 0→1→3→4→5→2→0; path 2: 0→7→6→8→0; 

solutions vector: ]8,5[=M  

4.2. Initialization of Particles 

Initial particle generation process is: 

Step1. Generates a particle randomly and calculates its 

solution vector; 

Step2. If the final value of the solution vector bk is N, then 

the particle is a feasible solution. Otherwise adjusts the 

infeasible solution in accordance with the 4.4 and the particle 

will be discarded if the result of adjustment is still not feasible. 

Step3. Repeat step 1 and step2, generate NP effective 

particles in total, and construct the initial group. 

4.3. Standardized Processing of Particles 

The particles are iteratived by the formula (2) (3) (5), the 

component of the particle will appear decimal number and 

negative number. In order to ensure that every vector of each 

particle has a corresponding path arrangement, the particle is 

required to be standardized. Specific method is follows: 

Step1. The value at each dimension of particle X can be 

obtained by the formula (2) if it is limited in a range of )1( −− k

to 1−k , or replace it with boundary value directly. 

Step2. By the above step, we can obtain ],,[
21 N

aaaX ⋯= . 

Now, we replace ),,2,1( Nia
i

⋯= with it’s ascending ordinal 

number ),,2,1( Nic
i

⋯= to get a new ],,,[
21 N

cccX ⋯= . 

For example, given particles ]8,4.6,7,5,3.1,4,1,3.2[−=X , 

through standardized process, we obtain ]8,6,7,5,3,4,2,1[=X . 

4.4. Adjustment of Infeasible Solution 

Whether in the initial population or the algorithm in the 

iterative process, particles X may appear a lot of infeasible 

solution path (if the final value of the solution vector bk is not 

N). In order to guarantee the validity of the algorithm, this 

paper proposed a kind of adjustment strategy, which can adjust 

most of the particles to the feasible solution.Specific methods 

are divided into three parts: 

The first part. 

Step1. Calculate the residual load of each vehicle

),2,1( kiq
i

⋯=∆ for the current infeasible solution and rank 

the sequence with the order from small to large:

ikii
qqq ∆∆∆ ,,,

21
⋯ , where ik is the number of vehicle.The 

non-scheduled customer point is arranged as m
sss ⋯,,

21 with 

the order of corresponding customer demand 

),,2,1( mkg
ks

⋯= from large to the small. 

Step2. For any customer ),,,2,1( mjs
j

⋯= find out some 

vehicle from ),2,1( kjq
ij

⋯=∆ with the order of

ikii
qqq ∆∆∆ ,,,

21
⋯ such that the vehicle can load customer. 

Take customer j
s for example, if 

ljl isi
qgq ∆≤<∆

−1
, we put 

customer j
s into the vehicle l

i . In the l
i -th path to find the 

adjacent two customer points p and q such that the distance

qsp
j

→→ is the shortest and insert j
s between p and q , 

modifying il
q∆ at the same time. 

Step3. According to the step2, if all of the customers have 

been arranged, directly into the third part, otherwise enter the 

second part. 

The second part 

Step1. Since the conduction in this step are similar to the 

step 1 at first part, so we omit here. 

Step2. If
11 is

qg ∆≤ , put the customer 1
s into vehicle 1

i

directly, otherwise we find out the the minimum customer x of 

the vehicle 1
i with corresponding customer demand x

g such 

that
11 six

gqg ≥∆+ . If
1sx

gg < , place 1
s at the location of x , 

consequently x becomes a customer point that is not scheduled 

and update
1s

g with x
g . 

Step3. If the adjustment in step2 does not work for customer

1
s , then consider whether customer 1

s  should be put the into 

the next vehicle, Of course, 2
s can be applied with the same 

way. 

Step4. Repeat step2 and step3 until that we can not find out 

a vehicle to arrange 1
s or 0=

x
g . 

Step5. Repeat the step1, 2, 3, 4 for t
sss ⋯,,

21  respectively 

until all the non-scheduled customers are traversed. 

The third part 

Particle vector and the corresponding solution will be 

calculated after the above two parts. If the final value of the 
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solution vector is still not N, then particle is judged infeasible 

and set the objective function as infinite. 

4.5. Neighborhood Search 

With the iterative process, the group is easy to fall into local 

optimum, but the global optimal solution is near the local 

optimum. In this paper, to ensure that the algorithm 

convergence to the global optimum more quickly, global 

optimal solution is searched by a two-two exchange 

neighborhood search per 20 generations. 

The specific method is stated as follows. 

Set a neighborhood search parameter sd first, which 

represents neighborhood search times. Then randomly we 

select the thi − and thj − location of Gbest and exchange their 

position each time. After the adjustment in 4.4 to get the new 

particle Gbest . If Gbest is better than the previous Gbest , 

then replace Gbest with Gbest . 

4.6. The Implementation of the Improved Algorithm for 

VRP 

Particle swarm algorithm is applied to continuous space, 

while the VRP is a discrete integer programming problem, so 

we need to modify the algorithm for the specific 

application.The specific process is as follows: 

Step1. Particles initialization 

(1)Within the initialization method in 4.2, about NP 

particles in total are randomly generated and divided into two 

overlapping adjacent subgroups. The number of overlapping 

particles is ,cd and the number of particles in each subgroup is

2

cdNP +
. 

(2)Calculate the initial value of each particle, the historical 

optimal solution ( Pbest ) and the global best position 

( Gbest ).  

Step2. Repeat the following steps until the maximum 

number of iterations. 

(1) In each subgroup, every particle is updated by formula 

(2) (3), randomly select )
2

(
c

P
cdNP

floor ⋅+
particles to 

participate in the Gauss mutation by formula (5). Then we 

employ a standardize process for particle via the method in 4.3, 

and adjust unfeasible solution according to 4.4, calculate the 

fitness value. 

(2) Replace overlap particles with optimal location in two 

groups. 

(3) If current iteration number is a multiple of 20, then 

global optimal solution is searched by a two-two exchange 

neighborhood search with 4.5. 

(4) Calculate the Global best position )(Gbest and the 

particles’ historical optimal solution )(Pbest . 

Step3. Finally, global best position is taken as the final 

optimal path, and the corresponding path length is the optimal 

path length. 

5. Experimental Results and Analysis 

In the present work, to compare results conveniently, we 

use Matlab 7.0 to write the program of particle swarm 

optimization (PSO) and the improved algorithm(NPSO) to 

solve the vehicle routing problem with the computer operating 

system 3.3GHz, 8.00GB, Win7. 

5.1. Experiment 1 

We take the data of paper [9] in our experiment 1. The 

vehicle routing problem has a central warehouse, 2 vehicles in 

total with the capacity of 8, and 8 customer points with 

demand ]2,2,4,1,2,1,2,1[ . The following table gives the 

distance and the demand of the customers. Now it is required 

to arrange a suitable driving route so that the total mileage of 

the vehicle route is minimized. This paper tells us that the 

optimal solution path length is 67.5 and the path is arranged as 

follows: Path 1: 0→4→7→6→0; path2: 

0→1→3→5→8→2→0. 

Table 1. The distance between customers (km) and demand. 

Cij 0 1 2 3 4 5 6 7 8 

0 0 4 6 7.5 9 20 10 16 8 

1 4 0 6.5 4 10 5 7.5 11 10 

2 6 6.5 0 7.5 10 10 7.5 7.5 7.5 

3 7.5 4 7.5 0 10 5 9 9 15 

4 9 10 10 10 0 10 7.5 7.5 10 

5 20 5 10 5 10 0 7 9 7.5 

6 10 7.5 7.5 9 7.5 7 0 7 10 

7 16 11 7.5 9 7.5 9 7 0 10 

8 8 10 7.5 15 10 7.5 10 10 0 

demand 1 2 1 2 1 4 2 2 

Parameter setting of PSO: population size 40=NP , 

learning constant 5.1
21

== cc , the maximum iteration number

50=T . 

Parameter setting of NPSO: population size 40=NP , 

learning constant 5.1
21

== cc , the maximum iteration number

50=T , overlapping particles’ number 2=cd , the parameter 

of Gauss mutation 8.1=L ; mutation probability 8.0=
c

P , 

neighborhood search parameter 2=sd . PSO, NPSO runs each 

20 times and compares with the results of the algorithm 

proposed by [9]. The test results are showed in table 2. 

Table 2. The optimal path length (km) of the three algorithms. 

Running times Algorithm of paper [9] PSO NPSO Running times Algorithm of paper [9] PSO NPSO 

1 67.5 67.5 67.5 11 67.5 67.5 67.5 

2 67.5 70.5 70.0 12 67.5 70.0 67.5 

3 71.0 70.0 67.5 13 69.0 70.0 67.5 

4 67.5 70.0 67.5 14 67.5 67.5 69.0 

5 67.5 67.5 67.5 15 67.5 70.5 67.5 
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Running times Algorithm of paper [9] PSO NPSO Running times Algorithm of paper [9] PSO NPSO 

6 72.0 67.5 67.5 16 67.5 67.5 67.5 

7 67.5 71.0 67.5 17 69.0 67.5 67.5 

8 67.5 70.0 67.5 18 67.5 67.5 67.5 

9 71.5 67.5 67.5 19 70.0 70.0 67.5 

10 67.5 67.5 67.5 20 67.5 70.0 70.0 

 

From table 2, the algorithm in the paper [9] has 6 times 

without finding the optimal solution, and PSO has not found 

the optimal solution about 10 times, while the NPSO has only 

3 times that the global optimal solution is not reached.The 

probability of NPSO finding the optimal solution is 

85%.Table 3 gives a more comparison results of the NPSO 

and PSO, including the achieve times, the not achieve times, 

average running time, the best value(best), average value(avg), 

worst value(worst). 

Table 3. Comparison of experimental results with NPSO and PSO. 

algorithm Achieve times not achieve times Average running time(s) Best value Avg value Worst value 

PSO 10 10 0.0833 67.5 68.85 71.0 

NPSO 17 3 0.1397 67.5 67.83 70.0 

 

Experimental results shows that the search success 

probability of the algorithm in paper [9] is 70% and PSO only 

50%, however NPSO can reach as high as 85% and the search 

success probability increased significantly. Because of the 

existence of subgroup exchanges, neighborhood search, Gauss 

mutation, not feasible solution, the calculation time becomes 

relatively longer, but not so much. Consequently, we can get 

that the improved algorithm NPSO has a higher search 

efficiency and better stability. It is an ideal method for the 

VRP problem with fewer number of customers. 

5.2. Experiment 2 

In order to verify the effectiveness of NPSO in the process 

of dealing with more customers, this paper uses NPSO and 

PSO to run 10 times for VRP with different scale (Here we 

select data fromfrom http://branchandcut.org/). For each 

instance corresponds to a different parameter, we set as 

follows, learning constant 5.1
21

== cc ; the parameter of 

Gauss mutation 8.1=L ; mutation probablity 8.0=
c

P ; 

population size NP about 5~8 times the number of customers; 

]20,2[∈cd and increased with the particle number NP ; 

neighborhood search parameter ]
2

,
3

[
NN

sd ∈ . The final results 

are compared in table 4. 

Table 4. PSO and NPSO results for each instance. 

instance 
Theoretical optimal 

solution 
Parameter setting algorithm Best value 

Average 

value 

Worst 

value 

Running 

time 

P-n16-k8. vrp 450 
;100=NP ;4=cd  

;6=sd 1000=T  

PSO 451.34 451.46 451.95 37.01 

NPSO 451.34 451.34 451.34 38.16 

P-n22-k8. vrp 603 ;160=NP ;6=cd
 ;8=sd

2000=T  

PSO 627.30 647.36 680.21 175.72 

NPSO 602.72 618.78 639.36 180.09 

B-n31-k5. vrp 672 
;160=NP ;6=cd

;10=sd ;2000=T  

PSO 795.18 834.21 881.82 26.27 

NPSO 724.23 794.17 823.59 31.03 

P-n40-k5. vrp 458 
;200=NP ;10=cd

;14=sd ;3000=T  

PSO 790.87 829.76 914.70 41.90 

NPSO 636.26 735.26 778.36 47.94 

 

With the increase of the number of customers, the search of 

the optimal solution is more difficult, and the effect of PSO 

and NPSO will have a certain effect. But from table 4, it can be 

seen that the results of NPSO have obvious advantages. We 

have to admit that there are many operations in NPSO and 

takes much time, but they are always in an acceptable range. 

Therefore, the experiment proves that the improved algorithm 

NPSO is effective and feasible to solve the problem of VRP. 

6. Conclusion 

In this paper, a particle swarm optimization algorithm with 

Gauss mutation (NPSO) and neighborhood search is designed 

to solve the vehicle routing problem. In the process of solving 

vehicle routing problem, NPSO uses the integer encoding 

divided into two subgroups respectively iteration and enhances 

the search ability of the group. Finally, the simulation 

experiments show that the proposed algorithm can get the 

optimal solution faster and better. However, when solving the 

VRP with a larger scale, the algorithm in this paper will be more 

difficult with the customers increasing and the searching ability 

of the algorithm still needs to be improved. 
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