

American Journal of Software Engineering and Applications
2012;1(1):1-9

Published online December 30, 2012 (http://www.sciencepublishinggroup.com/j/ajsea)

doi: 10.11648/j. ajsea.20120101.11

Context-based web service discovery model

Hamid Mcheick
1
, Amel Hannech

1
, Mehdi Adda

2

1Computer science department, University of Québec at Chicoutimi, Chicoutimi (Québec) Canada
2Computer science and Engineering department, University of Quebec at Rimouski, Rimouski (Quebec) Canada

Email address:
Hamid_Mcheick@uqac.ca (H. Mcheick), Amel.Hannech1@uqac.ca (A. Hannech), Mehdi_adda@uqar.ca (M. Adda)

To cite this article:
Hamid Mcheick, Amel Hannech, Mehdi Adda. Context-Based Web Service Discovery Model, American Journal of Software Engineering

and Applications. Vol. 1, No. 1, 2012, pp. 1-9. doi: 10.11648/j.ajsea.20120101.11

Abstract: Web services offer a vast number of interoperable programs using a basic (syntax) method to discover services.

The problem of web services is how to develop mechanisms to locate automatically the correct Web service in order to

meet the user’s requirements, that is appointed by the discovery of web services. Indeed, it is beyond the human's capability

to manually analyze web services functionalities. This paper proposes an architectural model to assist the user by taking

into account its constantly changing context. This model uses the ontologies and RFD language to describe semantically

and formally the resources and their meta-data. Therefore, this model selects services based on the query semantics, which

consist of preferences and context. These preferences may be digital, for example the price of a ticket when booking a

flight or QoS desired.

Keywords: Component, Semantic Web Service, Ontologies, Indexation, Context, QoS

1. Introduction

A service-oriented architecture (SOA) is the underlying

structure supporting communication between services.

SOA defines how two entities (programs) interact to enable

one entity to perform a unit of work on behalf of another

entity. Service interactions are defined using a description

language. Each interaction is self-contained and loosely

coupled, so that each interaction is independent of any

other interaction [1].

The technology most commonly used and based on this

architecture is that of Web Services [3]. According to [2] a

Web Service can be defined as software designed to sup-

port interoperable machine interaction over a network. This

interoperability is possible with the description language

WSDL [4] and the communication protocol SAOP [5].

Architecture-based services meet the needs to satisfy

flexibility and adaptability; it is flexible since a failed ser-

vice can be replaced by another without changing the entire

application. It is adaptable due to the fact that the selected

service is chosen as the best in a given context.

Web 2.0 is a combination of technologies and tendencies

where service-based architectures are widely used. This

infrastructure allows naming new applications and appear-

ances of Web such as Mashups (application whose content

comes from a combination of sources), mobile applications,

etc.

The concept of Web 2.0 can be enriched by the semantics

of the domain [7, 8], the so-called Web 3.0 which aims to

define and relate semantically resources and web services

to simplify their use, discovery, integration and reuse in

many applications [9]. This concept thus facilitates the

search and selection of services in the SOA-based applica-

tions.

1.1. General Problem

The main objective of the Service Oriented Architecture

(SOA) is to reuse of offered services based on the fact that

services are accessible on the web and may be used by a

large number of users through a standard protocol. In order

to be used, a service has to be previously described by its

provider [10]. This is the second stage of web service life

cycle, it is necessary for the service publication by its pro-

vider in a register and its subsequent selection by customers

via this register. The general problem is how to develop

mechanisms to automatically locate the correct Web service

in order to meet user requirements, especially since it is

beyond the capacity of humans to manually analyze Web

services features; it is named by the Web services discovery.

Semantic web services and ontologies allow the sharing

of web services to the context and use the concepts useful

for search, communication and composition; we propose to

base our architecture on the Semantic Web. But there is no

established method for the acquisition of semantic Web

2 Hamid Mcheick et al:. Context-based web service discovery model

service descriptions. The main topic of this paper is to

explore the problem of acquiring a web service that best

meets the user's request.

In the proposed approach we rely on the idea and as-

sumption that one has to supplement web services with

semantic description of the domain of interest and use con-

text associated with our services using ontologies to facili-

tate their discovery and integration; we propose an archi-

tectural model to ease the selection of web services based

on the query semantics that comprise use preferences and

use context.

1.2. Contribution

The present study summarizes our proposition to

represent the domain of interest and the context of use of a

web service in the form of ontologies. Then, design these

last ones as well as the system which is going to exploit

them to answer the users’ requests by taking into account

their semantics. Thus, our work consists in representing in

a first place the domain of interest and the context of use

using the descriptive language OWL. This is done after

choosing a construction method among the existing me-

thods, then we shall pass to the design of the ontology-

based Services Search System. This paper proposes Web

services classification that meets user needs according to a

degree of satisfaction of the user.

1.3. Organization of the Article

This paper is organized as follows. We discuss related

work in section 2. We describe the proposed approach in

section 3. A conclusion and future works are given in sec-

tion 4.

2. Related Works

Web service discovery is a dynamic search field where

various discovery mechanisms have been recently proposed

in the literature. In [6], the authors defined discovery me-

chanism as "the act of locating a web service description

treatable by machine, not known before, and describing

some functional criteria".

Initially web service discovery was primarily syntactic.

With the development of semantic Web technologies, the

proposed techniques for web service discovery became

essentially semantic (level of semantic similarity between

query terms and semantic web service description).

The general principle of syntactic approach is to com-

pare between the query syntax based on user's keywords

and the syntactic Web Services description (WSDL).

In the approach proposed in [11], UDDI is used a central

repository for publishing and discovering web services

based on keywords. In the search phase, user or search

program sends a query that consists of keywords; this query

is compared with registry keywords. The search result is a

set of web services descriptions; the user selects the web

service that best meets its requirements.

The disadvantage of this method is that it may return a

large number of results or, conversely, too few results.

Another syntactic approach for discovering web services

was proposed in [12] and is called AASDU. The AASDU

(Agent Approach for Service Discovery and Utilization) is

a multi-agent approach containing four components: a

graphical user interface (GUI), an agent query analyzer

(QAA), a system used to reference agents according to

their expertise, where each agent has only knowledge of

services related to their field of expertise, and the last com-

ponent is the service module that offers to providers the

capability to publish web services’ descriptions. In this

system, to answer a query Q, the user enters his search

query as a string through the user interface. This request is

sent to the QAA agent that extracts from this request rele-

vant keywords. Agent QAA selects a set of expert agents.

The selected agents transmit parameters of the services to

which they are linked to the composition agent. This later

invokes a service according to user's choice.

Recent work has focused on semantic description web

services and ontologies are mainly used to model the se-

mantic service representation. It helps to establish semantic

relations between concepts of the domain under considera-

tion. We also have to mention that the OWL-S [13] ap-

proach that uses the ontology OWL-S to extend UDDI with

semantic description of Web services.

It describes a web service using three classes; Service

Profile is the class that provides the functional parameters

for discovery such as enter expected, results produced,

precondition and effects.

In this method, the discovery is based on a Matchmaking

algorithm, which allows to find web services descriptions

that have a semantic correspondence between functional

parameters defined in the descriptions and those introduced

in the search query.

Semantic correspondence between two concepts is based

on the relationship between these ones in their respective

OWL ontologies. The algorithm identifies four levels of

semantic correspondence between two concepts, namely:

Exact, Plug in, Subsume, and Disjoint.

At the last, web services are classified by semantic cor-

respondence level between their output parameters and

those cited in the query.

If two services have the same correspondence level with

the request, a comparison on semantic correspondence

level relative to the input parameters is performed. Another

work adds the context parameter in the web services dis-

covery process. In [14], the search for context-aware ser-

vices is defined as the ability to use context information to

find the most relevant services to the user.

The adaptation process is directly implemented in the

mechanism of search services. This mechanism is based on

the reference architecture of the service-based systems; the

provider publishes its services on a server that is used by

the user to send service requests. We summarize the steps

of this work in the following steps: The provider must

publish in the context manager the context in which the

 American Journal of Software Engineering and Applications 2012, 1(1):1-9 3

service can meet and conditions of use according to a de-

scription of the user and his/her environment. The web

service description can be published on two levels: basic

description expressed in a low-level language such as XML,

or WSDL for Web services and semantic description (Se-

mantic Service Description) expressed in OWL-S. The

provider must publish in the register the two descriptions

and the semantic service conditions of the use of the ser-

vice, and the reference of its context. This information is

stored in a server module called Service Provider – SP. The

user must save its context (User Context) in the context

manager (Context Manager) before he/she can make a

request.

This request may be a basic query expressed in low-level

search language (such as Service Location Protocol or

UPnP62 - Universal Plug and Play) or query semantic:

expressed as a semantic language query of high level (such

as OWL-QL and RDQL). Then the user sends to the server

a request and a pointer to his/her context. This information

is stored in a server module named User. Once the user

request is received, the search service enables the filtering

engine service based on three filters: i) the filter base for

selecting the category of service, ii) the semantic filter that

returns a list of services that meet the exact specifications

desired by the user, without the context information, and iii)

context filter that refers to the list of services that match the

context.

Semantic Annotation for WSDL (SAWSDL) [19] is a

semantic language of Web service description. It is scalable

and compatible with the existing Web services standards,

and more specifically with WSDL. SAWSDL increases the

expressiveness of WSDL with semantics using concepts

similar to those used in OWL-S. On the one hand

SAWSDL provides a mechanism to semantically annotate

data types, operations, inputs and outputs of WSDL and

secondly, it adds elements to specify preconditions, effects

and classes Web services. Aspects related to the quality and

service orchestration are not treated in SAWSDL. in sum-

mary, this semantic language is incremental and used on

top of Web service standards.

3. Proposed Approach

After giving an overview of some work around the prob-

lematic, we now may present the proposed architecture to

perform a service discovery, in agreement with constraints

given by the user in the form of requests. These constraints

can be for example non-numeric values placed on the

choice of departure and arrival cities when booking a plane

ticket, or digital as constraints placed on the price ticket or

the QoS desired (response time, security, etc.). It is also

based on the use context and its changes. For constraints

treatment, we have relied on the benefits of the web seman-

tic (ontologies) and fuzzy logic.

This proposed architecture takes into account the user

context and his/her preferences and offers him/her the abili-

ty to classify results. We start by presenting the domain of

interest in the form of an OWL ontology. Then we present

how this ontology is conceived from web services use

context. To illustrate our architecture, we use a trip and

tourism example.

3.1. Approach Presentation

The goal through this example is to develop a service

web discovery system based on domain ontology and use

context. This system allows to index web services by calcu-

lating the satisfaction degree with regard to the various

concepts that belongs to our ontology. To meet non numeric

request constraints, the present proposal is based on the

similarity degree calculation between two concepts in an

ontology.

As for the digital constraints we are using fuzzy logic to

its calculation. This part will be much detailed later. To

better understand the topic we will present an example that

consists on planning a trip. The first task consists at

representing the domain of interest using an OWL ontology.

To do so, we need to:

• Determine domain knowledge element and represent

use context elements, to conceive and build so that the

corresponding ontologies represented under OWL language.

• Exploiting ontologies developed to index web services

and thus be able later to locate relevant information in the

list of web services related to interest domain

• Propose a classification of results according to user

needs (preferences and use context).

3.2. User Context Definition and Modeling

We propose to store the context before its dissemination

to the application to keep track of the historic data captured.

This created a new need, the context modeling to find a

rich and reliable representation of the captured data.

A widely accepted definition of context in the field of

context-aware computing (context awareness) is: “context

is any information that can be used to characterize the situ-

ation of an entity (person, place or object), considered rele-

vant in the interaction of a user and an application” [15]. In

the work presented in this paper, we are interesting in the

use context as a characterization of the user himself and his

access device to the system.

Class diagram representing use context is illustrated by

the above figure:

Use Context is associated with a session; a session is the

act of connection by user to the system. Use Context is

associated with a session while in a session can be asso-

ciated with multiple use context. It is defined by a set of

characteristics that are related to either user or device used

for a session (class device characteristic). A feature is

represented by a pair attribute / value. The attribute speci-

fies the name of the feature and its value is given by the

facet of the same name. The user characteristics are: Static,

dynamic or preference.

User static characteristics are recorded during the first

session and remain unchanged for the following. For ex-

4 Hamid Mcheick et al:. Context-based web service discovery model

ample, static characteristic representing the user's first

name is identical to each session. For example the welcome

message to the system, taking into account user's first name

remains unchanged for all sessions.

Dynamic characteristics and user preferences are stored

in the first session, but may change from one session to

another or during the same session, if we place ourselves in

an e-business system, if a user is under 25 years (dynamic

characteristic representing user age) the system can offer

preferential prices. The same user logs later, he has now

over 25 years; the system does not propose him anymore,

preferential prices.

From this example we show that user context may

change from one session to another. Another example of

dynamic use context is user location. This dynamic feature

may vary during a single session if user has for access

terminal a mobile device. Use context may change over

time in the same session. The representation which we

make of use context provides that its definition is dynamic

and scalable since it is composed of one or more characte-

ristics.

Figure 1. Context Model.

These characteristics are not fixed in advance and are de-

fined by the system designer as needed.

Modeling pairs (attribute / value) is very low without any

resistance to conflict. So a domain ontology for modeling

context is necessary, to consider the relationship of con-

cepts with other concepts. It has an expressiveness and

richness semantic.

Table 1. Strengths and weaknesses of context modeling.

Model features
Semantic

richness

Resistance to

conflict

Ease ton im

plementation

Pairs(attribute/

value)
Low Low Strong

Ontology Strong Strong Average

3.3. System design

The proposed system consists of:

1) Four modules: indexing module, search module,

enrichment ontologies module, and the satisfaction degrees

computation and service classification module.

2) A set of domain ontologies {01, 02,…,0n} that

represent different categories of service businesses.

3) To each domain ontology is associated a use context

ontology.

4) Each of these ontologies a meta-database is assigned.

The later contains synonyms or other words that car be

used by the user.

5) RDF data representing all classes instances of our on-

tologies.

6) Ontologies and metadata base are possibly enriched

by a domain expert.

7) A set semantic web service descriptions (OWL-S)

stored in different registers and classified by domain of

(business service categories). This classification takes ad-

vantage of a direct access to the services.

8) Database indexing services with different ontological

concepts.

3.3.1. Indexing Module

Ontologies improve considerably the relevance of the re-

sults in the search process; it is the reason why we opted

for an indexing method by means of ontologies. The im-

 American Journal of Software Engineering and Applications 2012, 1(1):1-9 5

provements one may expect are related to the fact that the

indexing process takes into account the different concepts

and relations between them supplied by the ontology. Con-

sequently, contrary to methods based on the use of simple

and static keywords matching when looking for services,

the ontology-based indexing method takes into account the

semantic relationships among query terms.

Since one side each concept is linked to other concepts

in the ontology and on the other hand we have a basis of

metadata that enriched our ontology with a set of synonyms

and different interpretations of each concept can give the

same meaning to the concept sought.

3.3.2. Concepts search and Satisfaction Degree

Computation

In this step we need the list of different concepts of our

ontology of use context and interest domain corresponding

to the domain of services to be processed. For this, we used

a search engine called cores that can query an OWL ontol-

ogy type and return a list of existing concepts. For every

concept belonging to both ontologies we calculate its re-

semblance degree with service concepts to be indexed. This

one is based on semantic similarity between two concepts.

Services indexing process is presented in Figure 2.

Figure 2. Indexing process.

Given an ontology O and two concepts c1 and c2, the

semantic similarity between c1 and c2 is given by:

 ��� ��1, �2
 � � 1 �
 �1 � �2
1 � �������,��

��� ��� ��� , �� � ! (18)

TCx is the weight associated to the type of the edge x

which is the relationship between C1 and C2, for further

explanation of this equation read [18].

3.3.3. Updating Index

In this phase, the index is implemented in a relational da-

tabase for a more explicit data, the conceptual model for-

malism "entity association» is given by the following

scheme:

Figure 3.Index conceptual data model.

Each service is related to various concepts of our ontolo-

gies. Every concept is connected with all various interpreta-

tions in the meta-database. This information is later used

6 Hamid Mcheick et al:. Context-based web service discovery model

when searching and selecting services. It is also used to

calculate service satisfaction degree with regard to user

complex requests. It is noteworthy that we designate by the

atomic request a request that is composed of a single prefe-

rence, and the term complex request is used to designate

requests containing several preferences.

3.3.4. Search Process

It represents the system interface with the user. Indeed, it

is through the search process that the user expresses his

needs by formulating requests and entering his/her prefe-

rences. A request is represented by a string. The display of

results should be in a form that allows the user to easily

exploit search results. Hence, the search process is com-

pleted by a service classification process. The search

process is represented in the Figure 4.

Figure 4. Research process.

This process consists of following stages:

Request lexical analysis: a graphical interface is availa-

ble and is used to enter string queries. An entered query is

lexically analyzed, This stage is necessary because a term

in the query may have several forms in a text but its sense

remains the same, thus it is enough to only use one of them

to represent the concepts extracted from the query.

Use context identification: user session allows the iden-

tification of concepts related to the user context. These

concepts are stored in the registry “context repository” and

will be followed by the service “context manager” which is

based on context comparison algorithm (current / predeces-

sor) for detecting the change in state.

Generation of SPARQL query system: concepts ex-

tracted from resulting query in the previous stage are used

to generate ASK SPARQL queries. The later allow the

examination of the data sources to check the existence of

the concepts.

Concepts search: search in our ontologies and metadata

concepts related to query preference and context, this is

done by calling semantic search engine CORESE [17] that

executes queries system generated in previous step.

Concepts display and classification: all concepts found

are stored; a concept can be of type "class" or "instance". If

a concept is of type instance is found, we add the asso-

ciated class to the list of our list of found class concepts.

Sending unknown concepts to the enrichment module:

concepts not found will be sent to the enrichment module

for possible addition by the domain expert; it is done by

calling CORESE system that executes a CONSTRUCT

 American Journal of Software Engineering and Applications 2012, 1(1):1-9 7

SPARQL query.

Querying data sources: the first step consists at build-

ing SQL queries to query our index database using con-

cepts of type "class" found earlier. Then, a list of services

related to these concepts is returned. In the second stage,

SPARQL queries are generated using the concepts of "in-

stance" to select from the list returned by the first stage,

services meeting these instances. This is done by querying

our RDF data using two filters: user preferences and use

context concepts.

Calculating the query satisfaction degree: based on

user request, we compute the degree of satisfaction of each

service that is obtained from the filtering phase.

Processing the digital preferences: a user request may

contain a numerical value of type:

Between (concept, v1, v2), max (concept, v1) or min

(concept, v1).

And to calculate service satisfaction degree towards a

digital concept Ci, we need concept value (x) in the service

process. Based on this this value, a satisfaction function g(x)

is calculated. This function takes into account the value vi

required by the user.

Unlike Boolean logic, fuzzy logic allows a condition of

being in a state other than true or false. There are degrees in

the verification of condition. In our case it is used to calcu-

late the value of g(x) that evaluates the degree to which a

service web value (x) satisfies value (v) desired by user.

G(x) is thus calculated according to its type (around, max,

min) and the value wished by the user. Inspired by the

example given in Wikipedia [16] that explain how to con-

sider the speed of cars, we give the following formulas:

So in order to compute service satisfaction degree with

regard to the user request, the user has to provide an or-

dered list of his/her preferences. An interest degree will be

assigned to each element belonging to the list.

Given Ci a set of concepts extracted from the user re-

quest :

Ci = {C1…..Ci}, interest degree is assigned to each con-

cept: Di = {D1 .….…. Dn}.

To calculate concept interest degree, we ask the user to

gather concepts that have the same level of importance and

rank them. This is done using the two interpretations Pareto

preference and Prioritized preference from preferences

SQL language. Using Pareto preference we will have n

subsets of concepts that have the same level of importance.

These subsets will be ranked together with Prioritized pre-

ference. We get the ordered set:

Ci ': Ci ' = {e1, e2, e3,......, en} when e1 ={ (C1 ,C2)} ,

e2 ={ (C3)} , e3 ={ (C4 ,C5 ,C6)} , en ={ (Ci,....Ci)}.

The subset belonging level is equal to its ranking in Ci

and is noted by Lev(ei). The number nb represents the

number of subsets ei belonging to Ci'. Interest level of each

subset ei belonging to Ci is equal to the division of its level

of ownership in Ci on the total number of subsets belong-

ing to Ci'.

Concepts representing query preferences will therefore

be classified by interest level, we obtain a graph of several

8 Hamid Mcheick et al:. Context-based web service discovery model

levels in ascending order.

f(x): request degree interest in service.

"#$�%� $ &�'%�� (
)(#)�*$ � +�,���

#-

f(x) = Σ (satisfaction degree concept i * interest degree i)

Result classification: if the request is atomic (contains a

single concept), the classification of services related to this

concept is based on the recorded level of satisfaction of

those services with regard to the single concept contained

in the request. In the case where the query is a complex, the

classification is done according to the satisfaction degree

obtained from Equation (3).

3.3.5. Ontology Enrichment Module

The presented system needs the richest possible ontolo-

gies to have a better indexation and consequently make a

better search. To that end, we propose a simple way to help

domain experts enrich ontologies in addition to his own

expertise on his/her field. Concepts not found in ontologies

during search process are stored in a list and when domain

expert connects for the enrichment he will find a list of

these concepts and choose among them those suitable to the

domain of interest. The effective enrichment of our ontolo-

gies is done using the SPARQL CONSTRUCT query sys-

tem and the semantic search engine CORESE (figure 5).

Figure 5. Enrichment module.

4. Conclusion and Future Works

In this work, we presented the detailed steps we followed

to model specific domain ontologies. Then, we showed

how they may be integrated in a web service retrieval sys-

tem. We opted for a modular architecture to build the sys-

tem that consists of five main modules. The main idea was

to solve the problem of web service discovery and be able

to locate automatically the “correct” web service in order to

meet user requirements.

To that end, we proposed an architecture for a service se-

lection system in accordance with user constraints and

context by means of web semantic technologies. As of our

perspectives, we are planning to evaluate the effectiveness

of our approach using a real use case and real data. Also,

we are planning to study how it may be generalized and

extend its scope.

References

[1] Papazoglou, M. P. Service-Oriented Computing: Concepts,
Characteristics and Directions. In: Procs of the 4th Interna-
tional Conference on Web Information Systems Engineering
(WISE 03), Dec. 2003, Washington, DC, USA, 2003. IEEE
Computer Society, 2003, pp.3-12.

[2] Steve, J. Toward an Acceptable Definition of Service. IEEE
Software, 2005,vol.22, n°3, pp.87-93.

[3] Erl, T. Service-Oriented Architecture: Concepts, Technology,
and Design.Prentice Hall PTR, 2005, 760p.

 American Journal of Software Engineering and Applications 2012, 1(1):1-9 9

[4] Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.
Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Recommendation [en ligne],
2007.

[5] Mitra, N., Lafon, Y. SOAP Version 1.2 Part 0: Primer
(Second Edition). W3C Recommendation [en ligne], 2007.

[6] F.NewcomerE.ChampionM.FerrisC.Orchard : Booth,
D.Haas. Web services architecture.

[7] Wahlster, W., Dengel, A. Web 3.0: Convergence of Web 2.0
and the Semantic Web. Technology Radar Feature Paper,
Edition II/2006, Deutsche Telekom Laboratories, pp.1-23.

[8] Hendler, J.Web 3.0: Chicken Farms on the Semantic Web.
Computer, 2008,vol. 41, n°1, pp.106-108.

[9] Berners-Lee, T., Hendler, J., Lassila, O. The Semantic Web.
In: Scientific Americain, 2001.

[10] KaarthikSivashanmugam, KunalVerma, Amit P. Sheth, and
John A. Miller. Adding semantics to web services standards.
2003, In ICWS, pages 395–401.

[11] Eric Newcomer. Understanding Web Services- XML,
WSDL, SOAP and UDDI, chapter 5, Finding Web Services :
UDDI Registry. Addison Wesley Professional, May.

[12] Paul Palathingal and Sandeep Chandra.Agent approach for
service discovery and utilization.In HICSS, 2004.

[13] David Martin and al. Owl-s : Semantic markup for web
services. Technical report, W3C, 2004.

[14] Vincenzo Suraci1, SilvanoMignanti, Anna Aiuto, University
of Rome "Sapienza", Department of computer and system
sciences, Context-aware SemanticService Discovery

[15] A. K. Dey, G. D. Abowd, and D. Salber. A Conceptual
Framework and a Toolkit for Supporting the Rapid Proto-
typing of Context-Aware Applications. Human-Computer
Interaction Journal, 16(1), 2001.

[16] http://fr.wikipedia.org/wiki/Logique_floue.

[17] http://www
sop.inria.fr/edelweiss/software/corese/v2_4_0/manual/index
.php.

[18] RESNIK P. (1995). Using information content to evaluate
semantic similarity in a taxonomy.In IJCAI, p. 448–453.

[19] Large Scale Distributed Information Systems. SAWSDL:
Semantic Annotations for WSDL.
http://lsdis.cs.uga.edu/projects/meteor-s/SAWSDL/ (Avril
2011).

