

American Journal of Software Engineering and Applications
2013; 2(2) : 25-31

Published online April 2, 2013 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j. ajsea.20130202.11

Intelligent assessment and prediction of software
characteristics at the design stage

Oksana Pomorova, Tetyana Hovorushchenko

Department of System Programming, Khmelnitskiy National University, Khmelnitskiy, Ukraine

Email address:
o.pomorova@gmail.com (O. Pomorova), tat_yana@ukr.net (T. Hovorushchenko)

To cite this article:
Oksana Pomorova, Tetyana Hovorushchenko. Intelligent Assessment and Prediction of Software Characteristics at the Design Stage,

American Journal of Software Engineering and Applications. Vol. 2, No. 2, 2013, pp. 25-31. doi: 10.11648/j.ajsea.20130202.11

Abstract: This article is dedicated to intelligent method and system of design results evaluation and software characteris-

tics prediction on the basis of processing of software metrics sets.

Keywords: Software Complexity, Software Quality, Software Metrics, Artificial Neural Network (Ann), Neural Method

For Design Results Evaluating And Software Characteristics Prediction, Intelligent System Of Assessment And Prediction

Of Software Characteristics

1. Introduction

The development of software is the knowledge-based ac-

tivity that requires a detailed study of the subject area and a

full understanding of the developed product goals. The

characteristics of software include: software cost, software

protection, completeness of requirements realization, the

size of software files, requirements to system software and

hardware, the size of required RAM and disk storage. But

the most important characteristics of the software are its

complexity from the developer's perspective and its quality

from a user perspective.

The crisis in the software quality providing was noticea-

ble more than 50 years ago. Since then, many methods,

techniques and tools have been developed, the best special-

ists were involved in the development of technologies and

standards to ensure the software systems quality. But the

quality of software is still dependent on the knowledge and

experience of developers.

According to approximate estimates the cost of software

development is about 275 billion dollars, but only 72% of

projects reach the implementation stage and only 26% of

projects are completed successfully [1]. According to The

Wall Street Journal, more than 50% of corporate software

projects fall short of expectations and over 42% of projects

are terminated long before their logical completion [2].

One of the criteria for the success of software projects is

their complexity, and hence cost. Research of Standish

Group showed that projects costing less than 750 thousand

dollars are successful in 55% cases, projects costing from 1

to 2 million dollars are successful in 18% cases, projects

costing from 5 to 10 million doolars are successful only in 7%

cases [2]. The permanent growing of software functions

complexity inevitably leads to increasing of their size and

creation complexity. Modern software with millions of lines

of code in principle can not be infallible, faultless and ac-

curate, so the problem of achieving the required level of

quality is actual.

1.1. Results of Manifestation of Software Quality Level in

Complicated Hardware-Software Complexes

Thus incidents caused by software failures continue to

appear. The most known incidents for the severity of its

consequences are:

1) Six patients received overdoses of radiation during

sessions of radiation therapy with radiation therapy machine

Therac-25 in 1985-1987. Catastrophic consequences of

programming bugs and defects in the project development

and formulation manifestated repeatedly and for a long time

[3];

2) The subject of European Community pride, rocket

Ariane 5 self-destructing 37 seconds after launch because of

a malfunction in the control software (1996). This explosion

led to huge losses - only scientific equipment on it was worth

half a billion dollars plus astronomical "profits" from not

occurred commercial launches [4];

3) The Space Shuttle Columbia disaster occurred in 2003,

resulting in the death of all seven crew members. The fire

was happened because the report on plating damage was

incorrectly prepared in the program MS PowerPoint [5];

26 Oksana Pomorova et al.: Intelligent assessment and prediction of software characteristics at the design stage

4) While attempting its first overseas deployment to the

Kadena Air Base in Okinawa, Japan, in 2007, twelve fighter

stealth aircrafts F-22s flying from Hickam AFB, Hawaii

experienced multiple computer failures while crossing the

International Date Line (or 180th meridian of longitude

dependent on software programming) [6];

5) The triple satellites, critical for the Russian navigation

system Glonass (rival American GPS), fell into the Pacific

Ocean in 2010. Loss of satellites caused by the programming

bug is estimated 1387 million dollars [7];

6) On 1 February 2013, during the launch of Intelsat-27, a

Russian rocket Zenit-3SL launch vehicle suffered a prema-

ture engine shutdown, as the rocket strayed from its lift-off

trajectory, plunging into the Pacifc Ocean shortly after

launch. Falling of rocket caused by failures in the control

system [8].

In December 2011, NASA specialists successfully fix a

bug in the software of onboard computer complex of

spacecraft, which moved to Mars with rover "Curiosity" on

board. But this example of software troubleshoot at the

operation stage is very rare. Typically, these incidents lead to

significant human and economic losses.

Therefore, the software quality requirements are neces-

sary to formulate and test at the the early stages of software

life cycle, preferably already at the design stage. The de-

pendence of the cost of bugs correcting from the stage of the

life cycle is shown on Fig.1 [9].

Figure 1. Cost of a Bug Within a Software Lifecycle.

Generally, according to known scientist in the software

engineering Barry Boehm, software industry is nearing to

technogenic catastrophe, which is caused by defective

software that penetrates into all spheres of human activity.

While the complexity of some software development to-

day already exceeds the complexity of many engineering

and infrastructure projects, and the consequences of errors

are catastrophic and disastrous, software engineering is not

ensured with the fundamental theory and methodology.

If the software development industry will not radically

changes, the world will inevitably not be able to avoid dis-

asters caused by errors in the code or failures in the man-

agement of complex software systems.

1.2. Problems of Using of Software Characteristics As-

sessment Tools and Means

The series of software testing methodologies are devel-

oped to improve the software quality. They are based on the

code reveiw. Review of the entire code is not possible due to

the high laboriousness, so different methods of reducing the

tested code size are used. For this purpose static code ana-

lyzers (PVS Studio [10], CAST Application Intelligence

Platform [11], IBM Rational AppScan Source Edition [12],

SofCheck Inspector [13], Visual Studio Team System [14])

are used. They on the basis of specialized rules and metrics

allocate the code with low quality.

Software acquires high quality not so much a result of

comprehensive testing of the final product, but in the during

of its development. If bugs trapping at all project stages is

the basis of methodology of creating software, the project

will be almost infallible. IBM Corporation provides the

methodology to creation of complex software systems -

Cleanroom Software Engineering [15]. It provides teams of

developers to plan, to measure, to specify, to design, to code,

to test and to certify the software products. The tool for

automated testing and software reliability evaluation in this

methodology is environment Cleanroom Certification As-

sistant [15], which uses statistical test results to calculation

of software reliability metrics by mathematical methods.

The global market proposes many products for automation

of metrics calculation: IBM Rational Logiscope [16], Test-

Center [17], Rational Purify [18], IBM Rational Software

Group [19].

The common lacks of these quality assessment tools are: 1)

subjective dependence of choice of metrics that tool calcu-

late; 2) subjective interpretation of metrics values, because

exact (etalons) values of metrics are available; 3) tools of

automation of metric information calculation are oriented on

testing and metrology of finished source code and not

oriented on prediction and calculation of software metrics at

the design stage. At the design stage the finished product is

missing, only informational, functional and behavioral

model of requirements analysis for the software are. Con-

sequently, the existing tools of software quality evaluation

are ineffective at the design stage.

Software metrics can be useful for the evaluating of the

project quality and complexity and the prediction of quality

and complexity of the developed software by the project.

The modern software industry has accumulated a large

number of metrics that assess individual software features.

However, the desire of their versatility, ignoring the type and

scope of the developed software, ignoring the stages of the

software life cycle and ungrounded their using significantly

undermined the confidence of developers and users to

software metrics. These circumstances require: the careful

selection of metrics for a particular type and scope of the

developed software, the considering their limitations at

various stages of the life cycle, the establishing of possibil-

ities and order of metrics sharing, the accumulation and

integration of metrics to make timely production decisions.

Several unresolved issues is in the assessment and pre-

 American Journal of Software Engineering and Applications 2013, 2(2): 25-31 27

diction of software characteristics at the design stage: 1)

quality measurement technology has not yet reached matur-

ity - only 1,5% software companies are trying to evaluate the

quality of processes and ready product using metrics, and

only 0,5% software companies are trying to improve their

work on the basis of quantitative criteria of software quality;

2) the lack of unified standards for metrics - over a thousand

metrics were created, each developer of "measurement"

system offers own measures of software quality evaluation

and proper metrics; 3) difficult interpretation of metrics

values - for most users, customers and programmers the

metrics and their values are not informative; 4) metrics are

calculated only for the finished software (for code); 5) low

level of automation of the software metrics analysis and

processing - only the processes of gathering, recording and

computing of metric information are automated today.

The unresolved of these issues is one of the factors that

interferes to develop the defect-free and high-quality soft-

ware. Difficulty of grounding of software metrics selection

and interpretation does not provide to use metrics for as-

sessing and predicting of the software characteristics of at

the design stage and for improving of the software quality.

The theory of software engineering is still missing.

Theory is needed as a guide for researchers and developers.

That theory would provide the selection of metrics for

evaluation of the results at each stage of the life cycle and

would provide the prediction of developed software cha-

racteristics. Certainly, there are some fundamental research

(works of Boehm, Dijkstra, Meyer), but finished, tested and

approbated theory is missing.

From the results of the analysis of software evaluation

methods the conclusion follows, that the perspective re-

search direction to improve the software quality is devel-

opment of intelligent methods (IM) and systems (IS). IM

and IS will analyze and process the design stage metrics,

will evaluate the project and will provide the prediction of

the characteristics of designed software.

2. Software Metrics at the Design Stage

At the design stage the number of requirements on soft-

ware complexity and quality is important to provide: re-

quirements on software structure, on navigation by software,

on design of user interfaces, on multimedia components of

software, on usability; technical requirements.

The answer to the question "How software system will be

implemented its requirements?" is formed at this stage.

The information flows of the design stage: software re-

quirements (information, functional and behavioral analysis

models). Information model describes the information that

must be processed by software according to customer.

Functional model defines the list of functions and the list of

modules of software system. Behavioral model captures the

software modes. The results of the design stage are: devel-

oped data, developed architecture and procedural software

development.

2.1. Software Complexity Metrics

From the analysis of software complexity metrics and

information flows of the design stage the conclusion follows,

that the following software complexity metrics with exact or

predicted values appropriate to use at the design stage (table

1) [1].

Table 1. Software complexity metrics at the design stage.

№

Software Complexity Metrics

With Exact Values at the

Design Stage

Software Complexity Metrics

With Predicted Values at the

Design Stage

1 Chepin's metric Expected Lines of Code (LOC)

2
Jilb's metric (absolute modular

complexity)
Halstead's metric

3 McClure's metric McCabe's metric

4 Kafur's metric
Jilb's metric (relative modular

complexity)

5
Expected quantity of program

statements

6
Expected estimate of interfaces

complexity

So, at the design stage 10 basic software complexity

metrics we will use - 4 of them have the exact values and the

other 6 metrics have the predicted values.

2.2. Software Quality Metrics

The analysis of software quality metrics and information

flows of the design stage provides the conclude that next

software quality metrics with exact or predicted values are

applicable at the design stage (table 2) [1].

Table 2. Software quality metrics at the design stage.

№

Software Quality Metrics

With Exact Values at the

Design Stage

Software Quality Metrics

With Predicted Values at the

Design Stage

1 2 3

1 Cohesion metric
Software design total time (in

working days)

2 Coupling metric
Design stage time (in working

days)

3
Metric of the global variables

calling

Software realization produc-

tivity (in minutes for code line)

4
Time of models modification

(in working days)

Software quality audit cost (in

USD)

5
Quantity of found bugs in

models
Software design cost (in USD)

1 2 3

6
Program code realization cost

(in USD)

7 Functional points (FP)

8
Effort applied by Boehm (in

man-months)

9
Development time by Boehm

(in working days)

Therefore the 10 basic software complexity metrics and

28 Oksana Pomorova et al.: Intelligent assessment and prediction of software characteristics at the design stage

14 basic software quality metrics were used at the design

stage. Other metrics are derived from selected basic metrics.

The processing of above 24 software complexity and

quality metrics with exact and predicted values is the basis

for obtaining the evaluation of design results and prediction

of software complexity and quality characteristics of the

developed for the project software.

3. Neural Method for Design Results

Evaluating and Software

Characteristics Prediction (NMEP)

NMEP provides the evaluation of the project and

prediction of designed software charateristics on the basis of

complexity and quality metrics with exact and predicted

values at the design stage, listed in the previous section.

NMEP is based on processing of the following sets:

1) the set of complexity metrics with the exact values at

the design stage

}4..1|{ == icmevCMEV i ;

2) the set of quality metrics with the exact values at the

design stage

}5..1|{ == jqmevQMEV j ;

3) the set of complexity metrics with the predicted values

at the design stage

}6..1|{ == kcmpvCMPV k ;

4) the set of complexity metrics with the predicted values

at the design stage

}9..1|{ == nqmpvQMPV n .

The results of these sets processing are:

1) project complexity estimate PCE ;

2) project quality evaluation PQE ;

3) designed software complexity prediction SCP;

4) designed software quality prediction SQP .

The basis of project complexity estimate are elements of

set CMEV . The basis of project quality evaluation are ele-

ments of sets CMEV and QMEV . The basis of designed

software complexity prediction are elements of set CMPV ,

but elements of sets CMEV and QMEV are taken into account.

The basis of designed software quality prediction are ele-

ments of sets CMPV and QMPV , but elements of sets CMEV

and QMEV are taken into account.

The problem of identifying the correlation between me-

trics values and quality and complexity of project and

software should be solved for the software quality and

complexity evaluation and prediction on the basis of metric

analysis results. One of the means, which makes it possible

to summarize the information and identify dependencies

between input data and resulting data, are artificial neural

networks.

Metric analysis results we will to process using artificial

neural network (ANN), that performs the approximation of

software metrics and provides an estimate of complexity and

quality of the project and predict of complexity and quality

characteristics of developed for the project software.

NMEP consists of next stages:

1) the preparation of metrics with exact and predicted

values at the design stage to the inputs of ANN;

2) the checking of obtained metrics values on the subject

of exceeding of ANN inputs ranges limits;

3) the processing of metrics values by artificial neural

network;

4) the analysis of ANN output values;

5) the forming of conclusion about the complexity and

quality of project and designed software on the basis of

ANN output values.

Input data for ANN are: the sets of complexity and quality

metrics with the exact values at the design stage and the sets

of complexity and quality metrics with the predicted values

at the design stage.

The results of ANN functioning are 4 characteristics:

project complexity estimate; project quality evaluation;

designed software complexity prediction; designed software

quality prediction.

NMEP concept is represented on Fig.2.

Figure 2. NMEP conception.

The multilayer perceptron was chosen as a result of

analysis of the artificial neural networks architectures to

analyze the software metrics at the design stage and to pre-

dict of software quality characteristics.

ANN has 9 one type inputs for the quantitative values of

exact metrics at the design stage and 15 another type inputs

for the quantitative values of predicted metrics at the design

stage. If a certain metric is not determined, then -1 is given

on the proper ANN input.

The conclusion about the project quality and complexity

and the expected quality and complexity of designed soft-

ware is based on an analysis of 4-th obtained results. Project

complexity estimate, project quality evaluation, designed

software complexity prediction, designed software quality

prediction are values in the range [0, 1], where 0 - proper

metric was not determined, approximately 0 - the project or

designed software has a high complexity or low quality and

1 - the project or software is simple (non-complexity) or

high quality.

The ANN has 24 neurons of the input layer, 14 neurons of

approximating layer and 8 neurons of the adjusting layer and

4 neurons of the output layer.

 American Journal of Software Engineering and Applications 2013, 2(2): 25-31 29

ANN has 4 input vectors for giving the values of metrics:

1) Input1 vector consists of 4 elements - software com-

plexity metrics with exact values at the design stage;

2) Input2 vector consists of 5 elements - software quality

metrics with exact values at the design stage;

3) Input3 vector consists of 6 elements - software com-

plexity metrics with predicted values at the design stage;

4) Input4 vector consists of 9 elements - software quality

metrics with predicted values at the design stage.

Output vector Y consists of 4 elements: project complex-

ity estimate, project quality evaluation, software complexity

prediction, software quality prediction, therefore ANN has 4

neurons of the fourth (output) layer.

Architecture of neural network component of NMEP is

shown on Fig.3.

Figure 3. Architecture of neural network component of NMEP.

The described ANN has been implemented in Matlab [1].

Structural scheme of the ANN layers in Simulink is

shown on Fig.4.

Figure 4. ANN layers structural scheme in Simulink.

The above dependences the resulting estimates of the

input metrics sets are considered in training of the neural

network.

Realized neural network was trained with training sample

of 1935 vectors and tested with testing sample of 324 vectors.

The research [1] demonstrates that the smallest training

performance was obtained with the mean squared error

w/reg performance function (msereg); optimal number of

neurons in second hidden layer is 14 neurons. The ANN

training and testing performance on average is approx-

imately 102197,0=ξ .

4. Intelligent System of Assessment and

Prediction of Software

Characteristics (ISAP)

Usually when alternatives of the same software project

are available, the choice of a particular version is performed

by the criteria of cost and development time. The cost and

development time may have similar or equal values, but

significant differences in the quality of future software may

exist. Therefore, when choosing of software project version,

the number of other factors must be considered, including

the software complexity and quality. The effective mean of

this problem solving is intelligent system of assessment and

prediction of software characteristics (ISAP) [1]. The basis

for the development of this system is neural method for

design results evaluating and software characteristics

prediction (NMEP).

Quantitative exact and predicted values of metrics are

given to the ISAP inputs, and conclusions about the project

and designed software complexity and quality are the results

of the system functioning. Structure of ISAP represented on

Fig.5.

Figure 5. ISAP structure.

ISAP consists of modules:

1) dialog (interface) module;

2) module of data collection and communication;

3) knowledge base;

4) module of ANN input vectors forming;

5) artificial neural network;

6) module of ANN results processing.

The dialog (interface) module visualizes the functioning

of module of data collection and communication, displays

the system functioning and produces the messages to user in

an understandable form for him.

30 Oksana Pomorova et al.: Intelligent assessment and prediction of software characteristics at the design stage

The module of data collection and communication reads

the user information about the quantitative exact and pre-

dicted values of software metrics, saves the obtained in-

formation in the knowledge base and transmits its to the

module of ANN input vectors forming.

Knowledge base contains the quantitative exact and pre-

dicted values of software metrics at the design stage, the

ANN input vectors and the rules of ANN results processing.

The artificial neural network (ANN) provides the ap-

proximation of software metrics and gives the quantitative

evaluation of project complexity and quality and prediction

of designed software complexity and quality by NMEP.

The module of ANN input vectors forming prepares the

metrics values from the knowledge base for the ANN inputs.

The module of ANN results processing makes the con-

clusions about the project quality and complexity and the

expected quality and complexity of designed software on the

basis of ANN results.

For this purpose 12 production rules were developed:

1) if 0=PCE , then complexity metrics with the exact

values at the design stage were not determined;

2) if 0→PCE , then the project is complicated to realiza-

tion;

3) if 1→PCE , then the project is simple to realization;

4) if 0=PQE , then quality metrics with the exact values at

the design stage were not determined;

5) if 0→PQE , then project is a low quality

6) if 1→PQE , then the project satisfies the customer

requirements in quality;

7) if 0=SCP , then complexity metrics with the predicted

values at the design stage were not determined;

8) if 0→SCP , then designed software will have signifi-

cant complexity;

9) if 1→SCP , then designed software is expected sim-

ple;

10) if 0=SQP , then quality metrics with the predicted

values at the design stage were not determined;

11) if 0→SQP , then designed software is low quality;

12) if 1→SQP , then high quality software is expected.

Using these rules, ISAP gives the evaluation of project

complexity and quality and the prediction of the complexity

and quality of developed for the project software Nhese

evaluation and prediction help the customer to make the

right decisions about project selection.

For example, the input data of ISAP are the results of

metric analysis of 3 projects developed by the same re-

quirements to solve one problem by a software company

"STU-Electronics", Khmelnitskiy, Ukraine (table 3).

Table 3. The Processing of Results of Metric Analysis at the Design Stage by ANN of ISAP.

№
Complexity Metrics with

Exact Values

Quality Metrics with Exact

Values

Complexity Metrics with

Predicted Values

Quality Metrics with Pre-

dicted Values
ANN of ISAP Results

1

Chepin's metric = 1690

Jilb's metric = 158

Cohesion metric =10

Coupling metric = 1

Expected LOC = 3280

Halstead's mtric = 73500

Jilb's metric = 0,051

Software design total time =

26 Software design cost =

975

Functional points = 120

Y1=0,94

Y2=1

Y3=0,94

Y4=0,96

2

McClure's metric = 90020

Kafur's metric = 376930

Chepin's metric = 24540

Cohesion metric = 3

Coupling metric = 7

Metric of the global

variables calling = 0,72

Expected LOC = 40130

Halstead's metric = 124926

McCabe's metric = 1905

Software design total time =

397

Software design cost =

19000

Functional points = 2222

Y1=0,24

Y2=0,31

Y3=0,21

Y4=0,24

3

Chepin's metric = 14538

Jilb's metric = 1121

Cohesion metric = 7

Coupling metric = 4

Expected LOC = 25533

Halstead's metric = 781231

Jilb's metric = 0,52

Software design total time =

217

Software design cost =

10762

Functional points = 1212

Software quality audit cost =

1100

Y1=0,56

Y2=0,61

Y3=0,5

Y4=0,58

According to the obtained results: the project №1 is sim-

ple and has high quality, the future software is expected as a

simple and high quality too; the project №2 is quite com-

plicated and has a low quality, the future software is ex-

pected as a complicated and low quality also, the project №3

has medium complexity and quality, the future software is

expected as medium complexity and quality too.

ISAP сonclusions provide the comparison of different

versions of projects, where the cost and development time

approximately equal. ISAP help make the right choice and

realize the project №1 with the best complexity and quality

evaluations.

5. Conclusions

The conclusions by neural method and intelligent system

of software characteristics assessment and prediction pro-

vide the assessment of project and the prediction of charac-

teristics of the developed software for the project. These

conclusions are based on the software complexity and qual-

ity metrics with exact or predicted values at the design stage.

The NMEP and ISAP conclusions also provide a comparison

of different versions of project.

The proposed neural method and intelligent system of

assessment and prediction of software characteristics pro-

 American Journal of Software Engineering and Applications 2013, 2(2): 25-31 31

vide to customer the information to selection of the software

project and to comparison the different versions of the

project. NMEP and ISAP are the basis for making grounded

and motivated decision on the choice of the project and its

version with regard the characteristics of complexity and

quality of the project and the developed software.

When developing NMEP and ISAP problems were oc-

curred, the main reasons are:

1) absence of a fundamental theory of software engi-

neering (special international organization SEMAT trying to

solve this problem);

2) lack of the necessary theoretical and methodological

principles of development and implementation of intelligent

information technologies for management of the software

characteristics;

3) absence of theory and methodology of assessment and

prediction of software quality and complexity at the design

stage.

Further efforts of authors will be directed to the solving of

the aforementioned problems.

References

[1] V.Mishchenko, O.Pomorova, T.Hovorushchenko.
CASE-assessment of Critical Software Systems. Volume 1.
Quality / Kharkiv: The National Aerospace University
"KhAI", 2012. - 201 p. [in Russian].

[2] William J. Brown, Raphael C. Malveau, Hays W. McCor-
mick, Thomas J. Mowbray. AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis - Wiley, 1998 -
336 p.

[3] Nancy Leveson, Clark S. Turner. An Investigation of the
Therac-25 Accidents // IEEE Computer, Vol. 26, No. 7, July
1993, pp. 18-41.

[4] When Software Catastrophe Strikes. Ariane 5 explosion
(1996) //
http://images.businessweek.com/slideshows/2012-08-07/wh
en-software-catastrophe-strikes.html#slide2.

[5] Stephen Turner. Expertise and Political Responsibility: the
Columbia Shuttle Catastrophe //
http://link.springer.com/chapter/10.1007%2F1-4020-3754-6

_6.

[6] F-22 Squadron Shot Down by the International Date Line //
http://www.defenseindustrydaily.com/f22-squadron-shot-do
wn-by-the-international-date-line-03087/

[7] GLONASS Triple Satellite Launch Suffers Rare Failure //
http://www.insidegnss.com/node/2399

[8] Russian rocket launch fails as engine shuts down //
http://in.news.yahoo.com/russian-rocket-launch-fails-engine
-shuts-down-105005395.html

[9] Cost of a bug within a software lifecycle //
http://www.testically.org/2012/02/09/cost-of-a-bug-within-a-
software-lifecycle/

[10] PVS-Studio description [in Russian] //
http://www.viva64.com/ru/pvs-studio/

[11] CAST Application Intelligence Platform //
http://www.castsoftware.com/products/cast-application-intel
ligence-platform

[12] IBM Security AppScan Source //
http://www-01.ibm.com/software/rational/products/appscan/
source/

[13] SofCheck Inspector 2.1268 //
http://sofcheck-inspector.findmysoft.com/

[14] Visual Studio Team System Features //
http://www.learnvisualstudio.net/series/visual_studio_team_
system_features/

[15] Stacy J. Prowell; Carmen J. Trammell; Richard C. Linger;
Jesse H. Poore. Cleanroom Software Engineering: Technol-
ogy and Process - Addison-Wesley Professional, 1999 - 416
p.

[16] IBM Rational Logiscope //
http://www.ibm.com/developerworks/rational/products/logis
cope/

[17] Locate a Test Center //
http://www.pearsonvue.com/vtclocator/

[18] Rational Purify //
http://www-01.ibm.com/software/awdtools/purify/

[19] IBM Rational Software: Accelerate product and service
innovation // http://www-01.ibm.com/software/rational/

