

American Journal of Software Engineering and Applications
2015; 4(1): 1-14

Published online March 10, 2015 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20150401.11

ISSN: 2327-2473 (Print); ISSN: 2327-249X (Online)

An MDA Method for Automatic Transformation of Models
from CIM to PIM

Abdelouahed Kriouile, Najiba Addamssiri, Taoufiq Gadi

LAVETE Laboratory, Hassan 1 University, Settat, Morocco

Email address:
kriouile1970@gmail.com (A. Kriouile), addam.naji@gmail.com (N. Addamssiri), g.taoufiq@yahoo.fr (T. Gadi)

To cite this article:
Abdelouahed Kriouile, Najiba Addamssiri, Taoufiq Gadi. An MDA Method for Automatic Transformation of Models from CIM to PIM.

American Journal of Software Engineering and Applications. Vol. 4, No. 1, 2015, pp. 1-14. doi: 10.11648/j.ajsea.20150401.11

Abstract: The Model Driven Architecture (MDA) approach introduces a clear separation of the business logic from the

implementation logic that's less stable. It uses the models that are more perennial than codes. It puts the models at the centre of

the development of software and of the information systems. The MDA approach consists at, firstly, developing the CIM

Model, secondly, obtaining the PIM model from the CIM, and finally generating the PSM model from the PIM which

facilitates the generation of code for a chosen technical platform. In the literature, several works have summarized the MDA

approach to the passage from PIM to PSM then from the PSM to code. Yet, very little work has contributed in the axis of the

CIM to PIM transformation, and their approaches generally propose a CIM model which does not cover the different

specifications of the Object Management Group (OMG) and/or the CIM to PIM transformation that they define is in the most

cases manual or semi-automatic. Thus, our proposal aims at providing a solution to the problem of constructing CIM and its

automatic transformation at the PIM using the QVT transformation rules. The approach proposes to represent CIM by two

models: The business process model reflecting both the static and the behavioral views of the system, and the functional

requirement model defined by the use case model reflecting the functional view of the system. The transformation of the CIM

allows us to generate the PIM level represented by two models: The domain classes model which gives a structural view of the

system at this level, and a model that describes the behavior of the system to each use case.

Keywords: MDA, CIM, PIM, Model Transformation, BPMN, QVT

1. Introduction

The discipline of software engineering has allowed the

development of computer systems for more and more

complex and requiring enormous investments. Yet, the

sustainability of these systems is questioned whenever a new

technology appears, since each new technology put in place a

set of tools that, generally, does not support the older

technologies.

However, in response to this difficult situation, we should

reconsider the reduction of the cost of development work that

is done independently from the target technology and which

is, therefore, connected to the business logic of the

application. The MDA approach (Model Driven Architecture)

[1] is called by introducing a clear separation of the business

logic -which is stable and undergoes little changes over time-

from the implementation logic that's less stable; models are

more perennial than codes. This MDA approach fits into the

overall context of the Model Driven Engineering (MDE),

which puts the models at the centre of the development of

software and of the information systems.

The principle of the MDA approach is based on the use of

models and metamodels for the various phases of the software

development lifecycle. Specifically, it recommends three types

of models from different viewpoints) [1]: The Computation

Independent Model (CIM), the Platform Independent Model

(PIM) and the Platform Specific Model (PSM).

The MDA approach consists, at first, to develop the CIM

Model. Secondly, to obtain the PIM model from the CIM,

and finally to generate the PSM model from the PIM which

facilitates the generation of code for a chosen technical

platform. The passage from CIM to PIM and from PIM to

PSM represents models transformations, while the generation

of code from PSM is not regarded as a model transformation.

Ideally, according to [1], the code generation can be done

automatically by successive transformations of models: CIM

to PIM, PIM to PSM and PSM to code.

In the literature, several works have summarized the MDA

approach to the passage from PIM to PSM then from the

2 Abdelouahed Kriouile et al.: An MDA

PSM to code. Yet, very little work have contributed in the

axis of the CIM to PIM transformation, and their approaches,

generally, propose a CIM model which does not cover the

different specifications of the Object Management Group

(OMG) and/or the CIM to PIM transformation that they

define is in the most cases manual or semi-automatic.

Thus, our proposal aims to be a new solution to the

problem of constructing CIM and its automatic

transformation at the PIM. This problem can be divided into

two sub-problems:

� Elaborate a CIM model conforms to the various

specifications outlined by the OMG.

� Define an automatic model transformation allowing

generating the PIM model conform to the various

specifications outlined by the OMG.

Thus, our initiative aims at solving or at least mitigating

in the context of the MDA approach- the problems related to

the sustainability of the applications. This sustainability

cannot be ensured only through models that are sustainable

and productive, independent from computing and

independent from any technological platform. Our

contribution seeks to solve this problem at top level of the

MDA; it will specifically focus on modeli

define the transformation rules allowing generating the

suitable PIM Model from the CIM Model. The

transformations rules are expressed through language QVT.

In our approach, we propose to represent CIM by two

models: The business process model (BPM) reflecting both

the static aspect (Static View) and the behavioral aspect

(Behavioral View) of the system, and the functional

requirement model defined by the Use C

reflecting the functional aspect (Functional View) of the

system.

The transformation of the CIM allows us to generate the

PIM model represented by two models: The domain classes

model corresponds to the context in which the system should

be applied which gives a static view of system (Structural

View), and the Behavioral Model that describes the behavior

of the system to each use case providing a behavioral view of

system (Behavioral View).

The rest of this paper is organized as follows. In

background and related work for this research are explained.

Section 3 and section 4 depict respectively how the CIM and

PIM will model. Section 5 presents the different steps of our

method to construct CIM and to transform it automatically

into PIM using the QVT transformation rules. In

we shall present an illustrative case study. The analysis of the

evaluation results of our proposal is explained in

Finally, in section 8, we briefly provide a conclusion and

present our plan for future works.

2. Background and Related W

2.1. Levels of Modeling in MDA

The OMG announced its initiative MDA (Model Driven

Architecture) in November 2000, then proposed its first

An MDA Method for Automatic Transformation of Models from CIM to PIM

PSM to code. Yet, very little work have contributed in the

axis of the CIM to PIM transformation, and their approaches,

model which does not cover the

Object Management Group

and/or the CIM to PIM transformation that they

automatic.

Thus, our proposal aims to be a new solution to the

constructing CIM and its automatic

transformation at the PIM. This problem can be divided into

Elaborate a CIM model conforms to the various

Define an automatic model transformation allowing

the PIM model conform to the various

Thus, our initiative aims at solving or at least mitigating -

the problems related to

the sustainability of the applications. This sustainability

annot be ensured only through models that are sustainable

and productive, independent from computing and

independent from any technological platform. Our

contribution seeks to solve this problem at top level of the

MDA; it will specifically focus on modeling the CIM and

define the transformation rules allowing generating the

suitable PIM Model from the CIM Model. The

transformations rules are expressed through language QVT.

In our approach, we propose to represent CIM by two

el (BPM) reflecting both

the static aspect (Static View) and the behavioral aspect

(Behavioral View) of the system, and the functional

Case model (UC)

reflecting the functional aspect (Functional View) of the

ws us to generate the

odel represented by two models: The domain classes

model corresponds to the context in which the system should

be applied which gives a static view of system (Structural

odel that describes the behavior

of the system to each use case providing a behavioral view of

The rest of this paper is organized as follows. In section 2,

background and related work for this research are explained.

ection 4 depict respectively how the CIM and

will model. Section 5 presents the different steps of our

method to construct CIM and to transform it automatically

the QVT transformation rules. In section 6,

ive case study. The analysis of the

evaluation results of our proposal is explained in section7.

ection 8, we briefly provide a conclusion and

Work

OMG announced its initiative MDA (Model Driven

Architecture) in November 2000, then proposed its first

version in 2001 and in 2003 adopted the final specification of

the approach [2]. The MDA approach fits into the overall

context of the model driven engineering (MDE), which puts

the models at the centre of the development of software and

of the information systems.

Since the models are more perennial than codes, and in

order to enable the organizations to evolve their applicat

models independently of the evolution of the technology

platforms, MDA advocates the elaboration of perennial models

by distinguishing models which are independent from the

platforms of the models that are specific to platforms. Thus, its

principle is to separate the functional specifications from the

implementation specifications on a particular platform.

The MDA approach offers three types of models from

three different points of view [1]

� CIM (Computation Independent Mod

independent of any computerization. The CIM Model

does not show the details of the system structure. It

describes the product independently of any computer

system. It focuses on the requirements of the system as

well as the environment in

going into the details of its structure and its

implementation. It is sometimes called a domain model

and serves as the vocabulary for system domain

practitioners. However, a CIM is more than a domain

model; it expresses also the

� PIM (Platform Independent Model): It refers to a view

of system or sub-system at an abstraction level allowing

an independence from any technical platform. The role

of the PIM is to be perennial and to make the link

between the CIM and the PSM model. The MDA

approach advocates the use of UML as a language to

model the PIM. But it gives neither any indication of the

number of models to develop at the PIM level nor the

method to be used for developing it.

� PSM (Platform Specific

model of the technical platforms. It mainly serves as a

base for generating an executable code on the chosen

technical platform. It indicates how the product will be

used on these platforms. A good PSM must incorporate

enough features and concepts (data types, classes,

interfaces, patterns, etc.) of the platform chosen to make

the code generation easy.

Figure 1. MDA software lifecycle

Method for Automatic Transformation of Models from CIM to PIM

version in 2001 and in 2003 adopted the final specification of

. The MDA approach fits into the overall

text of the model driven engineering (MDE), which puts

the models at the centre of the development of software and

Since the models are more perennial than codes, and in

order to enable the organizations to evolve their application

models independently of the evolution of the technology

platforms, MDA advocates the elaboration of perennial models

by distinguishing models which are independent from the

platforms of the models that are specific to platforms. Thus, its

to separate the functional specifications from the

implementation specifications on a particular platform.

The MDA approach offers three types of models from

[1]:

CIM (Computation Independent Model): It’s a model

independent of any computerization. The CIM Model

does not show the details of the system structure. It

describes the product independently of any computer

system. It focuses on the requirements of the system as

well as the environment in which it operates without

going into the details of its structure and its

implementation. It is sometimes called a domain model

and serves as the vocabulary for system domain

practitioners. However, a CIM is more than a domain

model; it expresses also the requirements of the system.

PIM (Platform Independent Model): It refers to a view

system at an abstraction level allowing

an independence from any technical platform. The role

of the PIM is to be perennial and to make the link

CIM and the PSM model. The MDA

approach advocates the use of UML as a language to

model the PIM. But it gives neither any indication of the

number of models to develop at the PIM level nor the

method to be used for developing it.

PSM (Platform Specific Model): It is the dependent

model of the technical platforms. It mainly serves as a

base for generating an executable code on the chosen

technical platform. It indicates how the product will be

used on these platforms. A good PSM must incorporate

atures and concepts (data types, classes,

interfaces, patterns, etc.) of the platform chosen to make

MDA software lifecycle

 American Journal of Software Engineering and Applications 2015;

2.2. Model Transformations in MDA

The main artifacts of the MDA are models and model

transformations. Generally, we call transformation of models

any program which its inputs and outputs are models

respectively conform to their metamodels. A model

transformation matches, according to the transformation rules,

the concepts of the source and the target metamodel. The

transformation rules are described at the transformation

models conform in turn to the metamodel that defines the

transformation language. Thus, the elements of the target

models can be generated from those of the sources models

applying transformation rules that are already defined.

In the MDA architecture the MOF (Meta Object Facility)

allows the definition of modeling languages, as well as the

definition of the transformation rules. It is normalized by the

OMG in its current version 2.0 [3]. It is used to specify the

structure and syntax of metamodels. It also specifies

mechanisms for metamodel interoperability, allowing its

comparing and its linking. Thanks to these exchange

mechanisms, the MOF cohabit different metamodels.

The OMG proposes the standard MOF 2.0 QVT (Query

View Transformation) [3] as language to define the

transformation of models.

Figure 2. MDA processing Process

2.3. Business Process Modelling

BPMN and UML activity diagram are two competing

standards, both maintained by the OMG, allowing to model

business processes.

BPMN is based on a single Business Processes Diagram,

called BPD [4]. It is easy to use and to understand,

modeling the complex business processes.

The UML AD specification does not deal with the

business process modeling. It mentioned that the activities

can be applied to organizational modeling for business

processes engineering and workflows [5]

UML activity diagrams can be used to model business

processes, or the dynamic part of a model (e.g. an algorithm

of an operation). They can represent a process, or the

behavior of an operation.

American Journal of Software Engineering and Applications 2015; 4(1): 1-1

The main artifacts of the MDA are models and model

transformations. Generally, we call transformation of models

any program which its inputs and outputs are models

respectively conform to their metamodels. A model

transformation matches, according to the transformation rules,

the target metamodel. The

transformation rules are described at the transformation

models conform in turn to the metamodel that defines the

transformation language. Thus, the elements of the target

models can be generated from those of the sources models by

applying transformation rules that are already defined.

In the MDA architecture the MOF (Meta Object Facility)

allows the definition of modeling languages, as well as the

definition of the transformation rules. It is normalized by the

. It is used to specify the

structure and syntax of metamodels. It also specifies

mechanisms for metamodel interoperability, allowing its

comparing and its linking. Thanks to these exchange

ohabit different metamodels.

The OMG proposes the standard MOF 2.0 QVT (Query

as language to define the

MDA processing Process

and UML activity diagram are two competing

standards, both maintained by the OMG, allowing to model

BPMN is based on a single Business Processes Diagram,

It is easy to use and to understand, allowing

modeling the complex business processes.

The UML AD specification does not deal with the

business process modeling. It mentioned that the activities

can be applied to organizational modeling for business

[5]. But practically

UML activity diagrams can be used to model business

processes, or the dynamic part of a model (e.g. an algorithm

of an operation). They can represent a process, or the

A comparison between the Business Process Diagram

(BPD) and the UML Activity Diagrams for modeling of

twenty-one workflows patterns are introduced in

shows enough similarity between the two diagrams in terms

of notations and the repres

benefits are provided by the BPMN, its mathematical

foundations designed to easily transform it in a business

language. Furthermore, BPMN can be translated into UML

and provide a solid modeling mean.

2.4. Related Work

Several methods of modeling and transformation of

models have been proposed in the context of the MDA.

However, through the bibliographical study that we have

conducted only seven methods seem to address the

modeling of the CIM level and its transformation

PIM level.

The authors in [7] proposed a disciplined method for

transformation of CIM to PIM. The CIM model uses two

activity diagrams to represent business processes and

system requirements. The business process model

represents all the activities of the organization

independently of their automation; while the requirements

model specifies the system supporting such activities, by

representing their use cases and considering it as a one actor.

The PIM model is represen

obtained from the requirements model. This last model is

transformed into component models of the system that

provide a first sketch of the structure of the system: a set of

business archetypes that helps to transform, in detail, t

components system into PIM. This approach is based on

modeling the CIM using the UML 2.0 Activity Diagrams as

a single technique, and the PIM behavioral aspect is not

specified.

The method in [8] proposed a CIM to PIM

transformation using a method oriented by the features and

based on components. The requirements in the CIM model

are represented by a model that includes a set of features

and relations between them. And the PIM model is

represented by a software architecture

components and their interactions. This method uses an

intermediate model that is neither CIM nor PIM, which

does not consider business processes.

In the papers [9, 10, 11],

composed by a business processes

business process with the BPMN. This CIM is transformed,

with the help of the QVT rules

(Query/View/Transformation), checklists, and refinement

rules into two models composing the PIM level: the use

cases diagram and the class diagra

detailed in order to obtain the activities and the class

diagram that is considered an initial analysis model. Use

cases diagram is moved, in this method, into the PIM level.

Furthermore, the diagrams of the PIM that are obtained by

transformation of the CIM, do not communicate the PIM

behavioral structure.

Paper [12] presents an analytical solution for the

14 3

een the Business Process Diagram

(BPD) and the UML Activity Diagrams for modeling of

one workflows patterns are introduced in [6]. It

shows enough similarity between the two diagrams in terms

of notations and the representations. However, other

benefits are provided by the BPMN, its mathematical

foundations designed to easily transform it in a business

language. Furthermore, BPMN can be translated into UML

and provide a solid modeling mean.

Several methods of modeling and transformation of

models have been proposed in the context of the MDA.

However, through the bibliographical study that we have

conducted only seven methods seem to address the

modeling of the CIM level and its transformation to the

proposed a disciplined method for

transformation of CIM to PIM. The CIM model uses two

activity diagrams to represent business processes and

system requirements. The business process model

represents all the activities of the organization

independently of their automation; while the requirements

model specifies the system supporting such activities, by

representing their use cases and considering it as a one actor.

The PIM model is represented by the class diagram

obtained from the requirements model. This last model is

transformed into component models of the system that

provide a first sketch of the structure of the system: a set of

business archetypes that helps to transform, in detail, the

components system into PIM. This approach is based on

modeling the CIM using the UML 2.0 Activity Diagrams as

a single technique, and the PIM behavioral aspect is not

proposed a CIM to PIM

formation using a method oriented by the features and

based on components. The requirements in the CIM model

are represented by a model that includes a set of features

and relations between them. And the PIM model is

represented by a software architecture that includes a set of

components and their interactions. This method uses an

intermediate model that is neither CIM nor PIM, which

does not consider business processes.

, the authors present a CIM

composed by a business processes model, using a secured

business process with the BPMN. This CIM is transformed,

with the help of the QVT rules

(Query/View/Transformation), checklists, and refinement

rules into two models composing the PIM level: the use

cases diagram and the class diagram. The use cases are

detailed in order to obtain the activities and the class

diagram that is considered an initial analysis model. Use

cases diagram is moved, in this method, into the PIM level.

Furthermore, the diagrams of the PIM that are obtained by

ansformation of the CIM, do not communicate the PIM

presents an analytical solution for the

4 Abdelouahed Kriouile et al.: An MDA Method for Automatic Transformation of Models from CIM to PIM

modeling of CIM and its transformation to the PIM model.

To model business processes, the authors used at the CIM

level the Data Flow Diagrams (DFD). Whereas the PIM

level is covered by four UML diagrams: The Use Cases

Diagram, The Activities Diagram, The Sequence Diagrams

and the Domain Models.

Paper [13] tackles a semi-automatic method for building

web applications from the high level of requirements,

expressed as use cases in accordance with the model-driven

architecture (MDA). The first step of the method is to

transform the CIM model to the PIM model. It considers

that the CIM is represented by the description of use cases

as well as the default domain objects. The PIM model

includes State Machines, the User Interface Model and the

refined domain model. This method does not consider

business processes.

In paper [14] the authors present a systematic method for

MDA transformations, including the creation of the

platform independent model (PIM) from the CIM, the

transformation of the PIM to the platform specific model

(PSM) and the generation of code from the PSM model.

The CIM in this method is composed of the use cases

diagram, the activity diagram and the robustness diagram.

While, the PIM is modeled by two parts: the behavioral part

by a sequence diagrams and the structural part by a class

diagram.

The method in [15] allows, first, to build the CIM model

and to transform it (semi-) automatically to the less

abstraction level (PIM).The CIM level is covered by two

models; on one hand the business process model (BPM)

characterizing both the behavioral and the static aspects

representing the different activities and resources used by

them in the business processes. On the other hand, the use

cases model representing functional aspect of system.

While, the PIM level is modeled with the domain classes

diagram (DCD) and the external behavior sequence diagram

of the system (SDSEB). The later is an UML sequence

diagram that demonstrates interactions between the actors

and the system seen as unique entity represented by a one

line of life, without focus on the interactions of the objects

system. This method calls the business rules to generate the

DCD PIM level.

It should be noted that in the literature we have found

two other proposals that are limited only to the modeling of

the CIM level, without giving details on its transformation

into PIM. The method in paper [16] presents a method for

modeling CIM based on the artifacts and the concepts of the

RUP methodology. This method presents a CIM which

covers two aspects: the business processes and requirements.

It is composed of three models: A business use cases model,

a business analyses model and the use cases model.

Moreover, the method in the papers [17, 18, 19], called

TFMfMDA (Topological Functioning Modeling for Model

Driven Architecture) using formal mathematical

foundations of topological functioning model. The CIM

level is modeled with use cases model and the conceptual

class diagram presenting the domain concepts and their

relations to establish.

3. CIM Architecture

The creation of the CIM is the first task in the MDA

development process. It must be developed in collaboration

with the domain experts. The CIM is of great importance for

the rest of the development process; any changes driven by

new requirements at the CIM level will reflect the PIM and

the PSM levels.

3.1. Specifications of CIM According to the OMG

According to the definition given by the OMG [1], we

have deduced that the CIM model must verify the following

requirements:

� CIM represents a point of view of the system

independently of the computation.

� CIM should not show the details of the structure of the

system.

� CIM is sometimes called domain model or a business

model, using for its specification, the current vocabulary

of practitioners of domain in question.

� Since the primary user of the CIM -the practitioner of

domain- is generally not a know-all of models or of the

artifacts used to make features for which the

requirements are identified in the CIM. The CIM must

play an important role in bridging the gap between the

domain experts with its requirements and the experts of

the design and construction of objects which must

satisfy the domain requirements.

� The system requirements are modeled in the CIM.

� CIM describes the situation in which the system will be

used.

� CIM is independent of the system implementation. It

hides many or all of the information on the use of data

automatic processing systems.

� CIM represents a source of common vocabulary to use

in other models of the MDA.

� The requirements of the CIM must be traceable to the

artifacts of the PIM and the PSM, and vice versa.

� CIM can include several models, some providing more

details than others or focused on specific preoccupations.

3.2. Architecture of CIM in our Approach

According to Xavier Blanc [20], in a wider context, the

requirements model (CIM) is considered as a complex entity,

constituted by a glossary, the definitions of business

processes, the requirements, and the use cases as well as a

systemic view of application.

By analyzing the related works previously presented, there

is no consensus on the number and types of elements

constituting the CIM. In order to propose an appropriate CIM

from previous requirements, our proposal suggests that the

CIM must compose of two models: the BPMN Diagram, to

describe the different business processes represented by

different sequences of activities, and the use cases diagram

 American Journal of Software Engineering and Applications 2015; 4(1): 1-14 5

(UCD) allowing in turn the description of the requirements in

the CIM level.

The system, at this level, is seen as black box to ensure the

independence of any computation by hiding the details of the

structure of the system.

A refinement between the two models (BPMN and UC)

allows us, on one hand, to have the same vision between

domain experts and technological ones and on the other hand

to validate the CIM level before any transformation into the

low levels of MDA.

3.2.1. Business Process Diagram (BPD)

A business process represents the interactions in the form

of exchange of information between various actors: humans,

applications or services and third-party processes.

Business Process Model and Notation (BPMN) is a

graphical notation used to specify and to model business

processes. Its main objective is to provide a standard notation

that is easily understandable by all actors of the organization.

It is a business model using a simple notation for domain

practitioners, facilitating communication between experts of

the domain and requirements, and technical experts. It shows

the system in its environment.

The BPMN model called BDP (Business Process Diagram)

consists of a small set of graphic elements classed into four

categories: Flow Objects, Connecting Objects, Swimlanes

and Artifacts [21].

Figure 3 illustrates the main fragment of the BPMN

metamodel.

Figure 3. Main fragment of the meta-model BPMN

3.2.2. Use Cases Model (UML UC)

Use case diagrams allow identifying the features of a

system and the conditions for their good functioning. They

show functional elements, actors and objects in interaction.

To this end, a use case diagram contains actors and use

cases.

An actor is an entity that can interact with the system;

whereas, a use case is a set of interactions between some

actors and the system under development.

UML (Unified Modeling Language) defines a use case

as : “the specification of a set of actions performed by a

system, which yields an observable result that is, typically,

of value for one or more actors or other stakeholders of the

system" [5].

The use cases are not enchained. There is no temporal

representation in a use case diagram. Each use case can be

described in detail, describing the interactions between

actors and the system, and the order in which they occur.

Several techniques exist for the detailed description of a use

case, such as state machines, activity diagrams, or informal

text. For our proposed method, we use the textual

description (TD) of use cases that we formalize using

SBVR (Semantic Business Vocabulary and Business Rules)

[22].

We adopt the use cases diagrams for several reasons:

� Use cases diagrams play a very important role for the

identification of the requirements of the users. They

describe exhaustively the functional requirements of

the system.

� Because of their simplicity, the analysts and the

developers are familiar with the use of the use cases

diagrams.

� The existence of the development process guided by

the different cases, such as the Unified Process (UP)

described by the authors of UML [23] and the Rational

Unified Process (RUP) [24] that adheres to good

6 Abdelouahed Kriouile et al.: An MDA Method for Automatic Transformation of Models from CIM to PIM

development practices observed in the industry for

their success.

A simplified version of the metamodel of a use case

diagram is shown in figure 4, and the figure 5 illustrates the

main fragment of the SBVR metamodel.

Figure 4. Main fragment of the meta-model UC

Figure 5. Main fragment of the meta-model SBVR

4. PIM Architecture

In previous section, we have presented the structure of the

CIM proposed for our method, but the goal of our approach

does not stop here. It must identify also the structure of the

PIM, which can be used as a result of the development

process, and define the transformation enabling to generate it

automatically from the CIM. In this section, we define the

adequate structure of the PIM that can easily integrate the

development process. This PIM should be generated

automatically through a transformation mechanism that we

are going to define in section 5. Also, it must be generic

capable of being transmitted to the PSM model.

4.1. Specifications of the PIM Model According to the

OMG

According to the OMG [1], the PIM model must meet the

following requirements:

� The PIM represents a viewpoint of the system

independently of any platform. Therefore may be

appropriate for use with the similar platforms.

� The PIM describes the system, but doesn't show details

on the use of its platform.

� A PIM can be adapted to a particular architectural style

or more.

� The independence of PIM with respect platform can be

achieved using a "technology-neutral virtual machine".

� The PIM will be transformed to the PSM.

In summary, the PIM is a view of a system without any

knowledge of the implementation details. It describes the

information system, but hides the details on the use of

technologies that will be used to deploy the application.

There are several levels of PIM but all are independent of

any platform. PIM can integrate technological and

architectural aspects but always without platform-specific

 American Journal of Software Engineering and Applications 2015; 4(1): 1-14 7

details. It can contain, for example, information about

security, persistence, etc. That allows more precisely to

project the PIM model towards a specific model PSM.

4.2. Architecture of the PIM Model in Our Approach

The PIM, called Model of analysis and design, represents

the business logic specific for a system. It depicts the

functioning of entities and services. It must be sustainable

over time.

The UML language is imposed today as a reference for

realizing all analysis and design models. At this level we are

interested in an abstract design, realizable without any

knowledge of the techniques implementation. Thus, the

application of the design patterns or the GoF (Gang of Four)

is part of this stage of design. Nevertheless, the application of

technical patterns, specific for some platforms, corresponds

to a next step [20].

So, an adequate PIM should represent two aspects of the

system:

� The structural aspect (static) of the system using classes,

objects, attributes, operations, relations, etc.

� The behavioral aspect of the system showing the

interactions between objects, etc.

At this level, the formalism used to express the PIM is a

domain class diagram coupled with a system sequence

diagram expressed in UML.

4.2.1. Domain Classes Diagram (DCD)

A domain model is not a description of software objects

but a visualization of the concepts of a real-world domain.

We speak about the analysis objects. It is possible that an

analysis object becomes a software object during the design,

but this is not systematic.

Domain class diagram should not be confused with a

design class diagram. A domain class diagram can be

enriched with methods obtained from the different interaction

diagrams, such as the sequence diagram or a state-machine

diagram for obtaining the design class diagram that contains

classes with the signatures of their methods.

An UML class diagram will be used to represent the

domain model. It can contain only the classes and some

attributes without specification of the operations.

The domain class diagram represents in our approach the

static view of the PIM.

Figure 6. Simplified metamodel of Domain Class Diagram

4.2.2. System Sequence Diagram (SSD)

The objective of the system sequence diagrams (DSS) is to

describe the behavior of the system where it is seen as a

'black box' (from the analysis point of view). The system is

thus seen from the outside (by actors) without prejudice to

how it will be achieved. The 'black box' will be open

(described) to a subsequent design phase. The process of a

use case will be described as a sequence of messages

exchanged between the actors and the system.

Figure 7. Main fragment of the System Sequence Diagram Meta-model

Figure 8. Overview of the process of transformation of the CIM to PIM

5. Steps of Transformation Approach

from CIM to PIM

This section presents the approach for CIM modeling and

its transformation to the PIM model.

Our approach consists of three steps:

� Step 1: Modeling CIM through the BPMN model (BPD)

and the of use cases model (UML UC) obtained by the

horizontal transformation CIM2CIM (figure 9) from the

first model BPD.

� Step 2: Obtain from the CIM, the behavioral view of the

PIM represented by a System Sequence Diagram (UML

SSD). This step is assured by the vertical transformation

CIM2PIM noted C2P1 in the remainder of the paper, as

shown in figure 8. This step has been detailed in our

Class

AssociationClassifier

Property

PrimitveType

DataType

Enumeration

1

2..*

0..1

*

0..*

1..1 1
0..1

8 Abdelouahed Kriouile et al.: An MDA Method for Automatic Transformation of Models from CIM to PIM

contribution [25].

� Step 3: Generate the static view of the PIM that is

represented by a Domain Class Diagram (UML DCD)

from the CIM. This part of the PIM is the result of a

vertical transformation CIM2PIM designated C2P2 in

this paper, as shown in figure 8. This step was presented

in our article [26].

Any stage of transformation in our approach will be

carried out as follows:

� Defining the rules of transformations of the source to

the model target.

� Expression of the transformation rules.

� Application of transformation rules.

Thus, the transformation process takes as input a source

model, performs the transformation rules and produces

output as a target model.

It has opted for the use of the QVT standard for the

expression of the transformation rules. An example of written

language QVT transformation rule is presented as an

example in table 99.

5.1. CIM Modelling

At the CIM level, two essential roles are distinguished.

The business analyst is responsible for developing business

processes diagrams without taking into account the technical

aspects, and the computer expert that takes the responsibility

to add the information necessary for the transcription of

models in an execution language.

The CIM modeling begins with the representation of

business processes via a BPMN diagram, then its horizontal

transformation towards a use cases diagram detailed (UML

UC), through the C2C1 transformation.

In order to have a common understanding of the system by

business experts and technical experts, and do not drop

system requirements, we propose a CIM refinement by a

second exogenous horizontal transformation C2C2 of the

UML-UC model to BMPN model (BPD). By this step, we try

to validate the CIM model before any vertical transformation

to the PIM level.

5.1.1. Business Processes Representation in Our Approach:

BPD

For our approach, business processes are supposed to be

defined. They should be formalized (modeled) if they are not

already realized. We propose for that purpose to use the

BPMN specification for modeling the business processes. It

is done by grouping the components of the various business

processes in one diagram of process BPD (Business Process

Diagram).

5.1.2. Transformation from BPD to UCD: C2C1

The C2C1 is a horizontal and exogenous transformation

that consists of transforming a BPMN model conforms to its

metamodel towards a use cases model conforms to its meta-

model.

This transformation is based on transformation rules

written in the QVT standard. The transformation process

takes as input a source model, executes the transformation

rules and produces output as a target model. This consists of:

� Defining a mapping between the elements of the BPD

and the elements of the use cases diagram.

� Performing the mapping using the model transformation

language QVT.

The proposed mapping rules are based on the equivalence

between the BPMN concepts and the UC concepts. The

mapping used for this transformation is presented in table 1.

A detailed description of the first rule presented in table 2.

Table 1. BPMN2UC Transformation Rules

Rule Transformation Rule Source Model Element Target Model Element

1 Pool2Actor Pool Actor

2 Lane2Actor Lane Actor

3 Lane. within. Pool 2 Generalization Pool that contain Lanes Actor(Pool) is a generalization of Actor(Lane)

4 Activity2UC Activity (Sub-Process or Activity of type task) Use Case

5
Activity. In. Swimlane

2Association

Activity (Sub-Process or Activity of type task)

within a swimlane

Association between actor corresponding to swimlane

and UC corresponding to Activity

6
Sequence Flow Or Message Flow 2

include
Flow include

7 Gateway2extend Decision Gateway Extend between the related activities

For each activity type sub-processes

8
Task. In. Actor. Swimlane

2 Message From Actor ToSys
Task in Actor swimlane performed by Actor System Event (Message sent to System)

9
Task. In. System. Swimlane 2 System

Response
Task in System Swimlane oriented Actor

System Response (Response Message from the

System to Actor)

After each Decision Gateway within sub-processes

10 Successful Flow 2 Event Successful Flow System Event Or System Response (Rules 8 & 9)

11
Alternative Flow

2 Alternative Scenario

Alternative Flow that terminate Sup-Process

correctly
Alternative Scenario

12
Error Flow

2 Error Scenario

Error Flow that terminate Sup-Process with

errors
Error Scenario

 American Journal of Software Engineering and Applications 2015; 4(1): 1-14 9

Table 2. QVT code of the first rule

Rule 1: Pool2Actor

Source Model Element

Target Model Element

: Pool

: Actor

Description:

In BPMN 2.0 [21] a "Pool" is a participant in a collaboration diagram. It can contain details or not. With details, it is a process. Without details, it acts as a

simple 'black box '.

An actor is a user type that always has the same behavior to a use case. The same physical person may behave in as many different players as the number of

roles it plays towards the system. Thus for example, a messaging system administrator might also be the same mail user. It will be considered as an actor of

the system: in the role of administrator, in the first hand, and in the role of user in the second hand. An actor can also be an external system with which the

use case will interact (Gabay & Gabay, 2008).

Therefore each "Pool" of the BPMN will be transformed into an "Actor" actor in the UC.

QVT Rule:

mapping Pool::PooltoActor (): Actor

{result.name: = self.name;}

result.UseCase += self.Activities.map

ActivitytoUseCase();

result.ChildActor += self.lanes.map

LanetoActor(); }

5.1.3. Transformation from UCD to BPD: C2C2

The C2C2 is a horizontal and exogenous transformation

that consists of transforming a use cases model conforms to

its meta-model to a BPMN model conforms to its metamodel.

Table 3 summarizes the rules used for C2C2 transformation.

Table 3. Use-Case to BPMN transformation QVT rule

Rule Transformation Rule Source Model Element Target Model Element

1 Actor2Lane Actor Lane

2 UC2Activity Use Case Activity (Sub-Process or Activity of type task)

3 Include2 SequenceFlow include Sequence Flow

4 Include 2MessageFlow Include Message Flow

5.2. Obtaining the PIM Behavioral Model from the CIM

The use case model obtained in the first step constitutes

the source of the CIM2PIM transformation, subsequently

noted C2P1, allowing the production of the model

representing the dynamic part of the PIM.

C2P1 is an exogenous and vertical transformation which

consists of transforming the UML-UC that is conformed to

its metamodel to a system sequence model which is

conformed to its metamodel. Thus, this transformation

consists of defining a mapping between the elements of the

UC model and elements representing the system sequence

diagram, and then to express the corresponding QVT

transformation rules. The proposed mapping rules are based

on the equivalence between the concepts of UML UC and the

concepts of the SSD. This mapping is presented in table 4.

Table 4. UC2SSD Transformation Rules

Rule Transformation Rule Source Model Element Target Model Element

1 UseCase2SSD Use Case SSD

2 Principal Actor 2Actor Actor that directly operates on the System Actor

3 System Event 2 System Message System Event (Message sent to System) Message sent From Actor to System

4
Sys Response

2SystemMessage

System Response (Response Message from

the System to Actor)
Message sent From System to Actor

5 Internal Task 2 Internal Message Non-related system task to actor Internal System Message

6 Alternative Scenario 2 Alt Alternative Scenario Interaction Fragment ‘Alt’

7 Error Scenario 2 Break Error Scenario Interaction Fragment ‘Break’

5.3. Obtaining the PIM Static Model from the CIM

The CIM2PIM transformation, noted subsequently C2P2,

is defined by 6 transformation rules illustrated in table 4.

This exogenous and vertical transformation aims at

transforming the BPMN model that is conformed to its

metamodel to a domain classes model (UML DCD) which is

conformed to its metamodel. It specifies how one or more

elements of the BPMN model (source model) are

10 Abdelouahed Kriouile et al.: An MDA

transformed into one or more elements of the UML

model (target model).

The proposed mapping rules are based on the equivalence

Rule Transformation Rule

1 Pool 2 Class

2 Lane 2 Class

3 Lane. within. Pool 2 Aggregation

4 DataObject2Class

5 Activity 2 Operation

6 Group 2 Class

6. Case Study

With the aim to illustrate our method by an

have taken our case study presented in our previous work

[25, 26]. This example is based on a business process of

enrollment system for training in a school. It models the

interaction between customers and the school.

We have a one swimlane corresponding to ‘customers’ and

another one for the ‘school side’. However, since there are

Figure 9. Business Process Diagram of the case study “enrollment system for training”

Figure 10.

An MDA Method for Automatic Transformation of Models from CIM to PIM

transformed into one or more elements of the UML-DCD

e based on the equivalence

between the concepts of the BPMN and the concepts of the

DCD. This mapping is presented in table5.

Table 5. BPMN2DCD Transformation Rules

Source Model Element Target Model Element

Pool Class

Lane Class

Pool that contain Lanes
Aggregation relationships between the Class derived from Pool

And the Classes derived from Lanes

Data Object Class

Activity
Operation attached to the corresponding analysis class at the

container (Lane, Pool or Group)

Group Class

With the aim to illustrate our method by an example, we

have taken our case study presented in our previous works

his example is based on a business process of

enrollment system for training in a school. It models the

interaction between customers and the school.

orresponding to ‘customers’ and

another one for the ‘school side’. However, since there are

two actors involved in the former, we use a pool with two

lanes, one for each actor. Thus, within the school pool there

is a lane for an ‘Assistant’ and another for

Services’. Figure 9 depicts the process of our case study,

whereas figure 10 presents the detail of the first Sub

‘Choose Training’ using Data Objects as an example. It

employs two Pools, one for a customer and another one for a

system. In the same way we can represent the other sub

processes: ‘Order Training’, ‘Payment’, and ‘Training

Schedule’.

Business Process Diagram of the case study “enrollment system for training”

Figure 10. Diagram of Sub-Process “Choose Training”

Method for Automatic Transformation of Models from CIM to PIM

between the concepts of the BPMN and the concepts of the

DCD. This mapping is presented in table5.

Aggregation relationships between the Class derived from Pool

And the Classes derived from Lanes

Operation attached to the corresponding analysis class at the

container (Lane, Pool or Group)

two actors involved in the former, we use a pool with two

lanes, one for each actor. Thus, within the school pool there

is a lane for an ‘Assistant’ and another for ‘Financial

Services’. Figure 9 depicts the process of our case study,

whereas figure 10 presents the detail of the first Sub-Process

‘Choose Training’ using Data Objects as an example. It

employs two Pools, one for a customer and another one for a

In the same way we can represent the other sub-

processes: ‘Order Training’, ‘Payment’, and ‘Training

Business Process Diagram of the case study “enrollment system for training”

 American Journal of Software Engineering and Applications 2015; 4(1): 1-14 11

Table 6. BPMN2UC Transformation Rules for the case study

Rule Use Cases Element

1 Pool 2 Actor Customer, School Area

2 Lane 2 Actor Assistant, Financial Services

3
Lane. within. Pool

2 Generalization
‘School Area’ Actor is a generalization for ‘Assistant’ actor and ‘Financial Services’ actor

4 Activity 2 UC
Choose Training, Order Training, Pay Training, Receive Training Schedule, Receive Choice,

Receive Order Training, Send Schedule, Deliver Quotation, Validate Payment

5
Activity. In. Swimlane

2 Association

Each UC is associated at the Actor corresponding to the Swimlane. (For example : ‘Choose

Training’ is associated at ‘Customer’)

6 Sequence Flow Or Message Flow 2 include
‘Receive Choice’ include ‘Choose Training’

‘Deliver Quotation’ include ‘Receive Choice’’, …

7 Gateway 2 extend

‘Choose Training’ extend ‘Order Training’

‘Order Training’ extend ‘Pay Training’

‘Validate Payment’ extend ‘Send Schedule’

8
Task. In. Actor. Swimlane

2 Message From Actor ToSys

Request Training Catalog

Fill Form Training needs

Quotation Request

9
Task. In. System. Swimlane 2 System

Response
Deliver Training Catalog, Accepted Form Training, Quotation Deliver

10 Successful Flow 2 Event Choice in Catalog

11
Alternative Flow

2 Alternative Scenario
Specific Choice

12 Error Flow2 Error Scenario Cancel Choice

The Use Cases Diagram obtained by applying the C2C1 transformation rules is shown in figure 11 below. Table 12 shows

the C2P1 transformation rules corresponding to a Sub-Process “choose training”.

Figure 11. Use Cases Diagram of the Case Study

System

Order Training

QuotationAccepted
extension points

Customer Assistant

Financial Services

Pay Training

OrderMade
extension points

Receive Training Schedule

Choose Training

Send Schedule

PaymentValidated
extension points

Validate Payement

Deliver Quotation

Receive Choice

Receive Order Training

<<include>>

<<include>>

<<include>>

<<include>>

School Area
<<extend>>

<<extend>>

<<include>>

<<include>>

<<include>>

<<extend>>
<<include>>

12 Abdelouahed Kriouile et al.: An MDA Method for Automatic Transformation of Models from CIM to PIM

Table 7. UC2SSD Transformation Rules for the case study corresponding at the UC “Choose Training”

Rule SSD Element

1 Use Case 2 SSD SSD_ Choose_ Training

2 Principal Actor 2 Actor Customer

3
System Event

2System Message

se1. Request Training Catalog()

se2. Form Training Needs()

se3. Quotation Request()

4
Sys Response

2 System Message

sr1. Deliver Training Catalog()

sr2. Accepted Form Training()

sr3. Qoutation Deliver()

5 Internal Task 2 Internal Message se2.1. Analyze Form()

6 Alternative Scenario 2 Alt Interaction Fragment ‘Alt’

7 Error Scenario 2 Break Interaction Fragment ‘Break’

Figure 13 depicts the SSD obtained from a Use Cases Diagram by applying the C2P1 transformation rules.

Figure 12. The SSD of the Pay Training Use Case

The C2P transformation rules corresponding to our case study are presented in table 8 below.

Table 8. BPMN2DCD Transformation Rules for the case study

Rule DCD Element

1 Pool 2 Class Customer

2 Lane 2 Class Assistant, Financial Service

3
Lane. within. Pool 2

Aggregation

Aggregation relationships between School Area And Assistant

Aggregation relationships between School Area And Financial Service

4 Data Object 2 Class

Request Training Catalog,

Training Catalog,

Form Training Needs,

Quotation Request,

Quotation,

Order Training,

Payment,

Training Schedule

5 Activity 2 Operation

Operations of Customer :

Choose Training(), Order Training(),

Receive Training(),

Operations of Assistant :

Receive Choice(), Receive Order Training(),

Send Training();

Operations of Finance Service :

Deliver Quotation(); Validate Pay()

SSD Choose Training

se2.1. Analyze Form

sr3. QoutationDeliver()

se3. Quotation_Request()

sr1. Deliver Training Catalog()

se1. Request Training Catalog()

sr2. Accepted Form Training()

se2. Form Training needs()

Customer

<<System>>
Enrolment At Training

ChoiseCancel

Else

alt

[Cancel]break

[Choice_From_Catalog]opt

se2.1. Analyze Form

sr3. QoutationDeliver()

se3. Quotation_Request()

sr1. Deliver Training Catalog()

se1. Request Training Catalog()

sr2. Accepted Form Training()

se2. Form Training needs()

 American Journal of Software Engineering and Applications 2015; 4(1): 1-14 13

Figure 14 show the Domain Class Diagram obtained by applying the C2P2 transformation rules.

Figure 13. DCD of Sub-Process “Choose Training”

7. Analysis and Evaluation

According to our previous work [27], we have announced

that an ideal method for modeling the CIM and its

transformation into PIM should have the following

characteristics:

� The CIM modeling should cover the different views of

the business domain: static, dynamic and functional.

� Generating the PIM model -representing the structural

and behavioral aspects of the system- from the CIM

� The CIM to PIM transformation should be automated,

taking into account the traceability and offering the

entire transformation rules.

The evaluation is based on the criteria that we have

defined in the paper [27] in order to evaluate different

methods which propose to model CIM and transform it into

PIM.

The results of the evaluation are presented in table 9. The

rows in the table design the studied methods and each

column in the table represents an evaluation criterion.

Table 9. Results of the evaluation

Methods Studied CIM coverage PIM completeness CIM to PIM transformation

B
u

si
n
es

s

O
b

je
ct

s

(S
ta

ti
c

V
ie

w
)

B
u

si
n
es

s

P
ro

ce
ss

(B
eh

av
io

ra
l

V
ie

w
)

R
eq

u
ir

em
en

t

(F
u

n
ct

io
n

al

V
ie

w
)

S
tr

u
ct

u
ra

l

as
p
ec

t

B
eh

av
io

ra
l

as
p
ec

t

A
u

to
m

at
io

n

T
ra

ce
ab

il
it

y

C
IM

 t
o

 P
IM

C
o

m
p

le
te

n
es

s

o
f

tr
an

sf
o

rm
at

io
n

R
u
le

s

Kherraf and al. [7] N Y Y Y N P P N

Bousetta and al. [15] P Y Y Y Y P P P

Kardoš and al. [12] N P N Y Y P N N

Rodríguez and al. [9, 10, 11] N Y Y Y Y P P P

Wu and al.[14] P Y Y Y Y N N P

Zhang and al. [8] N Y N Y N P Y P

Fatolahi and al. [13] Y N Y Y Y P N N

Sharifi and al. [16] Y N Y

Erika and al. [17, 18, 19] Y N Y

Our Approach Y Y Y Y Y Y Y Y

Legend: Y: Yes; N: No; P: Partial

By analyzing the different results obtained, we conclude

that only the method of the paper [15] which remains close to

the ideal description of a method allowing the building of the

CIM and transforming it to the PIM. Our proposal

complements this method, by satisfying all the requirements

needed during the construction of the CIM and its

transformation into PIM.

8. Conclusion and Future Work

This paper proposes an approach for CIM modeling and its

transformation into PIM based on three steps:

� Representing the CIM by BPMN model and use cases

model that covers the static, the behavioral and the

functional views of the system. The transition from one

model to another is provided by a horizontal model

transformation.

� Obtaining from the CIM the behavioral view of the PIM.

This step is assured by a vertical transformation from

use cases model to a system sequence diagram.

� Generating from the PIM the static view of the PIM.

This step is the result of a vertical transformation from

Customer

+ChooseTraining()
+OrderTraining()

+ReceiveTraining()

SchoolArea

TrainingCatalog

FinancialService

+DeliverQuotation()()

+Operation1()

Assistant

+ReceiveChoice()
+ReceiveOrderTraining()

+SendTraining()

OrderTraining

Quotation

TrainingSchedule

RequestTrainingCatalog

FormTrainingNeeds

QuotationRequest

14 Abdelouahed Kriouile et al.: An MDA Method for Automatic Transformation of Models from CIM to PIM

BPMN model to a Domain Class Diagram.

In order to make transformations automatic, we have

developed all the transformation rules involved in this paper

using the QVT language.

Future works aim at developing a tool that supports all the

transformations performed in this paper.

References

[1] J. Miller and J. Mukerji, "MDA Guide Version 1.0.1.," OMG,
2003.

[2] R. Soley, «Model driven architecture (mda), draft 3.2. Rapport
technique, disponible sur: http://www.omg.org/cgi-
bin/doc?omg/00-11-05,» 2000.

[3] OMG, "Meta Object Facility (MOF)2.0
Query/View/Transformation Specification,
http://www.omg.org/spec/QVT/1.0/PDF," 2009.

[4] S. A. White, "Introduction to BPMN," IBM Cooperation, pp.
2008-029, 2004.

[5] OMG, "OMG Unified Modeling LanguageTM (OMG UML),
Superstructure,
http://www.omg.org/spec/UML/2.4.1/Superstructure," August
2011.

[6] S. A. White, "Process Modelling Notations and Workflow
Patterns, http://www.omg.org /bp-corner/bp-
files/Process_Modeling_Notations.pdf," IBM Corporation,
2004.

[7] S. Kherraf, E. Lefebvre and W. Suryn, "Transformation from
CIM to PIM Using Patterns and Archetypes," in 19th
Australian Conference on Software Engineering, 2008.

[8] W. Zhang, H. Mei, H. Zhao and J. and Yang, "Transformation
from CIM to PIM: A Feature-Oriented Component-Based
Approach," in Model Driven Engineering Languages and
Systems volume 3713 of Lecture Notes in Computer Science,
pages 248–263, Springer Berlin / Heidelberg, 2005.

[9] A. Rodríguez, E. Fernández-Medina and M. Piattini, "Towards
obtaining analysis-level class and use case diagrams from
business process models," Advances in Conceptual Modeling–
Challenges and Opportunities. Springer Berlin Heidelberg.,
pp. 103-112, 2008.

[10] A. Rodríguez, I. G.-R. de Guzmán, E. Fernández-Medina and
M. Piattini, "Semi-formal transformation of secure business
processes into analysis class and use case models: An mda
approach," in Information and Software Technology,
52(9):945– 971, 2010.

[11] A. Rodríguez, E. Fernández-Medina, J. Trujillo and M.
Piattini, "Secure business process model specification through
a UML 2.0 activity diagram profile," Decision Support
Systems, vol. 51, no. 3, pp. 446-465, 2011.

[12] M. Kardoš and M. Drozdová, "Analytical method of CIM to
PIM transformation in Model Driven Architecture (MDA),"
Journal Of Information And Organizational Sciences, vol. 34,
pp. 89-99, 2010.

[13] A. Fatolahi, S. S. Somé and T. C. Lethbridge, "Towards a
semi-automated model-driven method for the generation of
web-based applications from use cases," in 4th Model Driven
Web Engineering Workshop (p. 31), 2008.

[14] J. H. Wu, S. S. Shin, J. L. Chien, W. S. Chao and M. C. Hsieh,
"An extended MDA method for user interface modeling and
transformation," in The 15th European Conference on
Information Systems (pp. 1632-1641)., June 2007.

[15] B. Bousetta, O. El Beggar and T. Gadi, "A methodology for
CIM modelling and its transformation to PIM," Journal of
Information Engineering and Applications, vol. 3, no. 2, pp. 1-
21, 2013.

[16] H. R. Sharifi and M. Mohsenzadeh, "A New Method for
Generating CIM Using Business and Requirement Models.,"
World of Computer Science and Information Technology
Journal (WCSIT), vol. 2, no. 1, pp. 8-12, 2012.

[17] J. Osis, E. Asnina and A. Grave, "Computation Independent
Modeling within the MDA," in Software-Science, Technology
& Engineering, 2007. SwSTE 2007. IEEE International
Conference on (pp. 22-34). IEEE, October 2007.

[18] J. Osis, E. Asnina and A. Grave, "Formal computation
independent model of the problem domain within the MDA,"
in Proceedings of the 10th International Conference on
Information System Implementation and Modeling (pp. 23-25),
April 2007.

[19] J. Osis, E. Asnina and A. Grave, "Computation independent
representation of the problem domain," in MDA. J. Software
Eng, 2(1), 19-46., 2008.

[20] B. Xavier, MDA en Action : Ingénirie Logicielles Dirigée par
les Modèles, Paris: Eyrolles, 2005.

[21] OMG, «Business Process Model and Notation (BPMN),
Version 2.0.1,» OMG, http://www.omg.org/spec/BPMN,
September 2013.

[22] OMG, "OMG Unified Modeling LanguageTM (OMG UML),
Superstructure,
http://www.omg.org/spec/UML/2.4.1/Superstructure," August
2011.

[23] OMG, «Semantics of Business vocabulary and Rules,» 2008.
[En ligne].

[24] I. Jacobson, G. Booc et J. Rumbaugh, Le Processus unifié de
développement logicie, Eyrolles, 2000.

[25] P. Kruchte, The rational Unified Process An introduction,
Addison-WESLEY, 2000.

[26] A. Kriouile, T. Gadi, N. ADDAMSSIRI et A. El Khadimi,
«Obtaining behavioral model of PIM from the CIM,»
Multimedia Computing and Systems (ICMCS), 2014
International Conference on. IEEE, pp. 949-954., 2014.

[27] A. Kriouile, N. Addamssiri, T. Gadi et Y. Balouki, «Getting
the Static Model of PIM from the CIM,» chez 3rd Colloquium
IEEE on Information Science and Technology (CiSt'14),
Tetuan, 2014.

[28] A. Kriouile, T. Gadi and Y. Balouki, "CIM to PIM
Transformation: A criteria Based Evaluation," IJCTA, vol. Vol
4 (4), no. ISSSN:2229-6093, pp. 616-625, July-August 2013.

