

American Journal of Software Engineering and Applications
2013; 2(5): 111-124

Published online September 20, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j.ajsea.20130205.11

A systematic review of fault tolerance in mobile agents

Bassey Echeng Isong
1
, Eyaye Bekele

2

1Deptmemt of Computer Science, University of Venda, Thohoyandou, South Africa
2School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden

Email address:
bassey.isong@univen.ac.za(B. Isong), eyayeb@gmail.com (E. Bekele)

To cite this article:
Bassey Echeng Isong, Eyaye Bekele. A Systematic Review of Fault Tolerance in Mobile Agents. American Journal of Software

Engineering and Applications. Vol. 2, No. 5, 2013, pp. 111-124. doi: 10.11648/j.ajsea.20130205.11

Abstract: Mobile agents have engrossed substantial attention in recent years, especially in fault tolerance researches and

several approaches have emerged. Fault tolerance design tends to put a stop to incomplete or complete loss of the agent in the

face of failures. Despite these developments, reliability issues still remain a critical challenge. Moreover, there is no

comprehensive detail bringing together, summaries of the existing efforts of researches in order to focus attention where it is

needed most. Therefore, our objective in this systematic literature review (SR) is to explore and analyze the existing fault

tolerance implementations in order to bring about the state-of-the-art and the challenges in mobile agent’s fault tolerance

approaches. We used studies from a number of relevant article sources, and our results showed the existence of twenty six

articles. Our analysis indicates that the existing approaches are not generic and each focuses on a specific aspect of the

problem, usually in one or two specific fault models which impacts on agent’s reliability. The implication of the study is to

give a clear direction to future researchers in this area for a better reliable and transparent fault tolerance in mobile agents.

Keywords: Mobile Agents, Fault Tolerance, Replication, Check-Pointing, Systematic Review, Platforms

1. Introduction

In the last few decades the field of mobile agents in

distributed computing has witnessed substantial attention in

both academia and industrial fields. This is known to be

stimulated by the exponential growth of the Internet and

system dependability. However, in spite of all, mobile

agent’s reliability is still a critical issue. Due to their nature,

mobile agent’s reliability and execution is not failure-free in

the environments they operate. The growth of distributed

heterogeneous environments such as the Internet naturally

exposes them to abnormal conditions originating from

migration request failure, communication exceptions or

security violation [3],[4],[6]. Hence, providing reliability is

of the essence to integrate agent-driven systems into today’s

industrial applications. Mobile agents have to be made

reliable through fault tolerance to withstand adverse

environmental situations in today’s industrial applications.

Fault tolerance is designed to provide reliable execution of

mobile agents even in the presence of system failure.

Achieving mobile agent’s fault tolerance requires the

adherence to the non-blocking and exactly-once execution

[7]. Presently in literature, several mobile agents’ fault

tolerance approaches exist in variety of mobile agent

platforms. These approaches used different mechanisms to

provide the reliability mobile agents’ execution needs

especially in the failure detection and recovery aspects.

Moreover, majority of the recent approaches are based on

optimizations, hybrid-based, while others are based on

exception handling. In general, the existing fault tolerance

schemes are categorized as either curative in nature (e.g.

exception handling) or preventive [8], [9], [10]. The

preventive schemes are further categorized into

check-pointing and replication-based schemes but in some

cases a hybrid of both schemes [8].

Despite several efforts and interest in this field, there is no

comprehensive detail bringing together, summaries of these

efforts. The main gap in this research area lies in the fact that

the existing approaches are not generic and each focuses on

a specific aspect of the problem, usually in one or two

specific fault modes which is known to have huge impacts

on agent’s reliability. To improve the reliability of a system,

faults originating from different forms need to be addressed

in the fault tolerance measure. Unfortunately, there is no

fault tolerance framework in the existing literature that

serves as a guideline for realizing the state-of-the-art in

mobile agent’s fault tolerance. Therefore, bringing together

fault tolerance approaches in mobile agent will assist

researchers in closing the gaps identified in this study. The

objective of this systematic literature review (SR) is to

112 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

explore the existing fault tolerance approaches in mobile

agents system to identify the current state of research, the

techniques and approaches used, and the factors that

influence the execution reported in recognized fault

tolerance implementations research.

The rest of this article is organized as follows. An

overview of mobile agents is given in Section 2. The

research methodology of this SR is described in Section 3.

The analysis of the results in accordance with the research

questions is presented in Section 4. Section 5 provides the

study discussions while the conclusions and

recommendations are in Section 6.

2. Overview of Mobile Agents

Mobile agents are encapsulated pieces of executing

program that have the ability to travel from one host to

another and perform certain task autonomously [3]. It is a

technology that aimed at shifting computation towards the

data other than the other way round [1]. Mobile agents have

characteristics that are distinct, thus making them flexible in

deployment and desirable for use in distributed applications

than other technological paradigms such as client-server,

peer-to-peer, and others [2]. (see Figure 1.) These features

include ability to naturally operate in heterogeneous

environments [9], act autonomously [8], move

independently from one host and can effectively make

execution decision 14]. Mobile agents heavily rely on the

underlying protocol for communications by way of

interactions and message exchanges in order to successfully

carry out and execute certain task in the in the agent system

[9].

Based on their characteristics, mobile agents provide

several benefits such as bandwidth conservation [15],

asynchronous and autonomous interactions [8], extended

flexibility in disconnected data operations [16] and can

improve network latency with better response time [16],

robust and fault tolerant [17]. Mobile agents are generally

independent of the computer-layer and transport-layer but

dependent only on their execution environment [18], and

have better scalability [16].

Today, the concept of mobile agents is receiving

considerable attention in both research and industrial fields.

Several platforms exist that provides operating

environments for mobile agents such as Aglets, Agent Tcl,

Knowbots, Telescript, Voyager, Mole, Tacoma, Grasshopper,

James, Swarm and others [1], [2], [13]. Moreover, they have

applications in several areas such as e-commerce and

m-commerce, network monitoring and management,

distributed information retrieval, telecommunications,

remote device control and configuration, Internet computing,

etc [2],[5],[8],[19],[20],[22]. To this end, despite the

flexibility offered by mobile agents, agents are not isolated

from several challenges such as malicious or errant hosts,

erratic Internet behaviors or resource scarcity [6]. These

therefore, calls for reliability and security mechanisms to be

in place [9],[12]. The reliability issue is being addressed by

fault tolerance mechanisms, which is the focus of this study.

Figure 1. Client-server vs. mobile agent paradigm

3. Research Method

Systematic review is a methodology aimed at minimizing

the inconsistencies associated with less scientifically

rigorous review methodologies through strict qualitative

research methods resulting to objective and unbiased results.

In this study, we have applied SR to explore the

state-of-the-art of fault tolerance in mobile agents by

following the guidelines in [23]. The steps involves are

discussed in subsequent sections.

3.1. Research Questions

This SR aimed to summarize the existing mobile agent’s

fault tolerance approaches in recent years. It would provide a

list of reported and recognized techniques and approaches,

influencing factors, platform supports and challenges in

mobile agent’s fault tolerance. Therefore, the research

questions are:

SRQ1. What is the state-of-the-art in research of the

recognized mobile agent’s fault tolerance?

SRQ2. What available fault models are considered in

designing fault tolerance protocols?

SRQ3. What are the available approaches and their design

elements in the available recognized mobile agent’s fault

tolerance in current state of research?

SRQ4. What factors influences mobile agent’s fault tolerance

execution?

SRQ5. How much supports are offered by the mobile agent’s

platforms used in implementing the fault tolerance features?

SRQ6. What challenges exist and how do they affects the

implementation of the fault tolerance in mobile agents?

3.2. Search Strategy

A search strategy is designed to ensure that all relevant

studies other than irrelevant ones appear in the search result.

In this SR, our literature search is limited over the scopes of:

publication time period and publications that discusses fault

tolerance in mobile agents. We considers the review of

10-years’ efforts in mobile agents fault tolerance, that

spanned from January 1998 to December 2008. We selected

these periods in order to obtain relevant and sufficient

information that are of the essence to this study and provide

evidences of the trends in mobile agent fault tolerance then.

 American Journal of Software Engineering and Applications 2013; 2(5): 111-124 113

Therefore, any paper published after 31 December, 2008 is

not included in our search result. We limited our searches to

the electronic databases: Compendex/Inspec, IEEE Xplorer,

Google Scholar, ACM digital library, Springer link and

Scirus since they contain peer-reviewed works published in

journals, digital libraries, conferences, proceedings and

workshops which are of recognized quality within the

software engineering research community. In this study, the

quality of each selected research article was evaluated

against a number of checklist questions. Each of questions is

answered based on three options along assigned weights:

Yes=1, Partial=0.5 and No=0. The maximum score a

particular publication can get is 8.(see Table 1)

Table 1. List of selected publications by publisher and methodology

Ref. Authors Year Publisher Published in Methodology Quality Score

[25] Summiya 2006 IEEE Conference Model and Simulation 4.5

[26] Leung, Kwai Ki 2005 IEEE Conference Model and Simulation 6

[14] Kyeongmo Park 2004 Springer Conference Model and Experiment 5

[5] Guiyue Jin 2004 Springer Conference Model and Simulation 5

[27] Lyu, M.R. 2003 IIIS Conference All 5.5

[28] Sehl Mellouli 2007 Springer Conference Model and Experiment 4.5

[29] Assis, Silva, F.M.; 1998 Springer Workshop Model 3

[30] Osman, Taha 2004 IEEE Journal Model 3

[31] Meng, Xuejun 2006 IEEE Conference Model and Experiment 5

[32] Jong-Shin Chen 2008 IEEE Conference Model and Simulation 3

[33] Marin, Olivier 2005 Springer Workshop Model and Experiment 8

[34] Lyu, Michael R. 2004 IEEE Journal Model and Simulation 4.5

[35] Youhei Tanaka 2006 IEEE Conference Model and Simulation 3

[36] Silva, Luís Moura 2000 IEEE Conference Model and Experiment 6

[7] Pleisch, Stefan 2003 IEEE Journal Model and Experiment 7

[38] Rothermel, Kurt 1998 IEEE Conference Model 3.5

[39] Alan Fedoruk 2002 ACM Conference Model and Experiment 6.5

[40] Taesoon Park 2004 Springer Conference Model and Experiment 5.5

[41] Taesoon Park 2004 Springer Conference Model and Experiment 6

[42] Mohammadi, K. 2005 IEEE Conference All 5

[44] Yang, Jin 2005 Springer Conference Model and Simulation 5

[46] Park, Taesoon 2004 Springer Conference Model and Experiment 5

[47] Tomoaki Kaneda 2005 ACM Conference Model and Experiment 5

[48] Park, Taesoon 2006 Springer Conference Model and Simulation 3

[43] Johansen, D. 1999 IEEE Conference Model and Experiment 5.5

[45] Milovan Tosic 2005 Springer Conference Model and Experiment 4.5

The study selection process was individually carried out

by the authors involved and any differences were settled by

consensus. The search strategies we adopted were iterative

in nature and the inclusion/exclusion decisions were

checked at least twice and discussed at each stage of

execution. We adopted a multi-stage process in selecting

the studies in accordance with the guidelines in [23], using

different selection criteria. All search terms we created were

applied on the selected databases and a total of 6,901 results

were found. In the first stage, 6788 articles were excluded

based on the relevance of their title or abstract. Furthermore,

the titles and abstract of the left over 113 were read and the

basic inclusion and exclusion criteria applied, leaving a total

of 86 studies. In the second stage, 55 out of the 86 articles

114 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

were selected based on the application of the detailed

inclusion and exclusion criteria - abstract, the conclusion

and in some cases the introduction was reviewed to apply the

exclusion criteria. The exclusion criteria were based on

inaccessibility, formal or mathematical description, and

exception handling. Lastly, in the third stage, we based the

selection process on the detailed research questions while

the exclusion criteria was based on issues of duplication,

application of mobile agents in a different study area, and

mobile agent’s platforms articles. As a result, 26 unique

studies were selected as primary studies for this SR and 29

studies were discarded.

3.3. Data Extraction and Synthesis

The data extraction strategy was developed in

accordance with the research questions, quality assessment

checklist, general information associated with the study

identification and certain common characteristics in the

studies. During the extraction, the authors also checked and

re-checked the extracted data to get rid of uncertainties. To

assist us find and validate the extracted information and

resolve inconsistencies quickly, we tinted all important lines

and paragraphs in the selected studies. Accordingly,

difficulties encountered were resolved via discussion among

the authors. For multiple articles of the same information,

articles with the most complete and latest information were

used to avoid unbiased findings. To extract relevant

information, we created and used data extraction form with

the following fields: Title, Authors names,

Journal/Conference/Workshop, Year, Research

Methodology, Moble agent fault tolerance Scheme, Protocol,

Fault model, Assumptions Detection, Recovery, Fault

Tolerance execution, Agent types, Communication, Factors

affecting the performance of the proposed model and

experiment variables, Platform type, Platform support and

Challenges.

With the extracted data from the extraction forms coupled

with the nature of this study, we performed descriptive

synthesis of the data since it is the only suitable method in

such heterogeneous data format.

4. Analysis

In this section, we present analysis of the results of this SR

by answering the research questions as follows:

4.1. Mobile Agents Fault Tolerance Research

RQ1: What is the state-of-the-art in research of

recognized mobile agent’s fault tolerance?

To answer this research question, analysis will be based

on publication years, the qualities of the articles and the

methodology used. Table 1 presents list of selected

publications by publisher and Methodology as well as the

quality score for each study.

2

1 1

0

1

2

7

6

4

1 1

0

1

2

3

4

5

6

7

N
o

.
o

f
P

u
b

li
c

a
ti

o
n

s

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

Year

Publications

Figure 2. Studies by year of publication.

4.1.1. Year of Publications

We found 26 studies related to mobile agent fault

tolerance where 21 studies were published in conference

proceedings, 2 studies in Journals and 3 studies in

workshops. Analysis shows that the field of mobile agent

fault tolerance was active in research in those periods.

Further analysis indicates that years between 2004 and 2006

have showed a remarkable increase in number of

publications, though the trend seems to be going down in the

last three years (2006 - 2008). Figure 2 and Table 1 show

studies by year of publication.

4.1.2. Publication Quality Scores

Analysis shows that more than 75% of the selected

publications scored 4.5 or more. Articles with more than 4 as

score in the quality assessment generally are selected on the

basis of having the most vital information such as detailed

description of a model and some form of proof such as

results from a real experiment or simulation to support their

findings. (see Figure 3)

0 0 0 0

5

1

0

4

7

3 3

1 1

0

1

0

1

2

3

4

5

6

7

N
o

.
o

f
P

u
b

li
c

a
ti

o
n

s

1
1.

5 2
2.

5 3
3.

5 4
4.

5 5
5.

5 6
6.

5 7
7.

5 8

Score

Publications

Figure 3. Publications by quality assessment scores

4.1.2. Methodology

In this study, we noticed that the number of studies on

fault tolerance in mobile agents that were supported by

simulation or experiment has improved over the years.

Analysis indicates that about 46% studies are with

experiments, 31% is simulation only, while a combination of

 American Journal of Software Engineering and Applications 2013; 2(5): 111-124 115

experiments and simulations has 8%. Only 12% of the

studies discussed fault tolerant models with no experiments

or simulations. (see Figure 4).

Figure 4. Primary studies research methodology

4.2. Fault Models

SRQ2. What available fault models are considered in

designing fault tolerance protocols?

In the 26 studies, we found that the ability to observe the

agents and detect failure during execution is one of the

cardinal features of any fault tolerance in mobile agent

approach. This is because mobile agents or its environments

are not failure-free. We noticed ‘fault model’ is used to

define which set of observations are categorized as failure

and which are acceptable operation modes. Analysis shows

that all the existing approaches have fault models and there

are three classes of agent’s failures: communication, crash

and agent software failure. Moreover, we found that most of

the studies are designed to either cater for one of the stated

failures or multiple of them. Table 2 presents the existing

implementations of each study and the failure types

designed for them.

Table 2. Failure Types

Failure Types

Communication Crash Agent/Agent Software

[25],[30],[31],[32],

[42],[36],[38],[39],

[43], [44], [45]

[5],[7],[25],[26],[27],

[29],[30],[31],[32],

[34],[42],[35],[36],

[38],[40],[41],[14],

[44],[46],[47],[43],

[45]

[25], [26], [5], [27], [28],

29],[30],[31],[32], [33],

[42], [7], [36], [38], [39],

[40], [41], [44], [46], [47],

[45],[48]

Based on Table 2, the distribution of fault models in the

studies presented in Figure 5 denotes that fault models for

communication failures were least addressed (43%). This

could depend on the assumption that the network is reliable

or agents can eventually resume service even if the network

fails. Crash and agent software fault models seem to be

supported in most of the existing implementations (84%).

Only about 35% of the studies supported all three fault

models [44], [27], [38], [30], [31], [32], [42], [36], [45],

while 12% of these studies considered the issue of network

partitioning and suggested a solution to it [44], [38],[30].

Fault Models Distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
om

m
.

Cra
sh

A
gen

t S
oftw

ar
e

Fault Models

C
o

u
n

t

No support

Supports

Figure 5. Fault Model distribution

4.3. Mobile Agents Fault Tolerance Approaches and

Design

SRQ3. What are the available approaches and their

design elements in the available recognized mobile agent’s

fault tolerance in current state of research?

This research questions will be answered based on the

different approaches of mobile agent’s fault tolerance, the

available protocols and the design of the available

implementations.

4.3.1. Fault Tolerance Schemes

One of the key features of fault tolerance approach is the

ability to recover from failure. In this study, we found that

the existing fault tolerance schemes that deal with sources of

system failures and recovery were categorized as either the

replication-based, checkpoint-based or a hybrid schemes

[16], [9], [49]. In this study, we only considered the two

most widely used schemes: check-pointing and replication

for analysis. The different studies that used these approaches

in the perspective of transactional and non-transactional

approach are shown in Table 3.

Table 3. Fault tolerance schemes and execution modes

Agent’s Execution Modes

Scheme Transactional Non-transactional

Checkpoint
[5], [38], [36], [27],

[30], [26], [42]
[34], [45], [48], [46], [32]

Replication
[29], [39], [7], [47],

[35]

[43], [40], [41], [33], [44], [25],

[28]

Hybrid [14], [31] -------

Further analysis shows that both check-pointing and

replication-based schemes are used almost equally over the

years of consideration (see Figure 6).

116 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

Fault Tolerance Scheme by Year

0

1

2

3

4

5

6

7

8

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

Year

C
o

u
n

t Both

Replication

Checkpoint

Figure 6. Fault tolerance scheme distribution

4.3.2. Replication Scheme Types

For replication-based schemes: active and passive,

analysis in this study shows that the trend of distancing away

from active replication-based schemes is quite evident. (See

Figure 7) In addition, about 72% of the replication-based

approaches used either the passive or semi-active replication,

but the semi-active to passive ratio within the passive

replication-based category is 3:7. This indicates that

semi-active techniques are not used often either. It could be

as a consequence of high computation and communication

cost they incur. The computation overhead in active

replication is higher even among the implementations that

support both replication types.

Figure 7. Replication scheme types distribution

4.3.3. Execution Modes

We found that execution mode in existing agents fault

tolerance are either transactional or non-transactional. From

all indication, we noticed that the distribution of the

transactional and non-transactional executions is someway

balanced (see Figure 8), though the transaction-based

executions are slightly higher with about 54% than

non-transaction-based modes with 46%. The analysis

indicates there is no noticeable shift in trend over the years.

However, transactional executions are more reliable in

maintaining the exactly-once property of agent execution,

while its counterpart maintain lower computation overhead.

But we recommend transactional execution for application

domains that require higher level of consistency.

Figure 8. Agent’s execution modes

4.3.4. Communication Modes

In this study, we found that there are only two

communication modes in fault tolerant mobile agent

dominated by the asynchronous mode. Analysis shows that

about 92% of the studies implemented asynchronous mode

execution while only 8% of the studies are both

synchronously and asynchronously. (see Figure 9) There

was no implementation that solely works on synchronous

mode. We believe this could be as a result of the

characteristics of the agent’s environment where they are

autonomous and migrate usually in open networks with

latency. In addition, there is high performance overhead with

synchronous when compared to asynchronous.

Figure 9. Agent’s communication mode distribution

4.3.5. Fault tolerance Protocols

In this SR, we found that protocols in mobile agents fault

tolerance implementation model are mostly achieved

through effective message passing to coordinate and ensure

reliable agent failure detection and recovery. In addition,

categorizing these protocols into classes is not easy since

some of them exist in association with other protocols.

However, they can only be organized with respect to the two

execution properties of mobile agents: the exactly-once or

non-blocking. Figure 10 shows the class of existing

protocols in mobile agents fault tolerance implementation

model.

Figure 10. Agent’s proptocols

 American Journal of Software Engineering and Applications 2013; 2(5): 111-124 117

4.3.5.1. Exactly-onec Protocols

This protocol guarantees that an agent must execute the

desired action not more and not less than once in a host. This

protocol includes the consensus and the transaction-based

approaches.

A. Consensus Protocol: This protocol provides a means of

achieving agreement between the primary agent process and

the replicas in the case of failure. This is usually achieved by

voting on a certain result by all the participating agents

where a consensus is reached when all the participants agree

on one outcome. In this case, a replica can become the new

primary through its own consensus for either being the first

to detect or having the highest priority when the primary

fails.

B. Transaction-Based Protocol: Similar to consensus, but

uses the transaction commits/abort to reduce the effect of

failures on the availability of operational sites during

distributed transaction. Commit and abort are both

irreversible and unlike consensus, transaction can only be

committed if all participating sites vote or agree to commit,

otherwise, the transaction is aborted. In this study, analysis

shows that most of the studies used the basic

transaction-commit protocol such as centralized transaction

commit by [26] while [7],[27],[30],[35],[36],[47] used the

transaction commit protocol. A hybrid approach of both

consensus and transaction-based protocol were implemented

by [29],[47],[7],[38].

4.3.5.2. Non-Blocking Protocols

These protocols are used basically for overcoming

blocking problems pose by the exactly-once protocols. It is

achieved by either restarting a failed process or use duplicate

agents that are able to take over in time of primary agent

failure without voting. Protocols under this category include

the rollback recovery protocols and the replication-based

protocols.

A. Rollback Recovery Protocol: This approach tries to

reduce the amount of loss in computation by avoiding the

restarting of computation from the beginning. It provides a

technique that requires a process to periodically record its

consistent state, known as check-pointing, into a stable

storage. Most of the existing rollback recovery approaches

are based on message passing: checkpoint-based and

message logging-based.

1. Checkpoint-based: This approach depends strictly on

regularly saving agent’s process states and code to a stable

storage for future restoration or recovery in the event of

failure. Protocols in this category include coordinated,

uncoordinated, communication-induced, lazy and the

timer-based protocol. In this study we found that most of the

rollback-based protocols used this protocol to provide fault

tolerance behavior such as communication-induced

check-pointing [42] independent check-pointing with

receiver-based logging [46], checkpoint-based scheme to

restore agents processes back to its consistent state during

failure, and checkpoint-based with reliable

publisher/subscriber messaging layer[45].

2. Message Log-base: This is the logging of

non-deterministic actions preset as determinants in

combination with check-pointing to achieve fault tolerance

recovery behavior. Protocols under this category include the

pessimistic and optimistic logging protocol [7]. Pessimistic

execution ensures that changes are applied only if no agent

crashes and there is no erroneous result, while in optimistic

execution the place modifications can be immediate and

transparent but undoing modifications is a complex task [7].

B. Replication-based Protocols: In this approach, there

is a live backup agent, either as a duplicate of the primary or

as a standby, even before failure is detected. One drawback

is that it requires synchronization of replicas with the

primary, which is very expensive both in computation and

communication. However, several optimizations have been

suggested in the studies we considered such as formed a

group of replicas and a proxy that communicates with the

primary on behalf of the multiple replicas by [39], dynamic

adaptive replication scheme by [33] and the sliding window

protocol by [25], a technique that controls the number of

backup or replicated agents in order to minimize bandwidth

consumption.

3.3.6. Implementation Models

In the studies we found in this SR, we noticed that there

were several approaches used in designing mobile agent

fault tolerance models. These approaches are either

integrated into the underlying agent’s codes or platforms.

Further analysis shows that most of the approaches are a

hybrid of a variety of the protocols but some also include

preventive techniques. Figure 11 presents the design

approaches of existing implementations.

Figure 11. Fault tolerance design approach

4.3.6.1. Primary Back-up Model

The primary back-up model (PBM) design requires the

replication of the agents or server into primary component

(worker component) and one or more observer components

(backups/replicas component). The primary component

takes charge of execution while the backup components

monitor the primary’s computation for any possible failure.

A. Traditional Primary-Backup/Task replication/Data

redundancy: In this design, the traditional primary-backup

model relies on the replication of system components, task,

data, etc. in order to achieve fault tolerance in mobile agents.

B. Rear Guard Agents as Backup: It is chiefly based on

the primary-backup principle but instead the backup agent

resides on the previously visited host. The backup monitors

the primary agent and perform recovery actions to resume

118 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

the computation when it detects failure of the primary agent

especially in a stage-based partition network. We found

several forms of these approaches such as multiple

rear-guard in [5] and parallel processing of replicas by [44].

Others are optimizations to the approaches by [43] based on

rear-guard protocol and reliable broadcast protocol with

election protocol, while [7] discusses the pipe-line mode.

4.3.6.2. Primary Witness Model

The primary witness model (PWM) approach is very

similar to the PBM, but here the backup agent is a different

type of agent usually for monitoring and creating a backup

agent when the primary agent fails. The backup agent that

replaces the failed primary agent is only created after the

detection of a failure. These approaches include rear guard

agents as witness and the collaborative agents.

A. Rear Guard Agents as Witness: The witness agent

involves a different type of agent that cannot on its own take

over as a primary agent during recovery. The primary agent

takes charge of the natural execution while the witness only

monitors and recovers. In this case, it creates a new primary

and restores normal execution. We found this approach in

studies such as Monitor Agent (MA) which detects failure of

Execution Agent (EA), it creates Repair Agent (RA) for

fixing the error in the EA host [31], and the actual and

witness agents that creates a probe agent for recovering log

during recovery[27], [34].

B. Collaborative Agents: Here, three or more types of

agents with designated responsibilities in the detection and

recovery processes work together for achieving fault

tolerance action with a clear division of labor. The approach

involves the primary agent in charge of the execution, while

others participate for specifically task such as monitoring,

tracking, checking path, recovering, creating another type of

agent, etc. Other agents cannot assume the primary agent

position during recovery. In this study, studies that used this

approach are [25] using three agent types: observer agents,

ping agents and transaction agent used for monitoring, path

checking and executing transactions respectively. Also, [26]

uses three types of agents which are worker, monitor and

tracker.

4.4. Mobile Agents Fault Tolerance Performance Factors

SRQ4. What factors influences mobile agent’s fault

tolerance execution?

We noticed in this study that mobile agent’s fault

tolerance execution is affected by several factors leading to a

decrease in their performance as reported in most studies’

experimental data. However, we only focused on the factors

rather than the actual figures from the experiments due to

unique scenarios and measurements that cannot be

quantitatively compared across the studies. From these

studies, the influencing factors are as follows:

4.4.1. Agent Size

Agents are affected by the size of their code and the

payload data it takes with itself during mobility. In this study,

more than 50% of the experimental studies reported agent

size as a performance factor and that the execution time of

the agents linearly increases with the increase in size of the

agent [14], [40], [41], [42], [36], [46], [7]. In addition,

increase in size also lead to replication process having

overheads [7],[40].

4.4.2. Numbers of Replica

Also more than 50% of the replication based schemes

reported that the number of replica affects their performance

especially in the synchronous replication schemes [40]. For

instance, a design with consensus requires an increase in

agent’s replicas leading to agents spending longer time than

expected. In this SR, the studies that reported number of

replica/witness factor in their findings are [40], [41], [36],

[46], [39], [28], [34].

4.4.3. Message Size

In this SR, over 30% of the experimental studies consider

message size as a factor influencing agent’s performance

which in turn contributes significantly to network traffic.

Increase in the time spent to send a message, increases the

size of the messages. We found that, the cost is relatively

higher in synchronous communication models than in

asynchronous model. Studies that reported message size

factor in their findings are [14], [38], [45], [34].

4.4.4. Number of Messages

The number of uncontrolled messages can overwhelm

fault detection capability and reducing number of messages

can produce performance gain [7]. Some studies that

reported the number of messages factor in their findings are

[44], [39],[31],[34].

4.4.5. Number of Hops/Host

With agent’s characteristics, their survivability decreases

with increase in the number of servers the agent’s have to

visit [34]. This is believed to have impact on reaching a

timeout when the execution time takes a long time especially

for schemes that relies on timeout and can initiate an

unnecessary recovery process that would affect the

performance of the system negatively. In this SR, studies

that reported this problem in their findings are [7], [26], [27],

[44].

4.4.6. Frequency of Check-pointing

Lastly, another important influencing factor is the degree

at which check-pointing are taken. An increase in

check-pointing frequency increases overhead while

infrequent check-pointing brings about much

re-computation in the event of recovery [6],[5].

4.5. Platforms Supports

SRQ5. How much supports are offered by the mobile

agent’s platforms used in implementing the fault tolerance

features?

A platform in this context is an executing environment for

mobile agents. In this SR, we found varieties of agent’s

 American Journal of Software Engineering and Applications 2013; 2(5): 111-124 119

platforms which are mostly built from Java. In addition,

most of the existing platforms provide partial or incomplete

facilities for fault tolerance mechanisms. We noticed that

several academic and commercial systems are available

which differs in their features, architecture and

implementations, but more or less offer common facilities

for the support of agent migration, inter-agent

communication, various forms of security and programming

or interpreted languages etc.

Analysis here is based on a qualitative comparison of the

current agent platforms. Table 4 presents the various

platforms used and the nature of fault tolerance support they

have in their implementation.

Table 4. Qualitative comparison of Platforms support for fault tolerance

Platform Prog. Lang. Mobility Communication Fault Tolerance Feature

Aglet [58] Java Weak Asynchronous, Synchronous, Proxy NA

Concordia [59] Java Weak Asynchronous
Yes (Checkpoint, Transactional message

queue, Proxy)

FIPA-OS [60] Java Weak Asynchronous
Yes (Replication(clone) Transactional

message queue, Proxy)

Grasshopper [61] ** Java Weak
Synchronous, Asynchronous, Multicast,

Dynamic method invocation
NA

JADE [62] Java Weak Asynchronous NA

JAMES [21] Java Weak JavaSpace Yes (Checkpoint)

MadKit [63], [64]

Java Weak asynchronous message passing

Yes (congestion management, agent

monitoring mechanisms)

MOLE [65] Java Weak Asynchronous, Synchronous, Sessions Yes (Transactional message queue)

Naptel [66] Java Weak asynchronous message passing
Yes (agent monitoring mechanisms,

cloning)

Tacoma [68]
C/C++, ML, Perl,

python
Weak Asynchronous, Synchronous Yes (Rear guards)

Voyager [69] Java, C#, C++ Weak Asynchronous, Synchronous, Multicast, Proxy NA

Note: NA (Not Applicable) implies that either the information or the feature is unavailable. ** Authors have stopped updating the platform

4.6. Challenges

SRQ6. What challenges exist and how do they affects the

implementation of the fault tolerance in mobile agents?

There are lots of challenges that faced in existing fault

tolerance implementations that has limited their efficiency

or the direct application of fault tolerance strategies. Some

of the challenges found in this SR are discussed as follows:

4.6.1. Reliable Fault Detection

The key challenge in fault detection is when a fault

tolerance process wrongly detects fault and acts upon it. In

such cases, an agent is wrongly assumed failed and a

replacement agent is created in place of the failed agent

leading to the violation of the “exactly once” property of

agent execution [25]. In this study, we see that existing fault

tolerance schemes, rely on techniques such as timeout,

periodical exchange of heartbeat message, call backs, etc.

for reliable detection of faults but none is absolute in

detecting the occurrence of failures. Only 20% of the studies

specifically mention this problem and considered it as a very

critical attribute.

4.6.2. Network Partition

This is due to communication failure where agent’s

implementations execute in stages and internal network

partitioned into stages or domains. In the event of

communication failure, the various stages will be unable to

communicate either to advance to the next stage or complete

the assigned task, which results in blocking. In this study,

only about 12% of the studies specified network partition as

a challenge while most studies regard it as a temporary

problem.

4.6.3. Lack of Full Process State Capture/Restore

This study found that majority of the existing agent

platforms are Java-based systems using the Java Virtual

Machine (JVM). With these platforms, analysis indicates

that about 90% of them do not allow the capturing and

restoring of the full execution state of a process which in

turn affects strong mobility support.

4.6.4. Lack of Interoperability

This study noticed fault tolerant agents developed for one

agent platform cannot be ported easily to a different agent

120 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

platform, which impacts the adoption and full realization of

fault tolerance. We found few standards such as Foundation

for Intelligent Physical Agents (FIPA) and Mobile Agent

System Interoperability Facility (MASIF) and steps have

been taken to realize this issue in the future.

4.6.5. Lack of Full Transactional Support

This study found that there is no full transactional support

in existing fault tolerant framework especially for various

types of failure situations. This could be due to the active

nature of mobile agent systems which is somewhat

incompatible with the concept of transactions that forces

several agents to remain in the same transaction as long as it

does not commit or abort [6], [29],[69].

4.6.6. Scalability

This study found that all the studies are from the academia

and the implemented mobile agent’s fault tolerance were not

large scale. Analysis shows that most experiments and

simulations performed are on a small scale setup, though

some promise scalability [26], [33], [41], [44]. In all the

studies, we did not find large scale experiments.

4.6.7. Lack of Transparency

In majority of the studies we noticed that developers

viewed the fault tolerance platforms as not being transparent

since it requires the modification of the underlying platform

to accommodate the protocols.

5. Discussion

Despite the importance of mobile agents in distributed

environments coupled with the increase in research activities

in both academia and industry, we found several issues that

still affect the complete realization of reliable fault tolerance

in mobile agents. In this study, we noticed that the

distribution of the publications by year shows sharp increase

between 2003 and 2004 and more than 65% of the studies

were conducted between 2004 and 2006. This could be due

to the increased interest in the area of mobile agents from the

research community. However, the trend seems to be going

down resulting in only 23% of the studies being conducted

in the last three years, which we think is related to the

problem of trust in mobile agents as a result of increasing

threat from viruses and network worms. Accordingly, the

number of studies that were supported by simulation or

experiment improved over the years. They provide detailed

description of a model used and reporting some results from

a real experiment or simulation to support their findings.

Also the existing implementations have classified agent’s

failures into communication, crash and agent software

failure. Each study provides mechanism to detect these

failures based on their fault model strategy, but no known

fault model can detect and recover from all types of failures

in the existing implementations.

It is evident that different approaches exist that deals with

the recovering from failure of mobile agents. These

approaches include the check-pointing, replication schemes

or the hybrid approach and both were used almost equally

over the years of consideration. Among the

replication-based schemes, most of the studies tend to favor

inactive replication due to it lower computation overhead. In

the same vein, the mode of agent’s communication in

existing implementations is mostly asynchronous, as well as

there appears to be a balance between transactional or

non-transactional execution of mobile agents. The reasons

could be from the fact that transactional executions are more

reliable in maintaining the exactly-once property, while the

non-transactional maintain lower computation overhead. In

all the studies we considered, there were other elements such

as fault tolerance protocols and their design models.

Protocols were based on the exactly-once or non-blocking

properties, while the implementation design models were

based on hybrid approaches dominated by preventive

techniques of agent’s replications: primary backup and

witness approaches. Each approach has its own strategy to

implement fault tolerance.

Other issues we observed were challenges emanating

from platform supports and the general challenges in terms

of performance affecting mobile agent’s fault tolerance that

has not been addressed. Variety of mobile agent platforms

exist and are dominated by Java which does not support

strong mobility of agents which affects full capturing of the

state of collaborating processes. Also, the numbers of

replicas, messages, size, etc. were among the factors

reported as having impacts on the performance of mobile

agent’s execution.

The consequence of this study is that investigating

intensely in the state-of-the-art fault tolerance approaches

and the challenges in mobile agent will serve as a starting

point and give a clear direction to future researchers who

will work in this area to improve the existing

implementations.

5.1. Strengths and Weaknesses

In this SR, we have covered several numbers of articles,

whose authors are listed in Table 1.We are pretty sure that

this study truly covers fault tolerance in mobile agents that

have been published to date we considered. We have strictly

followed Kitchenham et al. [23] guidelines starting from the

planning to the reporting of the review results. However,

possible threats or weaknesses in this SR could be related to

bias in publication, selection of the included studies and the

inaccuracy in data extraction.

For publications, we used sources that are credible and

trusted by the research community and also conducted trial

searches. We also believe publications from 2009 till date

that were not considered will not affect the validity of our

study since another study will be performed to compare the

trends. In addition, though is possible that some relevant

papers may have been missed and if they do, we are sure

they are not many and their absence has no significant effect

to the information reported in this study. Another issue is the

search terms we used. If the search terms/strings formulated

were not sufficient and effectively utilized, we believe it has

 American Journal of Software Engineering and Applications 2013; 2(5): 111-124 121

no counter effect on this study. However the two authors

worked in collaboration with a librarian and all the selected

studies analyzed. In addition, all decisions and results were

checked and re-checked.

6. Conclusions

With the increase in system dependability and the

exponential growth of the Internet, there is an increasing

need to develop reliable mobile agent’s fault tolerance

techniques capable of withstanding unfavorable and

unpredictable behavior of today’s systems. Several well

known approaches and models for failure detection and

recovery schemes have been designed, but none is generic.

When deciding on how to develop a reliable fault tolerance

in mobile agents, it is important to have the knowledge of the

existing techniques, and to be able to make a good decision,

taking into account the strong and weak points of diverse

approaches against each other. To this effect, this SR

identifies the existing fault tolerance mobile agent’s

approaches and studied them from the perspectives of:

establishing facts in the directions of fault tolerance in

mobile agents, recognized techniques/approaches,

influencing factors, platform supports and challenges. These

were chosen because they together helped in giving a good

understanding of the existing findings, identify gaps in

existing research and provide recommendations for new

research activities.

We have analyzed the existing studies implementations in

order to realize the state-of-the-art in mobile agent fault

tolerance and trends. In this study, we present the found fault

tolerance in mobile agents existing implementations in Table

1. In addition, we have developed taxonomy of the existing

protocols and the design model used (Figure 10 and 11).

Based on the analysis and results obtained, the study takes a

closer look at the available mobile agent’s fault tolerance

strategies and the challenges that affects its realization. The

cardinal findings are:

• Agent’s fault tolerance fault models generally fall into

the three failure types, namely communication, crash

and agent software failure though, stated differently in

different studies. For instance, place failure, node crash,

hardware failure, server failure, host failure; etc were

all described as crash failure in the studies.

• Fault tolerance strategies can not address all

single-point-of-failures in a system with respect to

faults resulting from communication, agent software

and crash failures. The complexity and cost of

addressing all single-point-of-failures makes the fault

tolerance process virtually incomplete. Thus,

single-point-of-failures are inevitable in mobile agent

and no approach is considered the best in all failure

situations.

• Fault tolerance in mobile agent systems can be

achieved in a number of ways: replication schemes,

check-pointing schemes or a combination of both

replication and check-pointing schemes called hybrid

approach. However, there is no fault tolerance scheme

that is best for all situations since the suitability of an

approach heavily depends on the application domain.

• Performance overhead of a fault tolerance strategy is

inversely related to recovery time. That is the shorter

the recovery time the higher performance overhead.

Fault tolerance strategy should try to make a balance

between recovery time and performance overhead.

• Mobile agent’s fault tolerance faces enormous

challenges such as lack of adequate support from

agent’s platforms as well as lack of resource control

capabilities which impacts greatly the realization of a

reliable agent execution and need to be drastically

addressed.

• Fault tolerant mobile agent is gathering momentum

without a clear general framework in its agent system.

The existing fault tolerance designs are designed to

handle a particular set of fault models and not faults in

all situations.

Future work includes proposing a general framework for

fault tolerance in mobile agents. This will contribute

positively to a high level of system dependability and in

addressing the challenges and influencing factors affecting

the existing fault tolerance models. In addition, we will

validate and implement the framework, perform a more

in-depth analysis to investigate challenges outside the

framework and investigate fault tolerance in other areas.

Based on the above finding, our recommendations are as

follows:

• A generic fault tolerance in mobile agents should be

designed and developed since it is difficult to measure

the completeness of a fault tolerance approach. The fact

is that the existing implementations found in this study

focus on partial list of failure types, indicating agents

cannot tolerate failure of all types. Thus, issues of all

single-point-of-failures should be addressed if high

reliability or availability is to be achieved.

• Larger scale tests in real world applications other than

simulations should be applied to the available fault

tolerance schemes so as to better demonstrate their

reliability, capabilities and effectiveness. This is

because the maturity of fault tolerance approaches

depends highly on the level of acceptance of the

approaches. The more the approaches are used, the

more the approaches evolve and develop and proved

that they work.

• The effects of very long itinerary, many collaborative

agents, many replicas, many uncommitted transactions,

etc during scalability would need to be investigated so

as to increase support for the dependability of fault

tolerance techniques.

• Existing platforms should be improved by

standardizing and including some of the vital fault

tolerance protocols such as cloning and resource

monitoring in order to reduce interoperability.

Moreover, it will be more flexible to detect runaway

agents from within the platform than building a

122 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

separate architecture on top of the platforms.

• A better flexibility is if the platforms have a mechanism

to selectively apply a fault tolerance protocol to a

specific agent or agent place as needed since not all

fault tolerance protocols are needed at all times.

Developers of agent systems should be able to pick

their suitable protocol within their application domain.

• Researchers should focus more on carefully analyzing

the unique characteristics of existing agent systems and

the applications that are built on them in order to avoid

the selection of unsuitable methodology for the

recovery of the applications running the agent from

faults that affects agents’ execution, migration, and

interaction.

• Additional fault tolerance features should be introduced

for a better reliability.

• Also, alternative agent’s design approaches should

consider minimizing resource consumption such as

using existing code in previously visited hosts instead

of re-transporting code improve the reusability of code.

• Lastly, developers should have in mind that the

application of fault tolerance approach in the real world

applications could also introduce a different set of

challenges that have never been thought of.

References

[1] W. Qu and H. Shen, Analysis of Mobile Agents’
Fault-Tolerant Behavior, IEEE/WIC/ACM, Proceedings of
International Conference on Intelligent Agent Technology,
2004, pp 377 – 380, ISBN: 0-7695-2101-0

[2] L. L. Pullum, Software Fault Tolerance Techniques and
Implementation, Artech House, 2001, ISBN 1-58053-137-7

[3] N. M. Karnik and A. R. Tripathi, Design Issues in Mobile
Agent Programming Systems, IEEE Concurrency, Vol. 6 ,
No. 3, 1998, pp 52-61, ISSN:1092-3063

[4] W. Dake and C.P. Leguizamo and K. Mori, Mobile Agent
Fault Tolerance in Autonomous Decentralized Database
Systems, IEEE, Proceedings of the Autonomous
Decentralized System on The 2nd International Workshop,
2002, ISBN:0-7803-7624-2

[5] G. Jin, B. Ahn and K. D. Lee, A Fault-Tolerant Protocol for
Mobile Agent, Springer, Proceedings of International
Conference on Computational Science and Its Applications,
2004, pp. 993–1001, ISBN 978-3-540-22057-2

[6] G. Serugendo and A. Romanovsky, Designing Fault-Tolerant
Mobile System, Springer, International Workshop on
Scientific Engineering for Distributed Java Applications,
2003, pp 185-201, ISBN: 978-3-540-00679-4

[7] S. Pleisch, and A. Schiper, Fault-tolerant Mobile Agent
Execution, IEEE, IEEE Transactions on Computers, Vol. 52 ,
Nr. 2, 2003, ISSN: 0018-9340

[8] T. Park, I. Byun, H. Kim and H. Y. Yeom, The Performance
of Checkpointing and Replication Schemes for Fault Tolerant
Mobile Agent Systems, IEEE Computer Society, Proceedings
of 21th IEEE Symposium on Reliable Distributed Systems,

2002, ISBN:0-7695-1659-9

[9] W. Qu, H. Shen and X. Defago, A Survey of Mobile
Agent-Based Fault-Tolerant Technology, IEEE, Proceedings
of the Sixth International Conference on Parallel and
Distributed Computing Applications and Technologies, 2005,
pp 446-450, ISBN:0-7695-2405-2

[10] J. P. Briot, S. Aknine, I. Alvarez and Z. Guessoum,
Multi-Agent Systems and Fault-Tolerance: State-of-the-art
Elements, EuroControl Technical Report, LIP6 &
MODECO- CReSTIC, 2007

[11] S. Pleisch, State-of-the-art of Mobile Agent Computing:
Security, Fault Tolerance, and Transaction Support,
Research Report, IBM Research, Z. R. Lab. Switzerland,
1999

[12] S. Pleisch and A. Schiper, FATOMAS-A Fault-Tolerant
Mobile Agent System Based on the Agent-Dependent
Approach, IEEE, Proceedings of the 2001 International
Conference on Dependable Systems and Networks, 2001, pp
215-224, ISBN:0-7695-1101-5

[13] L. M. Silva, G. Soares, P. Martins, V. Batista and L. Santos,
The Performance of Mobile Agent Platforms, IEEE,
Proceedings of First International Symposium on Third
International Symposium on Mobile Agents, 1999, pp.
270-271, ISBN: 0-7695-0340-3

[14] K. Park, A Fault-Tolerant Mobile Agent Model in Replicated
Secure Services, Springer, Proceedings of International
Conference Computational Science and Its Applications, Vol.
3043, pp 500-509, 2004, ISBN 978-3-540-22054-1

[15] P. Braun, and W. Rossak, Mobile Agents: Basic Concepts,
Mobility Models, and the Tracy Toolkit, Morgan Kaufmann,
2005, ISBN-13: 978-1558608177

[16] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus, Mobile Agents:
Motivations and State-of-the-Art Systems, Dartmouth
College, Technical Report: TR2000-365, 2000

[17] D. Kotz and R. S. Gray, Mobile Agents and the Future of the
Internet, ACM, ACM SIGOPS Operating Systems Review,
Vol. 33, Nr. 3, 1999, pp 7-13, ISSN: 0163-5980

[18] D. B. Lange and M. Oshima, Seven Good Reasons for
Mobile Agents, ACM, Communications of the ACM, Vol. 42,
Nr. 3, 1999, pp 88-89, ISSN:0001-0782

[19] M. Eid, H. Artail, A. Kayssi, and A. Chehab. Trends in
Mobile Agent Applications, Journal of Research and
Practice in Information Technology, Vol. 37, No. 4,
November 2005

[20] R. Boutaba and J. Xiao, Network Management: State of the
Art, Kluwer, B.V., Proceedings of the IFIP 17th World
Computer Congress - TC6 Stream on Communication
Systems: The State of the Art, 2002, pp 127-146, ISBN:
1-4020-7168-X

[21] L. M. Silva, P. Simões, G. Soares, P. Martins, V. Batista, C.
Renato, L. Almeida and N. Stohr, JAMES: A Platform of
Mobile Agents for the Management of Telecommunication
Networks, Springer, Proceedings of Third International
Workshop Intelligent Agents for Telecommunication
Applications, Vol. 1699, 1999, pp 76-95, ISBN
978-3-540-665397

[22] O. Kachirski and R. Guha, Intrusion Detection Using Mobile

 American Journal of Software Engineering and Applications 2013; 2(5): 111-124 123

Agents in Wireless Ad Hoc Networks, IEEE, Proceedings of
the IEEE Workshop on Knowledge Media Networking, 2002,
pp 153-158, ISBN:0-7695-1778-1

[23] B. Kitchenham and S. Charters, Guidelines for performing
Systematic Literature Reviews in Software Engineering,
Keele University and Durham University Joint Report, Tech.
Rep. EBSE 2007-001, 2007

[24] J. W. Creswell and Dana L. Miller, Determining Validity in
Qualitative Inquiry, Theory Into Practice, 1543-0421,
Volume 39, Issue 3, 2000, Pages 124 – 130

[25] S. Summiya, K. Ijaz, U. Manzoor and A. A. Shahid, A Fault
Tolerant Infrastructure for Mobile Agents, IEEE,
Proceedings of the International Conference on
Computational Intelligence for Modelling Control and
Automation and International Conference on Intelligent
Agents Web Technologies and International Commerce, 2006,
pp 235-235, ISBN:0-7695-2731-0

[26] K. K. Leung and K. W. Ng, A fault-tolerance mechanism for
mobile agent systems, Proceedings. 2006 International
Conference on Intelligence For Modelling, Control and
Automation. Jointly with International Conference on
Intelligent Agents, Web Technologies and Internet Commerce,
2005, pp.7 ISBN-10: 0 7695 2504 0

[27] M.R. Lyu and T. Y. Wong, A progressive fault tolerant
mechanism in mobile agent systems SCI 2003. 7th World
Multiconference on Systemics, Cybernetics and Informatics
Proceedings, 2003, pp. 299-306 , Vol.9 ISBN-10: 980 6560
01 9

[28] S. Mellouli, A reorganization strategy to build fault-tolerant
multi-agent systems Advances in Artificial Intelligence. 20th
Conference of the Canadian Society for Computational
Studies of Intelligence, Canadian AI 2007. Proceedings 2007,
Vol.4509, pp. 61-72, ISBN-10: 3 540 72664 0

[29] F. M. A. Silva and R. Popescu-Zeletin, An Approach for
Providing Mobile Agent Fault Tolerance, Springer,
Proceedings of Second International Workshop on Mobile
Agents, Vol. 1477, 1998, pp 14-25, ISBN:
978-3-540-64959-5

[30] T. Osman, W. Wagealla and A. Bargiela, An Approach to
Rollback Recovery of Collaborating Mobile Agents, IEEE,
IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, Vol. 34, Nr. 1, 2004, pp 48-57,
ISSN: 1094-6977

[31] X. Meng and H. Zhang, An efficient fault-tolerant scheme for
mobile agent execution First International Symposium on
Systems and Control in Aerospace and Astronautics, 2006,
pp.5, ISBN-10: 0 7803 9395 3

[32] J. Chen; H. Shi; C. Chen; Z. Hong; P. Zhong, An efficient
forward and backward fault-tolerant mobile agent system,
Eighth International Conference on Intelligent Systems
Design and Applications, 2008, pp.61-6, ISBN-13:
978-0-7695-3382-7

[33] M. Olivier, B. Marin , S. Pierre, G. Zahia and B. Jean-Pierre,
DARX - A Self-healing Framework for Agents, Springer,
Third International Conference, 2007, Vol. 4322/2007, pp.
88-105, ISBN: 978-3-540-71155-1

[34] M.R. Lyu, X. Chen and T. Y. Wong, Design and Evaluation of
a Fault-Tolerant Mobile-Agent System, IEEE, Intelligent
Systems, Vol. 19 , Nr. 5, 2004, pp 32-38, ISSN: 1541-1672

[35] Y. Tanaka, N. Hayashibara, T. Enokido and M. Takizawa,
Fault-tolerant distributed systems in a mobile agent model,
Seventeenth International Conference on Database and
Expert Systems Applications, 2006, pp.5, 2006 ISBN-10: 0
7695 2641 1

[36] L. M. Silva, V. Batista and J. G. Silva, Fault-Tolerant
Execution of Mobile Agents, IEEE, Proceedings
International Conference on Dependable Systems and
Networks, 2000, pp 135-143, ISBN: 0-7695-0707-7

[37] FIPA, http://www.fipa.org, [Accessed August 26, 2009]

[38] K. Rothermel and M. Strasser, A fault-tolerant Protocol for
Providing the Exactly-Once Property of Mobile Agents,
Proceedings Seventeenth IEEE Symposium on Reliable
Distributed Systems 1998, pp. 100-8, ISBN-10: 0 8186 9218
9

[39] A. Fedoruk and R. Deters, Improving Fault-Tolerance by
Replicating Agents, ACM, Proceedings of the first
international joint conference on Autonomous agents and
multiagent systems: part 2, 2002, pp 737-744,
ISBN:1-58113-480-0

[40] T. Park, I. Byun and H. Y. Yeom, Lazy Agent Replication and
Asynchronous Consensus for the Fault-Tolerant Mobile
Agent System, Springer, Proceedings of Third International
IFIP-TC6 Networking Conference, 2004, pp 1060-1071,
ISBN: 978-3-540-21959-0

[41] T. Park and I. Byun, Low Overhead Agent Replication for the
Reliable Mobile Agent System, Springer, Proceedings of 9th
International Euro-Par Conference, Vol. 2790, 2003, pp
1170-1179, ISBN 978-3-540-40788-1

[42] H. Hamidi and K. Mohammadi, Modeling Fault Tolerant and
Secure Mobile Agent Execution in Distributed Systems, Idea
Group, International Journal of Intelligent Information
Technologies, Vol. 2, Nr. 1, 2006

[43] D. Johansen, K. Marzullo, F.B. Schneider, K. Jacobsen, and
D. Zagorodnov, NAP: practical fault-tolerance for itinerant
computations, Proceedings. 19th IEEE International
Conference on Distributed Computing Systems 1999, pp.
180-9, ISBN-10: 0 7695 0222 9

[44] J. Yang, J. Cao, W. Wu and C. Xu, Parallel algorithms for
fault-tolerant mobile agent execution, Distributed and
Parallel Computing. 6th International Conference on
Algorithms and Architectures for Parallel Processing,
ICA3PP. Proceedings, 2005, pp. 246-56, ISBN-10: 3 540
29235 7

[45] M. Tosic and A. Zaslavsky, Reliable multi-agent systems
with persistent publish/subscribe messaging, 18th Industrial
and Engineering Applications of Artificial Intelligence and
Expert Systems, IEA/AIE 2005. Proceedings, 2005 Vol. 3533,
pp.165-74, ISBN-10: 3 540 26551-1

[46] P. Taesoon and Y. Jaehwan, The K-Fault-Tolerant
Checkpointing Scheme for the Reliable Mobile Agent
System, Parallel and Distributed Computing: Applications
and Technologies. 5th International Conference, PDCAT
2004. pp.577-81, ISBN-10: 3 540 24013 6

[47] T. Kaneda, Y. Tanaka, T. Enokido and M. Takizawa,
Transactional agent model for fault-tolerant object systems,
Proceedings of the ACM Symposium on Applied Computing,
2005, Vol. 2, pp. 1133-1138

124 Bassey Echeng Isong et al.: A Systematic Review of Fault Tolerance in Mobile Agents

[48] T. Park, J. Youn and D. Kim, Using adaptive agents for the
fault-tolerant mobile computing system, 6th International
Conference, Proceedings 2006, Vol. 3993, pp. 807-814
ISBN-10: 3540343830

[49] H. K. Yeom, H. Y. T. Park and H. Park, The Cost of
Checkpointing, Logging and Recovery for the Mobile Agent
Systems, Proceedings of Pacific Rim International
Symposium on Dependable Computing, 2002, pp 45-48,
ISBN: 0-7695-1852-4

[50] J. Briot, Z. Guessoum, S. Charpentier, S. Aknine, O. Marin
and P. Sens, Dynamic Adaptation of Replication Strategies
for Reliable Agents, Proceeding of 2nd Symposium on
Adaptive Agents and Multi-Agent Systems, 2002, pp 10-19

[51] M. Q. Patton, Qualitative Research & Evaluation Methods,
Sage Publications, Inc; 3rd edition, 2001, ISBN-10:
0761919716

[52] E. N. (Mootaz) Elnozahy, L. Alvisi, Y. Wang and D. B.
Johnson, A Survey of Rollback-Recovery Protocols in
Message-Passing Systems, ACM, ACM Computing Surveys,
Vol. 34, Nr. 3, 2002, pp 375-408, ISSN:0360-0300

[53] S. Mishra and P. Xie, Interagent Communication and
Synchronization Support in the DaAgent Mobile
Agent-Based Computing System, IEEE, IEEE Transactions
on Parallel and Distributed Systems, Vol. 14, Nr. 3, 2003,
ISSN:1045-9219

[54] L. Bettini and R. D. Nicola, Translating Strong Mobility into
Weak Mobility, Springer, Proceedings of the 5th
International Conference on Mobile Agents, Vol. 2240, 2001,
pp 182-197, ISBN:3-540-42952-2

[55] N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. Hill
and R. Jeffers, Strong Mobility and Fine-Grained Resource
Control in NOMADS, Springer, Proceedings of the 2nd
International Symposium on Agents Systems and
Applications and the 4th International Symposium on Mobile
Agents, 2000, pp 2-15, ISBN:3-540-41052-X

[56] R. A. Bourne, A. L. G. Hayzelden, Rachel Bourne and P.
Buckle, Agent Technology for Communication
Infrastructures, Wiley, 2001, ISBN: 0471498157

[57] Aglet, http://aglets.sourceforge.net/, [Accessed May 21,
2009]

[58] T. Walsh, N. Paciorek and D. Wong, Security and Reliability
in Concordia, IEEE, Proceedings of the Thirty-First Annual
Hawaii International Conference on System Sciences, Vol. 7,
1998, pp 44-53, ISBN: 0-8186-8255-8

[59] FIPA-OS Tutorial,
http://fipa-os.sourceforge.net/tutorials.htm, [Accessed
August 26, 2009]

[60] Agents Technology in Europe, ACTS project InfoWin, 1999

[61] JADE - Java Agent DEvelopment Framework,
http://jade.tilab.com/, [Accessed August 26, 2009]

[62] MadKit, http://www.madkit.org, [Accessed May 21, 2009]

[63] MadKit: A generic Multi-agent platform, ACM, 2000.

[64] J. Baumann, F. Hohl, K. Rothermel, M. Strasser and W.
Theilmann, MOLE: A Mobile Agent System, John Wiley &
Sons, Software—Practice & Experience, Vol. 32, 2002, pp
575–603

[65] Naptel,
http://www.ece.eng.wayne.edu/~czxu/software/naplet.html,
[Accessed August 26, 2009]

[66] A. Grimstrup, R. Gray, D. Kotz, M. Breedy, M. Carvalho, T.
Cowin, D. Chacón, J. Barton, C. Garrett and M. Hofmann,
Toward Interoperability of Mobile-Agent Systems, Springer,
Proceedings of 6th International Conference on Mobile
Agents, 2002, pp 106-120, ISBN: 978-3-540-00085-3

[67] D. Johansen, R. V. Renesse, F. B. Schneider, N. P. Sudmann
and K. Jacobsen, A Tacoma Retrospective, John Wiley &
Sons, Software—Practice & Experience, Vol. 32 , Nr. 6, 2002,
pp 605-619, ISSN:0038-0644

[68] Voyager 3.1.1 Developer Guide, Object Space, 1999

[69] M. J. Fischer, N. A. Lynch and M. S. Paterson, Impossibility
of Distributed Consensus With One Faulty Process, ACM,
Journal of the ACM, Vol. 32, Nr. 2, 1985, pp 374-382, ISSN:
0004-5411

