

American Journal of Software Engineering and Applications
2013; 2(6): 133-140

Published online November 20, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20130206.12

Extended implementation of change impact analysis
model-based framework to enhance predicting the effect
of a change of service in a grid environment

Obeten Obi Ekabua

Department of Computer Science, North-West University, Mafikeng Campus, Mmabatho 2735, South Africa

Email address:
obeten.ekabua@nwu.ac.za, ekabuao@yahoo.com

To cite this article:
Obeten Obi Ekabua. Extended Implementation of Change Impact Analysis Model-Based Framework to Enhance Predicting the Effect of

a Change of Service in a Grid Environment. American Journal of Software Engineering and Applications. Vol. 2, No. 6, 2013,

pp. 133-140. doi: 10.11648/j.ajsea.20130206.12

Abstract: Continuous monitoring of changes to utility services and products in a distributed information system is an

interesting issue in software engineering. These changes affect the semantics and structural complexity of the system, as a

change to one part will in most cases, result in changes to other parts. Therefore, in design and redesign for customization,

predicting this change presents a significant challenge. Changes are intended to fix faults, improve or update products and

services. Lack of validated, widely accepted, and adopted tools for planning, estimating, and performing maintenance

contributes to the problem. One effective way of assessing changeability effect is to assess the impact of changes through a

well validated model and framework. This research paper is an extended report on the implementation of a change

propagation framework, together with it’s associated change impact analysis factor adaptation model, and a fault and failure

assumption model to predict the effect of a change of a service in a grid environment. While implementing the framework,

data was collected for three hypothetical years, thus helping to predict the next two (2) years consecutively. Significant

results corresponding to the impact analysis factor were obtained showing the viable practicality of the use of Bayesian

statistics (as against unreported regression method) satisfying best-fit prediction. We conclude that, the higher the number of

dependent services on a faulty service requiring a change, the higher the impact due to fault propagation.

Keywords: Change Impact Analysis, Service Provisioning, Software Metrics, Service Maintenance, Bayesian Statistics,

Grid Environment

1. Introduction

Software engineering empirical research is expressed as a

rigorous activity as it hinges on the formulation of

hypothesis and a framework for the evaluation of the

hypothesis. Any measurement in software engineering is

targeted for assessment and prediction. A model alone is

insufficient for prediction except if it is accompanied by the

model parameter determination and results interpretation.

Therefore, any prediction system must consist of a model,

model parameter determination and results interpretation

[1].

Computing systems’ evolution (hardware and software)

can be traced to changes in the original requirements,

different hardware platform adoption and efficiency

improvement. Maintenance management approaches

indicate different possible changes during the maintenance

process and this is seen as an indication of evolutionary

changes. As a result of the complexity involved, error

probability becomes high and some of these errors could

result into undeterministic consequences such as loss of life,

money, time and damage to the environment. This makes

system evolution management an important phase in system

development and maintenance. Hence, a maintainer faces

the challenge of how to respond rapidly, correctly, and

efficiently to change. This is because the maintainer in most

cases is not directly involved in the system development, as

responding to change requires system understanding and

change identification before performing the change [2]. The

use of formal methods is crucial as it enhances system

understanding to the point of unfolding undetected

propagating changes [3].

A combination of distributed object computing,

component based computing and web-based concepts into

what is now known as Service Oriented Architectures has

134 Obeten Obi Ekabua: Extended Implementation of Change Impact Analysis Model-Based Framework to

Enhance Predicting the Effect of a Change of Service in a Grid Environment

emerged as an approach for developing dynamic and

heterogenous service provisioning environments. This

technology evolution, combined with the web revolution,

poses new challenges in the context of service provisioning.

With the massive diffusion of the internet as a distributed

environment for service provisioning, people’s interaction

with computers has dramatically changed. People relate not

to their own computer, but rather, to their point of presence

within the service provisioning environment [4, 5, 6].

System level interoperability and dependability are

important issues resulting from the integration of different

technologies and middlewares into the same distributed

systems [7]. To effectively study issues of interoperabilty

and dependability in Service Oriented Architecture (SOA), it

is equally necessary to analyze it along measurements and

maintenance dimension through Change Impact Analysis

(CIA) technique. The CIA dimension will improve these

issues from the end-user perspective. To this aim, we address

the issues from the point of the need for a service change

resulting from fault and failure. Bayesian technique is used

to predict the need for a service change over a certain period

of time, to forstall breakdown in operation and enhance

maintenance as a means of quick resolution of expected

service failure. This will make SOA unique when compared

to traditional middleware-based systems and will also help

the operational life of the service configuration and remove

stress from the component.

2. Background on Change Impact

Analysis

The effect of one thing on another or the consequences of

a change is defined as an impact. Impact analysis (IA) is

used to determine the scope of a change request as the basis

for accurate resource plannning and scheduling, and to

confirm the cost/benefit justification. Service change impact

analysis (CIA) estimates what will be impacted in service

and related documentation if proposed service change is

made. It determines the scope of the change and the

complexity of the change. The qualitative and quantitative

effects of that change on other part of the item are the major

concern of the study of CIA [8].

Experience has shown that a comprehensive up-front

analysis of requirements during software development pays

high dividend by reducing the risk of costly re-work and the

potential of errors in planning estimates. CIA makes the

effect of a change visible before the change is implemented.

CIA can be used as a measure of the cost of a change. The

more the change causes other changes, the higher the cost of

the change.

The resulting challenges of the idea of interoperability can

be viewed from two perspectives – technical interoperability

and dynamic interoperability. Technical interoperability

involves the existence of a protocol for exchanging data and

information between participating services. A

communication infrastructure is established to allow

information to be exchanged between services with

unambiguously defined underlying networks and protocols.

While dynamic interoperability is defined from the point that

as services are requested, provided and consumed over time,

the state of that service will change and this includes the

assumptions and constraints that affect information

interchange. If services have attained dynamic

interoperability, they comprehend the state changes that

occur in the assumptions and constraints that each is making

over time, and they are able to take advantage of those

changes. The interest is specifically on the effects of

operations as it becomes increasingly important that the

effect of the information exchange is unambiguously

defined.

3. Change Propagation Framework

Changes are endermic to software artefacts and the

services provided by these artefacts. When a change is

effected in a particular service connected to grid, it isoften

difficult to determine the propagation of this service change.

We therefore present a change propagation framework

shown in Fig.1 to support change automation in any grid

engineering methodology.

Figure 1. Change Propagation Framework [16, 17]

The Service Detector Engine (SDE) contains all consumer

made available set of grid services (s1, s2, . . ., sn) under

utilization. SDE liases with Business Service Bus (BSB), a

concept developed by Component Based Development and

Integration (CBDI) [9] and incorporated into our framework

to form Service Architecture (SA) responsible for providing

a bridge between the implementation and the consuming

application, creating a logical view of a set of services,

which are available for use and invoke by a common

interface and management architecture. The Activity

Checker (AC) is responsible for the specification of the

constraints that a well-formed service design should satisfy

in order to check whether the application’s design is in

conformance to the main host design. Violation of the rules

governing the activity checker will trigger a constraint

violation event from the Constraint Activator (CA) to be

American Journal of Software Engineering and Applications 2013; 2(6): 133-140 135

returned to the Change Propagation Mechanism (CPM).

This informs the Service Repairer (SR) of a triggered event

calling for a way of fixing the violated constraint by

performing actions, which change the application’s design

and keeps record of the ripple effect. The mechanism

Validator (V) is responsible for checking the consistency of

the change to the design (through the AC), which can result

in further actions [16].

There are three major architectural perspectives for SOA

namely: Application Architecture, Service Architecture and

Component Architecture and our framework has these

incorporated into it. The architecture has two perspective

views: Consumer and Provider. The salient aspect of the

architecture is that the consumer of a service should not be

interested in the implementation detail of a service, but the

service provided. This is because the implementation

architecture could vary from provider to provider, but still

deliver the same service. Additionally, the provider should

not be interested in the application that the service is

consumed in, because new unforseen application will reuse

the same set of services. The consumer’s main interest is in

the application architecture and the services used, but not in

the detail of the component architecture. The interest is in

some level of details in the general business objects that are

of mutual interest, for example, provider and consumer need

to share a view of what is a subscription. But the consumer

does not need to know how the service component and

database are implemented. Also, the provider is focused on

the component architecture and the service architecture, but

not on the application architecture. Again, they both need to

understand certain information about the basic application in

order to be able to set any sequencing rules including pre and

post conditions.

SOA provides the need to be able to manage services as

first order deliverables. The communication key between the

provider and the consumer is service. There is the need

therefore, for a service provisioning architecture in the form

of this framework, that will ensure that services are not

reduced to the status of interfaces, but have an identity of

their own and can be managed individually and in sets. BSB

as shown in our framework is incorporated to meet this

requirement by providing a logical view of the available

services for any business domain. BSB answers such

questions as: (1) What services do I need? (2) What services

are available to me? (3) What alternative services are

available? (4) What services will operate together? (5) What

services are connected to me? [10]. Our framework is

generic because it can be adapted in any general service

provisioning engineering methodologiy that can enhance

monitoring change propagation. The most important

component of the framework is the Change Propagation

Mechanism (CPM), which is represented and implemented

within the service provisioning architecture and the

component architecture. CPM detects any change service

due to the triggering effect generated and validated. CPM

notifies the SR of the ripple effect for immediate action of

fixing the service.

4. Change Impact Analysis Factor

Adaptation Model (CIAFAM)

Maintainability refers to a situation where a software

system or a component is modified to correct faults, improve

performance or adapt to a change environment [11]. Increase

in maintainance cost has become a concern to developers

and users of software systems. Unfortunately, developers

and managers underestimate the time and effort required to

perform changes. Also, lack of validated, widely accepted,

and adopted tools for planning, estimating, and performing

maintenance contributes to the problem. Changeability is

vital to maintainability mostly in frequent requirement

changing environment. But one effective way to assess

changeability is to assess the impact of changes through an

impact model [12, 13].

While considering the need for a change of service in a

system, importance should be placed on identifying system

components that may be impacted after such a change. This

enables the system to keep running perfectly after a change

implementation. A system absorbs a change easily if the

impacted components is of a small number. One effective

method of accounting for changes in services is to perform

CIA and our framework is accessed by the impact model

described. Our main concern is pivoted on how the system

reacts to changes that leads to propagation.

For any given change M in a service N, we can describe a

set of impacted service as a boolean expression. The Impact

Analysis Factor (IAF) for such hypothetical change can be

given by:

IAF (M,N) = A*(~ ρ) + A
'

Where

*, +, ~ denotes the usual boolean operators: conjunction,

disjuction and negation respectively

M = a given change

N = a given service

A = there is an association between M and N

ρ = K is derived from the change service

A
'

= there is an occurence of aggregation link between

M and N

IAF = Impact Analysis Factor

This expression implies that a service in association (A)

with M and not derived (~ ρ) from the change service M or

services that are in aggregation link (A
'
) with M, are

impacted. It is important to state that this impact model only

predicts, which services would be impacted if a change was

really made. If a service is really impacted, it means there is

the propensity of propagation in which case the IAF

becomes 1. We concentrate on changes that have a synthetic

impact, therefore, appropriate measures are based on

impacts that are dependent on the static nature of the

provisioning system. This implies that impacts have a

likelihood of propagation [13, 14].

136 Obeten Obi Ekabua: Extended Implementation of Change Impact Analysis Model-Based Framework to

Enhance Predicting the Effect of a Change of Service in a Grid Environment

5. Fault and Failure Assumption Model

Depending on the architectural level, time phased and

other specific service parameters, SOA failure modes may

change. In modern SOA, common failures are due to

unavailable infrastructure, client crash, service failure,

server crash, session failure and component failure.

Therefore, a generic failure Fk is defined as:

Fk = f (al, tp, ssp)

Where;

al = the architectural level of the faulty components

tp = the time phase during which the fault occur

ssp = the set of specific service parameters identifying the

state of the particular service involved in the failure.

If each failure Fk is identified, the system failure modes

can be represented as:

This implies that the system fails if at least one of the

identified failuresoccurs. Our failure is recorded as a boolean

value (0, 1) with respect to tp. Increasing redundancy

degree may lead to increase in possible sources of failure

resulting in potential decrease in dependability [2]. To

understand the impact of redundancy, dependability and

interoperability on our framework, the failure model is

necessary.

Our fault assumption is based on a fail-silent assumption

where either a service is actively operating or does not

answer at all. This assumption is justified on the basis of our

CIAFAM whose IAF is a boolean (0,1). When the value is 1,

it indicates a fault (requiring change), but when the value is 0,

it is in its active state.

To analyze the error type that a faulty service may induce

in a grid environment, we formulate the concept of failure

that will enhance change prediction as:

where al and tp are as previously defined and ssp = tm, i, d

where

tm = time (in months) when a fault is detected

months

i = the particular service item involve in failure

where I is the set of available

services.

d = the descriptor of the faulty session

6. Bayesian Approach Used for

Prediction

Bayesian statistical approach has proven useful for both

inferential exploration of previously undetermined

relationships among services as well as descriptions of these

relationships upon discovery. The process of service change

prediction in a service provisioning environment can be

computationally intensive and NP-hard in its algorithmic

implications. Predicting a change of service in an SOA

service provisioning environment for a solution to a problem

is usually NP-hard problem resulting in a combinatorial

explosion of possible solutions to investigate. This problem

is often ameliorated through the use of heuristics, or

sub-routines to make worthwhile choices along the SOA

decision tree. We have used Bayesian approach to replace

heuristic methods by introducing a method where the

probabilities of SOA decision tree are updated continually

during predictive decision making.

We express the Bayesian approach as

 1

The term is defined as the “posterior

probability” which is being continuously updated. It is the

probability of H after considering the effect of r on q. The

term is the marginal probability known

generally as the likelihood, and gives the probability of the

evidence assuming the hypothesis H and the background

information is true. The term is called the

prior probability which measures the strength of belief

probabilistically of the services, prior to any execution of

experiment and may depend on the strength r service having

the assumption of being true. For computational exigency of

discrete nodes for SOA services, the updated services

marginal probability density function is

calculated using the chain rule of probability

 2

Thus for the product rule of probability, (2) for each ,

 are set of services that renders

conditionally independent in

an SOA system. Therefore we have:

 3

With equation (3), the Bayesian environment structure

then encodes the assertion of conditional independence in

equation (2). Thus by this assumption, a Bayesian structure

is a directed acyclic graph such that each variable in the

domain of the environment corresponds to a node in the

SOA and the parents of the node corresponding to are

the nodes formulated from binomial distributions:

 4

 F F|..|F|F F
k

nk

0kn21 ∑
=

=
==

) d i, , t, t(al, f F mp=

12} y 6 6; x 0 {y x, t m ≤<≤≤=

 } z ., . . c, b, {a, I i =∈

)/(

),/()/(
),\(

rqP

rHqPrHP
rqHP =

),\(rqHP

),/(rHqP

r)/(rHP

),\(rqHP

),,.....,/()/,.......,,(
1

12121 ∏
=

−=
n

i

iin xxxxpxxxp ηη

ix

}{ 11 ,........, −∏ ⊆ ii
xx

{ }121,,, −ni xxxandx

),/(()/,.......,,(21 ∏=
κ

ηη in xpxxxp

 (i)

(ii) ix

xnn pp
xnx

n
xp −−

−
=)1(

!)(!

!
)(

American Journal of Software Engineering and Applications 2013; 2(6): 133-140 137

Substituting equation (4) into equation (1), we obtain the

updated predictive a posteriori P(H\q, r). With this

computational updating, the service provisioning

environment is predictable.

7. Framework Implementation

Figure 2. Casually related set of services connected to the framework [17]

Fig.2 defines a set of A, B, C, D services which are

connected to our framework at the point of s1, s2, s3, and s4 of

the SDE respectively. All service interconnection is defined

by a causal relationship. This causal relationship can be

affected by a failure need of a change in service resulting

from either unavailable infrastructure, client crash, service

failure, server crash, session failure and component failure at

any point in time. Service a, ba and Aa are causally related to

service A, while service b, ba, cb and bc are causally related

to service B. Also service c, and bc are causally related to C

while d, e, Db, f, g are causally related to D. Service

maintenance is costly and difficult. It is not always clear

what the impact of any type of change to service will have

across the whole services. This CIA technique shows the

maintainer what the effect of any change will be on the

system. Our framework has proven to offer the potential to

improve the stability and efficiency of service provisioning

and cut the cost of maintenance. The change

propagationframework was implemented and the results

obtained for a hypothetical period of 3 years are shown in

table 1.

Table 1. Experimentally Obtained Results

Main

Services

Linked

Services
1st yr. (X, y) 2nd yr. (x, y) 3rd yr. (x, y)

 a 0,0 0,0 1,0

A ba 0,0 0,0 1,0

 Aa 0,0 0,0 1,0

 b 0,1 0,0 1,0

 ba 0,1 0,0 1,0

B cb 0,1 0,0 1,0

 bc 0,1 0,0 1,0

 c 0,1 0,0 1,0

C bc 0,1 0,0 1,0

 d 0,0 0,0 0,0

 e 0,0 0,0 0,0

D Db 0,0 0,0 0,0

 f 0,0 0,0 0,0

 g 0,0 0,0 0,0

8. Results Interpretations

The adaptation model defines expected results to be

obtained as boolean, where a value of 0 signifies no changes

made, while a value of 1 signifies that there was a syntactic

impact, meaning a change was effected. Values are recorded

within a period of 6 months (x) and 12 months (y)

respectively. Therefore for each hypothetical year, you find

the first boolean value representing changes been made or

not, within.

The first 6 months x and the second value representing

changes that have either been made or not within 12 months

(y) of the year. We have previously explained that changes

propagates, hence we use the recorded values over a

hypothetical period of three years, through Bayesian

statistics, to predict changesfor the next year (4th year). Now

with four years values at hand, a second time predictionwas

made for the following year (5th year). The obtained and

predicted results are as recorded in table 2a and table 2b

respectively. On a general note, the consequence of

obtaining the value 1 is indicative of low comprehensibility,

hence low reliability. This value also serves as quality

measure, as the value of 1 actually indicates low value of

thequality attribute.

Table 2a. Experimentally Obtained and Predicted Results

Main

Services

Linked

Services

1st yr.

(x, y)

2nd yr.

(x, y)

3rd yr.

(x, y)

4th yr.

(x, y)

 A 0,0 0,0 1,0 0,0

A Ba 0,0 0,0 1,0 0,0

 Aa 0,0 0,0 1,0 0,0

 B 0,1 0,0 1,0 0,1

 Ba 0,1 0,0 1,0 0,1

B Cb 0,1 0,0 1,0 0,1

 Bc 0,1 0,0 1,0 0,1

 C 0,1 0,0 1,0 0,1

C Bc 0,1 0,0 1,0 0,1

 D 0,0 0,0 0,0 1,0

 E 0,0 0,0 0,0 0,0

D Db 0,0 0,0 0,0 1,0

 F 0,0 0,0 0,0 0,0

 G 0,0 0,0 0,0 0,0

Table 2b. Experimentally Obtained and Predicted

Main

Services

Linked

Services

1st yr.

(x, y)

2nd yr.

(x, y)

3rd yr.

(x, y)

4th yr.

(x, y)

5th yr.

(x, y)

 a 0,0 0,0 1,0 0,0 0,1

A ba 0,0 0,0 1,0 0,0 0,1

 Aa 0,0 0,0 1,0 0,0 0,0

 b 0,1 0,0 1,0 0,1 0,0

 ba 0,1 0,0 1,0 0,1 0,0

B cb 0,1 0,0 1,0 0,1 0,0

 bc 0,1 0,0 1,0 0,1 0,0

 c 0,1 0,0 1,0 0,1 1,0

C bc 0,1 0,0 1,0 0,1 1,0

 d 0,0 0,0 0,0 1,0 1,0

 e 0,0 0,0 0,0 0,0 1,0

D Db 0,0 0,0 0,0 1,0 0,1

 f 0,0 0,0 0,0 0,0 0,1

 g 0,0 0,0 0,0 0,0 0,1

The attribute that is being measured here is a service

change for productivity, hence quality. Productivity is an

138 Obeten Obi Ekabua: Extended Implementation of Change Impact Analysis Model

Enhance Predicting the Effect of a Change of Service in a Grid Environment

external attribute of the service, which is clearly dep

on many aspects of the process and the quality of service

delivered. Service change is a maintenance issue with

service quality. Our mention of reliability isdue to the need

for prediction. This is because the values are obtained on the

basis of observing times between faults leading to failures

during service provisioning operation, and are used as

parameter estimates to make statements about future

reliability. Of particular note, is the fact that reliability

requires collection of inter-failure data during service

provisioning operation [1], see table 1.

obtained in the scenario example and recorded in table 2b,

we extract the characteristics of services where fault occurs,

and calculated their dependencies and the corresponding

number of faults propagated. You may recall that in our

CIAFAM, we mentioned that our interest was where

syntactic impact is involved. That is, we concentrated on

changes that have a syntactic impact; therefore, appropriate

measures were based on impacts that were dependent on the

static nature of the provisioning system. We therefore

represent the details in the following table 3 showing the

actual impact set.

We represent the details of table 3 in a dependency

propagation relationship as shown figure 2.

Table 3. Example Scenario Dependency – Fault Propagation

Linked Service Fault

Source

No. of

dependency
No. of fault Propagated

B 4

A 3

C 2

d 1

Db 0

Figure 2. Dependency-Fault Propagation Characteristics

The propagation process is necessary because if not

carefully controlled after a change, itmight result in an

avalanche of faults which may increase the rate of

inconsistencies knowing that the goal of change propagation

is to ensure consistency after a change. As it

check the level of propagation only, but also necessary to

check what impact these changes have on the overall service

Extended Implementation of Change Impact Analysis Model-Based Framework to

Enhance Predicting the Effect of a Change of Service in a Grid Environment

external attribute of the service, which is clearly dependent

on many aspects of the process and the quality of service

delivered. Service change is a maintenance issue with

service quality. Our mention of reliability isdue to the need

for prediction. This is because the values are obtained on the

serving times between faults leading to failures

during service provisioning operation, and are used as

parameter estimates to make statements about future

reliability. Of particular note, is the fact that reliability

ata during service

provisioning operation [1], see table 1. 0From results

tained in the scenario example and recorded in table 2b,

we extract the characteristics of services where fault occurs,

and calculated their dependencies and the corresponding

ber of faults propagated. You may recall that in our

CIAFAM, we mentioned that our interest was where

we concentrated on

changes that have a syntactic impact; therefore, appropriate

were dependent on the

static nature of the provisioning system. We therefore

represent the details in the following table 3 showing the

We represent the details of table 3 in a dependency – fault

propagation relationship as shown figure 2.

Fault PropagationCharateristics

No. of fault Propagated

5

2

1

0

0

Fault Propagation Characteristics

The propagation process is necessary because if not

might result in an

lanche of faults which may increase the rate of

cies knowing that the goal of change propagation

is to ensure consistency after a change. As it isnot enough to

check the level of propagation only, but also necessary to

check what impact these changes have on the overall service

which will give the actual impact set. Therefore, from the

actual impact set, we obtained the number of changes and

compute their corresponding impact as expressed in table 4

below:

Table 4. Example Scenario Change

Sources of Fault No. of changes

b 4

a 3

c 2

d 1

Db 0

Figure 3. Change – Impact AnalysisCharacteristics

Figure 3 below shows the change

characteristics derived from table 4.

Maintenance has been recognized as the most costly phase

in the software life cycle [14]. Since software has been

consumed as services, service maintenance e

estimated to be frequently more than 50% of the total life

cycle cost [15]. This work has the potential to improve

service provisioning to customers, thereby cutting cost

during service delivery. Using change propagation

framework will help to achieve the following:

(i) Understand the nature of the services needed by a consumer.

(ii) Estimate the effort devoted to a project.

(iii) Determine the quality of service.

(iv) Predict the maintainability of service with respect to the

derived benefits.

(v) Validate best practices for service providers in a frequent

changing requirement community.

(vi) Provide optimal maintenance solutions.

By identifying potential impacts before making a change,

the risks associated with embarking on a costly

be reduced, because the cost of unexpected problems

generally increases with the lateness of their discovery. The

more a particular change causes other changes, the higher the

cost. Carrying out CIA will allow an assessment of the cost

of the change and help management to choose between

alternative changes. It will also allow managers and

engineers to evaluate the appropriateness of a proposed

Based Framework to

Enhance Predicting the Effect of a Change of Service in a Grid Environment

which will give the actual impact set. Therefore, from the

actual impact set, we obtained the number of changes and

te their corresponding impact as expressed in table 4

Example Scenario Change – Impact Charateristics

changes No. of impacted Services

5

4

3

2

1

Impact AnalysisCharacteristics

Figure 3 below shows the change – impact Analysis

racteristics derived from table 4.

Maintenance has been recognized as the most costly phase

in the software life cycle [14]. Since software has been

consumed as services, service maintenance effort has been

estimated to be frequently more than 50% of the total life

cycle cost [15]. This work has the potential to improve

vice provisioning to customers, thereby cutting cost

during service delivery. Using change propagation

to achieve the following:

Understand the nature of the services needed by a consumer.

Estimate the effort devoted to a project.

Determine the quality of service.

Predict the maintainability of service with respect to the

Validate best practices for service providers in a frequent

changing requirement community.

Provide optimal maintenance solutions.

By identifying potential impacts before making a change,

the risks associated with embarking on a costly change can

be reduced, because the cost of unexpected problems

erally increases with the lateness of their discovery. The

more a particular change causes other changes, the higher the

cost. Carrying out CIA will allow an assessment of the cost

hange and help management to choose between

ternative changes. It will also allow managers and

engineers to evaluate the appropriateness of a proposed

American Journal of Software Engineering and Applications 2013; 2(6): 133-140 139

modification. If a proposed change has the possibility of

impacting large, disjoint sections of a service, the change

will need to be re-examined to determine whether a safer

change is possible [14].

9. Validity of Measures from Concepts

We acknowledge the fact that predictive measurements

require predictive systems involving a model and a set of

predictive procedures for determining the model parameters

and applying the results [1]. Therefore, in validating our

measures in the sense of assessment, we have demonstrated

empirically that the representation condition is satisfied by

the productivity and quality attribute being measured. We

have also demonstrated the validity of the measure as it

correlates with the expected values in CIAFAM. Hence the

measure is a good predictor of effort in productivity and an

indicator of quality of service (QoS) during change of a

service in our grid-based environment.

We measured change impact based on the set of services

that are affected by the change. Consequently, we

concentrated on the number of services that are affected and

their dependencies to describe the level of fault propagation.

This is why we extracted only services that have a fault and

their dependencies, and expressed this in Table 3 and

consequently determined the characteristics of these

dependencies and the corresponding fault propagation

graphically as shown in figure 2. The general understanding

obtained from this graph is that, the higher the dependencies,

the higher the rate of fault propagated, and the greater the

number of changes required to keeping the main service in a

consistent state. The affected services’ complexity often

determines how severe the change was. The higher the

number of service dependencies, the higher the level of

complexity and invariably the more severe the change.

Considering our example scenario, changes that do not affect

any other services because their number of dependency was

either one or zero were limited in scope (e.g. linked services

d and Db) and therefore have zero fault propagation.

Determining the severity of a change is a function of the

impact the change has on the other services. We therefore

obtained the number of changes required and computed their

corresponding impact as describe in table 4. The relationship

between the change and impact was describe in the graph

represented in figure 3, indicating that, as the number of

changes increased, the impact also increased. As noted

earlier, the number of changes was also affected by the

number of dependent services. Therefore, if the

dependencies are high, the number of changes will be high,

and consequently the impact will as well be high.

10. Conclusion and Future Work

Results obtained (Table 2a and 2b) using CIAFAM,

Bayesian statistics, alongside the fault and failure

assumption model of the framework indicate that the

framework satisfies the criteria of an accurate prediction.

Although we have attempted regression based model (not

reported in this paper), we thus confirm that Bayesian

method is a useful technique for service maintainability

prediction by achieving significantly better prediction

accuracy as compared to the unreported regression method.

In conclusion, the higher the service dependencies, the

higher the rate of fault propagated, and the greater the

number of changes required to keeping the main service in a

consistent state. The affected services’ complexity often

determines how severe the change was. Therefore, the higher

the number of service dependencies, the higher the level of

complexity and invariably the more severe the change.

What is not confirmed but provides an interesting

direction for future work, is whether the accuracy through

the Bayesian model is dependent on the fault and failure

assumption model and the change impact analysis factor

adaptation model (CIAFAM). Another interesting direction

would be using a Bayesian model with a different service

structure (whose relationship is static not causal), for

example, a tree augmented Naïve-Bayes’ classifier to predict

service provisioning effort.

References

[1] Fenton, N. , (1994): Software Measurement: A Necessary
Scientific Basis. IEEE Transactions on software Engineering.
Vol. 20, No. 3

[2] Bennett, K., Munro, M., Gold, N., Layzell, P., Mehandjiev,
N., Budgne, D., Brereton, P. (2001): An architectural model
for service-based flexible software. In Proceeding of the 25th
Annual International Conference on Computer Software and
Application (COMPSAC 2001) IEEE Computer Society,
137-142

[3] Liu, X., Yang, H., and Zedan, H. (1997): Formal Methods for
the Re-engineering of Computing Systems. In Proceedings of
the 21st IEEE International Conference on Computer
Software and Application (COMPSAC’97), pages 409-411,
Washington, D.C. IEEE Computer Society.

[4] Zhou, S., Zedan, H., and Cau, A.(1999): A framework for
Analysing the Effect of ‘Change’ In Legacy Code. In IEEE
15th International Conference in Software maintanance
(ICSM’99), pp 411.

[5] Cotroneo, D., Di Flora, C. And Russo, S.(2003): Improving
Dependability of Service Oriented Architecture for Pervasive
Computing. Proceedings of the 8th IEEE International
Workshop on Object-Oriented Real-Time Dependable
Systems. ISBN 0-7695-1929-6/03.

[6] Davies, N., Gellersen, H. W. (2002): Beyond Prototypes:
Challenges in deploying Ubiquitous Systems. In IEEE
Pervasive Computing 1(1): pp26-35

[7] Turnitsa, C. D. (2005): Extending the levels of Conceptual
Interoperability Model. IEEE proceedings of Summer
Computer Simulation Conference. IEEE Computer Society
Press.

[8] Lee, M.L. (1998): Change Impact Analysis of
Object-Oriented Software. Technical Report ISE-TR-99-06,
George Mason University.

140 Obeten Obi Ekabua: Extended Implementation of Change Impact Analysis Model-Based Framework to

Enhance Predicting the Effect of a Change of Service in a Grid Environment

[9] Hao, H. (2003): What is Service-Oriented Architecture. CTO
of SoftTouch Information Technology Pty.
webservices.xml.com

[10] David, S. and Lawrence, W. (2004): Understanding
Service-Oriented Architecture. .NET Architecture Centre.
Microsoft Architect Journal, January.

[11] IEEE Standard (1990). IEEE Standard Computer Dictionary:
A Compilation of IEEE Standard Computer Glossaries. New
York, NY.

[12] Hayes, J. H., Patel, S. C., and Zhao, L.(2004): A
Metrics-Based software Maintenance Effort Model.
Proceedings of IEEE 8th European Conference on Software
Maintenance and Reengineering (CSMR’04).

[13] Kabaili, H., Keller, R. K., and Lustman, F. (2001): A
Cohesion as Changeability Indicators in Object-Oriented
Systems. Proceedings of IEEE 5th European Conference on
Software Maintenance and Reengineering.

[14] Chaumum, M., Kabaili, H., Keller, R., and Lustman, F.
(1999): A Change Impact Model for Changeability
Assessment in Object-Oriented Software Systems.
Proceedings of IEEE third European Conference on Software
Maintenance and Reengineering.

[15] Elish, M. O. and Rine, D. (2003): Investigation of Metrics for
Object Oriented Design Logical Stability. Proceedings of 7th
European Conference on Software Maintenance and
Reengineering. pp.193-200.

[16] Ekabua, O. O., Olugbara, O. O. and Adigun, M. O. 2007: A
Generic Change Propagation Framework to Enhance Service
Provisioning in a Grid Environment. Asian Journal of
Information Technology, 6(10): 1015-1019, ISSN:
1682-3915

[17] Ekabua, O. O. and Adigun, M. O. (2009): Experienced
Report on Assessing and Evaluating Change Impact Analysis
through a Framework and Associated Models. Journal of
Information Science and Engineering. 25, 363-373.

Biography

Obeten O. Ekabua is a Professor and Departmental Chair of the
Department of Computer Science in the North West University,
Mafikeng Campus, South Africa. He holds BSc (Hons), MSc and
PhD degrees in Computer Science in 1995, 2003, and 2009
respectively. He started his lecturing career in 1998 at the
University of Calabar, Nigeria. He is the former chair of the
Department of Computer Science and Information Systems,
University of Venda, South Africa. He has published several
works in several International and National journals, and also in
several career conferences. He has also pioneered several new
research directions and made a number of landmark contributions
in his field and profession. He has received several awards. His
research interest is in software measurement and maintenance,
Cloud and GRID computing, Cognitive Radio Networks, Security
Issues and Next Generation Networks.

