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Abstract: Thomas-Fermi theory is an approximate method, which is widely used to describe the properties of matter at various 

hierarchical levels (atomic nucleus, atom, molecule, solid, etc.). Special development achieved using Thomas-Fermi theory to 

the theory of extreme states of matter appearing under high pressures, high temperatures or strong external fields. Relevant 

sections of physics and related sciences (astrophysics, quantum chemistry, a number of applied sciences) determine the scope of 

Thomas-Fermi theory. Popularity Thomas-Fermi theory is related to its relative simplicity, clarity and versatility. The latter 

means that result of the calculation by Thomas-Fermi theory applies immediately to all chemical elements: the transition from 

element to element is as simple scale transformation. These features make it highly convenient tool for qualitative and, in many 

cases, quantitative analysis. 
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1. Introduction 

Thomas-Fermi theory was originally proposed by Thomas 

and Fermi [1-4] to describe the electron shell of a heavy atom, 

which is characterized by a relatively uniform distribution of 

the electron density. 

Thomas-Fermi theory is the semi-classical (or 

Wentzel-Kramers-Brillouin) limit in relation to self-consistent 

Hartree field equations, and therefore modification of this 

model are associated with a more detailed account of the 

correlation, exchange, quantum and multi-shell effects. 

Initial approximate nature of Thomas-Fermi theory has a 

dual nature. Remain outside the model, firstly, correlation 

effects, reflecting the inaccuracy of the Hartree method and 

the associated self-consistent difference (average) true 

interaction from the true physical interaction. Secondly, in 

Thomas-Fermi theory, quantum effects are not considered 

responsible approximate nature of the semi-classical 

description of the atom. The report examines the theory of 

these effects, allowing to find the limits of applicability of 

Thomas-Fermi theory in its original form and generalize the 

model beyond the scope of its applicability. 

The presence of correlation corrections are caused by 

difference of self-consistent field of the actual field inside the 

atom. These corrections are the result of the anti-symmetry of 

the electron wave functions and are interpreted as the 

exchange correlation effects. Additionally, appear also the 

effects of the power correlation. 

We begin by considering the effects of correlation, which in 

turn are divided into two classes. This is primarily the effects 

of statistical correlation (exchange effects), describing the 

effect of the Pauli principle on the interaction of particles. 

Electrons with parallel spins are hold at a greater distance 

from each other than in the singlet state, and the radius of such 

a correlation coincides with the de Broglie wavelength of an 

electron. 

Correlation effects of the second class (called correlation 

effects of power or simply correlation effects) reflect the 

inaccuracy of the principle of independent particles, i.e., the 

inability to talk about the state of a single electron in the 

effective average field of the other particles because of their 

mutual influence, beyond the self-consistent description. 

Being the power effects, this kind of correlation effects are 

characterized by a dimensionless parameter equal to the ratio 

of perturbation theory of the average energy of the coulomb 
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interaction between pairs of particles to their average kinetic 

energy. In Thomas-Fermi [3, 4] theory introduced accounting 

Dirac’s correlation effects [2], this expansion has been called 

the theory of Thomas-Fermi-Dirac. 

The report shows that the total energy of the electrons can 

be expressed in terms of the spatial dependence of the electron 

density according to the Thomas-Fermi-Dirac theory. In this 

calculations, the energy of the atom is based on 

nuclear-electron and electron-electron interactions (which can 

also be represented as a function of the electron density). 

Quantum corrections arise from the use of the 

semi-classical formalism and reflect the presence of non-local 

electron density communication to the potential in 

consequence of the “uncertainty principle”. 

2. Theoretical Procedures 

A variational technique can be used to derive the 

Thomas-Fermi equation, and an extension of this method 

provides an often-used and simple means of adding 

corrections to the statistical model [5, 6]. Thus, we can write 

the Fermi kinetic energy density of a gas of free electrons at a 

temperature of zero degrees absolute in Eq. (1). 

5

3
f fU c ρ=                    (1) 

Where, cf = (3/10)(3π
2
)

2/3
. 

The electrostatic potential energy density is the sum of the 

electron-nuclear and the electron-electron terms. We can write 

this as Eq. (2). 
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Where, v
n
 is the potential due to the nucleus of charge Z, v

e
 

is the potential due to the electrons, and the factor of 1/2 is 

included in the electron-electron term to avoid counting each 

pair of electrons twice. 

With x denoting distance from the nucleus, the total energy 

of the spherical distribution is given by Eq. (3). 
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The expression for density on the Thomas-Fermi model: 

ρ = σ0(E’ － V) 
3/2

             (4) 

σ0 = (3/5 cf) 
3/2

               (5) 

Eqs. (4) and (5) are obtained by minimizing Eq. (3) subject 

to the auxiliary condition that the total number of particles N, 

remains constant. 

The potential energy V is a function of position in the 

electron distribution. E’ is the Fermi energy, or chemical 

potential, and is constant throughout a given distribution. The 

Thomas-Fermi equation follows from Eq. (4) and Poisson’s 

equation. 

The tendency for electrons of like spin to stay apart because 

of exclusion principle is accounted for by the inclusion in Eq. 

(3) of exchange energy, the volume density of which is given 

by Eq. (6). 

4

3
ex ex
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Where, cex = (3/4)(3/π)
1/3

. 

Minimization of the total energy now leads to Eq. (7). 
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Eq. (7) is quadratic in ρ
1/3

. From Eq. (7), we get Eq. (8). 
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Where, 
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Now Poisson equation with the density given by Eq. (9) 

leads to the TFD (Thomas-Fermi-Dirac) equation. In the 

following two slides, we propose additional energy terms to be 

included in Eq. (3). The incorporation of these terms leads to a 

simple quantum- and correlation-corrected TFD equation. 

The quantum-correction energy density follows from a 

slight change in the derivation due to March and Plaskett [6]. 

March and Plaskett have demonstrated that the TF 

(Thomas-Fermi) approximation to the sum of one-electron 

eigenvalues in a spherically symmetric potential is given by 

the integral: 

2 (2 1) ( , )
r r

I l E n l dn dl= +∫∫          (10) 

Where, the number of states over which the sum is carried is 

written as Eq. (11). 

2 (2 1)
r

N l dn dl= +∫∫            (11) 

where, E(nr, l) is the expression for the semi-classic 

eigen-values considered as functions of continuous variables 

[1, 6]; nr is the radial quantum number; l is the orbital quantum 

number; the region of integration is bounded by nr = -1/2, l = 

-1/2, and E(nr, l) = E’. 

We have included a factor of two in these equations to 

account for the spin degeneracy of the electronic states. The 

Fermi energy E’ is chosen so that Eq. (11) gives the total 

number of states being considered, the N electrons occupying 

the N lowest states. 

2 3
2

2
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( ) 4
5 2 3

P P
I V x dxπ

π
= +∫          (12) 

With considerable manipulation, Eq. (10) becomes TF energy 

Eq. (12) and Eq. (11) reveals the TF density through Eq. (13). 
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= ∫               (13) 

Both integrals being taken between the roots of E’ = V(x). 

We have written these results in atomic units, so that P, the 

Fermi momentum, is defined by Eq. (14). 

2( ' )P E V= −                (14) 

It is pertinent to examine the error in the TF sum of 

eigen-values, as given by Eq. (12), for case of pure Coulomb 

field. The WKB eigen-values in Coulomb field is given by Eq. 

(15). 
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              (15) 

And let us consider the levels filled from n = 1 to n = v, 

where n is the total quantum number defined by n = nr + l + 1. 

Then, for any value of v, we can evaluate the error in the TF 

approximation to the sum of eigen-values, comparing always 

with the correct value, -Z
2
v. Scott correction to the total 

binding energy is obtained by letting v become very large. 

Although the sum of one-electron eigen-values is not the 

total energy of the statistical atom because of the 

electron-electron interaction being counted twice, we might 

expect to improve the calculated binding energy greatly by 

correcting this sum in some manner, since the chief cause of 

the discrepancy is certainly the large error in the 

electron-nuclear potential energy. 

This correction can be performed by imposing a new lower 

limit on l in the integrations above. When we introduce a new 

lower limit lmin and a related quantity which we call the 

“modification factor”, we obtain, after more manipulation, 

slightly different expressions corresponding to Eqs. (12) and 

(13). 

min
1

2
a l= +                  (16) 

From these revised expressions, we can identify a 

quantum-corrected TF density expression as Eq. (17), and 

corrected kinetic energy density as Eq. (18). 
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Revised lower limit on the volume integrals, say x1, is the 

lower root of: 

E’ – V - a
2
/2x

2
 = 0                (19) 

For x < xl, ρ must vanish (stay zero), and we have thus 

termed x1 the “inner density cutoff distance”. 

We can call the second term on the right-hand side of Eq. 

(18) the “quantum-correction energy density” and write it in 

the more consistent form as Eq. (20). 

2
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Where, cq is defining as Eq. (21): 

2

2q
ac =                    (21) 

The modification factor a, is determined by the initial slope 

of the potential function. 

For interpreting these results, it is helpful to consider just 

what we have done in changing the lower limit of the orbital 

quantum number. 

Since the lower limit l = -1/2 must correspond to an orbital 

angular momentum of zero, we have, clearly, eliminated states 

with angular momentum of magnitude between zero and a 

cutoff value Lc = aħ. Corresponding to Lc at every radial 

distance is now a linear cutoff momentum: Pc = aħ/x, and we 

can rewrite Eq. (17) in terms of the Fermi momentum and 

cutoff momentum: 

3
2 20 2

3
2

( )
2

cP P
σρ = −              (22) 

At radial distances less than xl, momenta are prohibited over 

the entire range from zero to P, so the electron density 

vanishes. This interpretation must be modified somewhat 

when exchange and correlation effects are included; for then 

the Fermi momentum is no longer simply given by Eq. (14), 

except very near the nucleus. 

We can define x1 as in the absence of interactions, i.e., as the 

lower of the roots of Eq. (19), but it is not correct to demand 

that the density vanish at the upper root. Instead, we require 

only that the density is real. 

Correlation correction [1, 5, 6], the original TF equation 

describes a system of independent particles, while the 

introduction of exchange energy, which leads to the TFD 

equation, represents a correction for the correlated motion of 

electrons of like spin. The remainder of the energy of the 

electron gas is termed the correlation energy, by its inclusion 

we are recognizing that electrons, regardless of spin 

orientation, tend to avoid one another. 

In extensions of the statistical model, there have been 

suggested at least two different expressions, for the correlation 

energy that approach, in the appropriate limits, Wigner’s 

low-density formula and the expression due to Gell-Mann and 

Brueckner at high densities. In addition to these, Gombas and 

Tomishima [6] have utilized expansions of the correlation 

energy per particle in powers of ρ
1/3

 about the particle density 

encountered at the outer boundary of the atom or ion. In this 

expansion, the term of first-order can be considered as a 

correction to the exchange energy, and it follows that the TFD 

solutions for a given Z then correspond to 

correlation-corrected solutions for a modified value of Z. 

Aside from rather poor approximation of the correlation 

energy, a drawback to this procedure is that the TFD solutions 

must be at hand. If solutions representing specified degrees of 
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compression are desired, the method would appear to be 

impractical. It is interesting and fortunate that over density 

range of interest it is apparently possible to approximate the 

correlation energy per particle quite closely by an expression 

of form: 

1
6

c cu c ρ= −                  (23) 

where, we have set cc = 0.0842, and compared this 

approximation with the values due to Carr and Maradudin [5]. 

So, Thomas-Fermi and the Thomas-Fermi-Dirac equations 

are nonlinear differential equations which must be solved 

numerically. The procedure is to assume a solution in the form 

of a power series, and to start the numerical integration from 

the series solution. The series coefficients of the solution may 

be evaluated in terms of the initial slope of the potential 

function. Each value of the initial slope then gives rise to a 

particular potential curve. 

The TFD equation possesses a solution which becomes 

tangent to the x axis at infinity. This solution has an initial 

slope which has been determined for He by Latter. Application 

of the TFD method follows by surrounding each nucleus in  

by a cell which contains just Z electrons. The boundaries of 

the cell are planes which perpendicularly bisect the lines 

joining each nucleus with the nearest or next nearest neighbors. 

Because of the high order of symmetry of the charge 

distribution, the electric field at points outside the cell should 

then be very small and drop off rapidly with distance. 

 

Figure 1. Various TFD solutions. 

The approximation is then made that the field outside the 

cell can be neglected, and the polyhedron is replaced by a 

spherically symmetric distribution of charge having the same 

volume as that of the polyhedron. The solutions of the 

Thomas-Fermi equation for finite border are thus capable of 

describing the element in various states of compression 

(pressure), figure 1. 

3. Derivation and Discussion 

From the results of the preceding slides, we can now 

express the total energy per unit volume of the charge 

distribution in the form: 

7
6

5 4
3 3

2
( )

2

e
qn

f ex c

cv
U c c c v

x
ρ ρ ρ ρ ρ= − − − + +    (24) 

Where all quantities appearing in the equation have been 

previously defined. By minimizing the integral of U over the 

volume occupied by the charge, while requiring that the total 

number of electrons be fixed, we obtain Eq. (25). 
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7
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ccυ σ=  

The electron density is found as a function of R by solving 

Eq. (23), a quartic in ρ
1/6

. 

To accomplish this we write a “resolvent cubic equation” in 

terms of another variable, say y: 

y
3
 + τ1y

2
 + Ry + (τ1R-υ0

2
) = 0       (26) 

Let us use the same symbol y, to denote any real root of this 

cubic equation. 

We can then express the four roots of the quartic, and hence 

four expressions for the electron density, in terms of y. One of 

these expressions possesses the proper behavior in reducing to 

previously obtained results in the neglect of correlation and 

exchange effects, namely: 

2 3

1

1
( )

8
y Rρ τ ψ= + + +           (27) 

Where, 

2

1 1
( 2 )y y y Rψ τ τ= + − + +       (28) 

We note that ψ vanishes when correlation is neglected, since 

y = -τ1 is then root of Eq. (26). In the familiar manner we now 

define a modified TFD potential function θ by Eq. (29), and 

from Poisson equation and Eq. (27) we obtain Eq. (30). 

Zθ = (E’ - V + τ0
2
) x              (29) 
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1 1

1

( ) ; ,
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π τ ψ
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 <
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In terms of θ: 

2
2

23
0 02

4 ( )
2

Z a
R

x x

θσ τ= − −          (31) 

Eqs. (26), (28), (30) and (31) constitute the differential 

relationship to be satisfied at each step in the integration. We 

could, of course, write immediately the solutions of Eq. (26) in 

analytic form, but it proves convenient in the numerical 

treatment to obtain a root by the Newton-Raphson method, 

since a good first guess in the iteration is available from the 
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previous integration step. 

The boundary conditions on Eq. (30) are: 

1 As nucleus approached the potential must become that 

nucleus alone, or θ(0) = 1; 

2 At outer boundary x2, of distribution of N electrons: 

2 2

1 1

24

x x

x x

N x dx Z xdxρ π θ ′′= =∫ ∫         (32) 

Integration by parts yields: 

1 1 1
( ) 1 ( ),x x xθ θ ′= + 2

1
( )x

x

N
x

Z
θ θ′ − = , and since we have 

the usual condition: 

2 2 2( ) ( )
Z N

x x x
Z

θ θ −′= +            (33) 

In addition to potential and density distributions, total 

binding energies of atoms are of special interest to us here. For 

the proper evaluation of energies, the arbitrary constant that is 

present originally in both the electrostatic potential energy and 

the Fermi energy must be specified. The state of infinite 

separation of the constituent particles is normally taken to 

have zero energy. 

We therefore follow the usual convention and fix the 

potential at the edge of the neutral atom at zero for all values 

of x2. For an ion the potential energy of an electron at the 

boundary is taken as: 

2

Z N
V

x

−= −                  (34) 

The defining relation, Eq. (34), now gives at the boundary: 

2
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2
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Z N

Z x E x
x
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Or solving for the Fermi energy, 

22
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The total electron-nuclear potential energy given by 

2
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Z
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x
ρ π= −∫             (37) 

While for the electron-electron potential energy we have: 
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From Eq. (29) and the relation V = - (vn + ve), this becomes: 
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Other energy integrals are, with an obvious notation: 

5
23 4f fE c x dxρ π= ∫              (40) 

2

2
4q qE c x dx

x

ρ π= ∫              (41) 

4
23 4ex exE c x dxρ π= − ∫            (42) 

7
26 4c cE c x dxρ π= − ∫             (43) 

4. Results and Conclusions 

It was pointed out in the introduction that the 

quantum-corrected TFD equation yields atomic binding 

energies in good agreement with experimental values and with 

the results of DFT (density functional theory) calculations [5]. 

Multi-shells effects reflect irregularities physical quantities 

due to the discrete energy spectrum, but in the case of the 

continuous spectrum of these effects may occur as a result of 

interference of de Broglie waves and allow the model to take 

into account the shells structure of the atom. Multi-shells 

effects associated with the discrete spectrum of bound 

electrons in atomic systems (atom, ion, atomic cell, etc.). 

Multi-shells effects, unlike quantum-exchange effects, 

affect the chemical potential E', but practically have no effect 

on the value of self-consistent potential V [7]. Therefore, when 

they accounting for the calculation of a corresponding shells 

correction, is not necessary to solve the Poisson’s equation. 

Just use the normalization condition with the same 

self-consistent potential in TFD model. 

For shell corrections E'sh primary role of shell effects 

reduces to a shift of the chemical potential E' [8]. 

'

1

1 sin(2 ( ))
1k

sh

k

kv
E

k

π λ
π

∞

=

= −∑          (44) 

Where, v = nr + 1/2, λ = l + 1/2. 

Software implementation of this modified Thomas-Fermi 

theory and calculations (for example, rare gas atoms, Table 1 

and Figure 2) taking into account quantum, exchange and 

correlation corrections showed that the corrections really lead 

to a rapprochement and converge results with experimental 

data, and also the results obtained by the DFT approximation 

[5]. Total energy calculations by Thomas-Fermi, DFT and 

experimental data are shown in the summary Table 1. Next 

step of this work include program realization for multi-shell 

and gradient corrections also [1, 6]. 

Table 1. Results comparisons. 

Z ETFD (a.u.) EDFT (a.u.) Eexp (a.u.) 

2 -2.96 -2.89 -2.90 

10 -7.60 -7.23 -7.48 

18 -14.95 -14.56 -14.67 

36 -25.32 -24.08 -24.65 

54 -38.99 -37.08 -37.85 

86 -56.23 -53.59 -54.60 
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Figure 2. The electron density(external shells) of the rare atoms—(a) helium 

(He), (b) argon (Ar), (c) neon (Ne) and (d) krypton (Kr), computed on the 

present model agree closely with their crystal radii. 
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