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Abstract: Major depression is a common form of mental disorder affecting approximately 15% of the population at least 

once during lifetime. The etiology of depression is complex with potential contributions from central and peripheral systemic 

factors, and several CNS impacting diseases. Presently employed antidepressant medications are poorly responded to by 

upwards of 50% of patients and typically require weeks of treatment to be effective. Recent post-mortem brain scans indicate 

significant volume reductions in two limbic brain structures, the hippocampus and prefrontal cortex of depressed patients. 

These findings focus attention on hippocampal plasticity in the neuropathology of depression and the possible dysfunction of 

several important processes including neurogenesis, synaptogenesis, and contributions by neurotrophic growth factors. The 

hepatocyte growth factor (HGF)/c-Met receptor system is a powerful mediator of synaptogenesis and neurogenesis, and if 

adequately activated may serve to counter the neuropathology of depression. The brain renin-angiotensin system (RAS) 

interacts with the HGF/c-Met system and plays a major role in responding to stress and the pathophysiology of depression. We 

have developed an angiotensin IV-based small molecule designed to activate the HGF/c-Met receptor system in order to 

provide neuroprotection, synaptogenesis, and neurogenesis in the hippocampus and prefrontal cortex. This analog may be 

efficacious in treating the neuropathology of depression. 
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1. Introduction 

Major depression is among the most common forms of 

mental disorder affecting approximately 15% of the population 

at least once during lifetime [1]. At any given time depression 

is experienced by approximately 2% of children and 5% of 

adolescents [2]. The likelihood of depression increases with 

age particularly among those with functional disabilities, 

and/or physical and cognitive illness [3-5]. 

Community/residence-seniors have reported the prevalence of 

major depression estimated at 10% [4-5]. The pathophysiology 

of adult depression is complex with contributing factors that 

may include CNS and peripheral systemic factors, while 

Alzheimer’s disease, Parkinson’s disease, and stroke are 

recognized risk factors [6-8]. Cancer, cardiovascular disease, 

metabolic and endocrine dysfunction are also often associated 

with depression [9,10]. Identifying reliable biomarkers of 

depression has been challenging [11]. Many hypotheses have 

been posited to explain adulthood depression including 

alterations in glucocorticoid regulation and related stress 

hormones [12], insulin resistance [13], inflammatory 

chemokines and cytokines [14], and various trophic factors 

that are stimulated with injury, illness and other stressors [15]. 

Along these lines accumulating evidence suggests that 

depression accompanying diabetes mellitus significantly 

increases pro-inflammatory mechanisms and a loss of 

hippocampal neuroplasticity [16-18]. The antidepressant 

classes of medication presently available (5-

hydroxytryptamine and norepinephrine-selective reuptake 

inhibitors) lack effectiveness in upwards of 50% of patients 

and typically require weeks of treatment to be effective [19]. 

Recent post-mortem brain scans of depressed patients 

evidenced significant reductions in the volume of limbic brain 

structures most notably in the hippocampus (Hip) and 

prefrontal cortex (PFC) [20,21]. Of particular importance 

exposure to stress has been linked with neuronal atrophy and 

loss of glia in both structures [22,23]. The formation of new 
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neurons in the adult brain (neurogenesis) is known to occur in 

the subgranular zone of the dentate gyrus of the Hip and 

subventricular zone of the lateral ventricles [24,25]. Neural 

stem cells in these structures are capable of dividing 

asymmetrically to form a daughter stem cell and a rapid 

multiplying progenitor cell. If appropriately stimulated these 

progenitor cells mature into neurons that integrate into 

functional neuronal networks [26,27]. Chronic stress-induced 

depression decreases neurogenesis; however treatment with 

antidepressant drugs may reverse this process [22,28]. These 

observations point to the involvement of dysfunctional 

hippocampal plasticity in the neuropathology of depression, 

with particular focus on neurotrophic growth factors. The 

“neurotrophic hypothesis” of depression suggests that 

depression results from decreased neurotrophic growth factor 

activity causing atrophy of neurons in the Hip and PFC 

coupled with decreased neurogenesis and loss of glia. It has 

been hypothesized that treatment with antidepressant drugs 

interferes with and/or blocks neurotrophic factor deficits thus 

reversing atrophy [22-25]. The neurotrophic growth factors 

thus far linked with depression include vascular endothelial 

growth factor (VEGF), fibroblast growth factor-2, and insulin-

like growth factor (IGF-1), with particular interest in brain-

derived neurotrophic factor (BDNF) [29-32]; BDNF appears to 

be necessary for a positive response to treatment with 

antidepressant drugs [22,33]; however, preclinical results 

concerning the role of BDNF depletion in the etiology of 

depression are less consistent. BDNF-deletion mutant mice 

generally reveal normal behavior when tested for depression 

although conditional female mutant mice have been reported to 

show increased immobility during forced swim testing [34]. 

The use of RNA interference to knock down BDNF expression 

in hippocampal substructures results in depression as measured 

using forced swim and sucrose preference tasks [35]. 

This review focuses on a new target of potential importance 

as a treatment of depression, the brain renin-angiotensin 

system (RAS), and the recent discovery that it acts via the 

hepatocyte growth factor (HGF)/ tyrosine kinase c-Met 

receptor system (reviewed in [36,37]). The HGF/c-Met 

receptor system functions as a critical survival mechanism for 

motor, internuncial and sensory neurons and a subset of root 

ganglion neurons [38,39]. This relationship between the RAS 

and HGF/c-Met systems offers clinically relevant possibilities 

that small angiotensin-based molecules can be designed to act 

as agonists at the HGF/c-Met complex in place of large protein 

ligands. The next sections provide descriptions of the RAS and 

HGF systems, information concerning their interaction, and 

the involvement of the RAS and HGF systems in stress and 

depression. We conclude with details concerning a newly 

developed angiotensin IV (AngIV)-based small molecule that 

activates the HGF/c-Met receptor system, promotes 

synaptogenesis, and offers neuroprotection thus encouraging 

neuron survival. 

2. The Brain Renin-Angiotensin System 

The RAS regulates systemic blood pressure and body 

water balance, activates sympathetic pathways, and exerts 

control over vasopressin and oxytocin synthesis and release 

[40,41]. These functions are mediated, in part, by an 

independent brain RAS complete with the necessary 

components including angiotensinogen, renin, angiotensin 

converting enzyme (ACE), angiotensin ligands, and receptor 

proteins ([42,43] Figure 1). Following the discovery of this 

independent brain RAS separate from the peripheral system 

three brain angiotensin receptor subtypes were identified. 

The first two, AT1 and AT2, are G-protein coupled and have 

been well described in previous review papers [36,40,41,44]. 

Several years ago members of our laboratory discovered a 

third subtype, AT4, which is a major focus of this review.  

 

Figure 1. The renin-angiotensin pathway indicating the biologically active 

ligands (bold), enzymes, receptors and inhibitors involved in angiotensin 

mediated physiologies and behaviors. Both angiotensin II and III bind to the 

AT1 and AT2 receptor subtypes. Angiotensin IV and angiotensin (3-7) bind at 

the AT4 subtype. Abbreviations: ACE, angiotensin converting enzyme; APA, 

aminopeptidase A; APN, aminopeptidase N; ARBs, angiotensin receptor 

blockers; Carb-P, carboxypeptidase P; PO, propyl oligopeptidase. 

The AT1 subtype is localized in high densities within the 

anterior pituitary, area postrema, lateral geniculate body, 

inferior olivary nucleus, median eminence, nucleus of the 

solitary tract, the anterior ventral third ventricle region, 

paraventricular, preoptic and supraoptic nuclei of the 

hypothalamus, subfornical organ, ventral tegmental area, 

caudate putamen, cerebellum, striatum, and substantia nigra. 

The AT1 receptor plays a critical role in promoting 

oxidative stress which in turn encourages 

neurodegeneration that impacts CNS neurons [45,46]. 

The highest densities of the AT2 receptor site are found in 

the amygdala, medial geniculate body, habenula, 

hypoglossal nucleus, inferior colliculus, inferior olivary 
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nucleus, locus coeruleus, striatum, thalamus, ventral 

tegmental area, caudate putamen, cerebellum, globus 

pallidus, and substantia nigra. There is recent evidence 

suggesting that activation of the AT2 receptor may offer 

neuroprotection [47]. The roles of the AT1 and AT2 subtypes 

in neurodegeneration and neuroprotection will be discussed 

in a subsequent section. 

The AT4 receptor is distributed within a number of brain 

structures with notably high concentrations in the anterior 

pituitary, cerebral cortex, lateral geniculate body, habenula, 

inferior olivary nucleus, nucleus basalis of Meynert, 

periaqueductal gray, piriform cortex, superior colliculus, 

thalamus, and ventral tegmental area, caudate putamen, 

cerebellum, globus pallidus, nucleus accumbens, red 

nucleus, substantia nigra and striatum. Of particular interest 

AT4 receptors, which represent the molecular target of 

AngIV, are prominently represented in the Hip and PFC. 

Although the brain distribution of AngIV is not available, 

the locations of aminopeptidase A (AP-A, an 

aminopeptidase that converts the octapeptide AngII to the 

heptapeptide AngIII) and aminopeptidase N (AP-N, an 

aminopeptidase that converts AngIII to the hexapeptide 

AngIV) are suggestive given their likely co-localization 

with AngIV (see Figure 1). Both AP-A and AP-N have been 

localized to the plasma membrane of pericytes suggesting 

that AngIV is found in the extracellular space surrounding 

microvessels in the brain [48]. In support of this notion 

exogenous administration of Ang IV has been shown to 

increase cerebral microcirculation [49-51]. Of relevance, 

Lanckmans and colleagues [52,53] measured AngIV in the 

striatum using microdialysis coupled with a sensitive liquid 

chromatography mass spectrometry system. Shortly 

following probe insertion the levels of AngIV dropped 

below the detection limit of 50 pM. This was interpreted to 

suggest an intracellular presence for AngIV. This notion is 

supported by several reports indicating that within neurons 

AngII is converted to AngIV (80%), with smaller fractions 

of AngIII, Ang(1-7), and Ang(1-6) (reviewed in [54]). Thus 

the AT4 receptor, co-localized with AngIV, is prominently 

represented in the Hip and PFC, two structures implicated 

in major depression. 

3. The Brain Hepatocyte Growth 

Factor/c-Met Receptor System 

As indicated by its name HGF was originally isolated 

from liver and has been shown to promote liver 

regeneration [55]. HGF is a glycoprotein also known as 

“scatter factor” that acts as a potent mitogenic, 

morphogenic, and motogenic growth factor [56]. Some 

years ago Bottaro and colleagues [57] identified the Type 1 

tyrosine kinase receptor c-Met as the receptor for HGF. The 

c-Met receptor protein is made up of disulfide bond-linked 

alpha (45 kDA) and beta (145 kDa) subunits (Figure 2 [58]). 

The alpha-chain is extracellular while the beta-chain is 

transmembrane. HGF dimerization precedes binding to the 

c-Met receptor which then undergoes phosphorylation. 

Once phosphorylated the tyrosine residues of the beta 

subunit serve as docking sites for downstream signaling 

mediators including the extracellular signal-regulated 

kinase (ERK) and the phosphatidylinositol-3-kinase (P13K) 

pathways [59]. This HGF/c-Met signaling is regulated by 

the activator hepatocyte growth factor A (HGFA) and its 

inhibitor, HGFAI. HGFA is a protease that acts on the 

precursor protein and produces active HGF. In contrast 

HGFAI blocks the activation of HGFA [60]. c-Met has been 

shown to play a role in multiple types of cancer (reviewed 

in [61]), blunt neurodegenerative changes [62], facilitate 

long-term potentiation (LTP [63]), contribute to learning 

and memory consolidation [64,65], and may play a role in 

Alzheimer’s and Parkinson’s diseases [66,67]. Also, 

inactivation of c-Met in the embryonic proliferative zones 

of mice results in an increase in parvalbumin-expressing 

cells in the dentate gyrus, a loss of these cells in the CA3 

field, with an overall loss of calretinin-expressing cells 

throughout the Hip [68]. These results highlight the 

importance of c-Met with regard to appropriate 

hippocampal development. Several researchers have 

suggested the use of HGF as a therapeutic agent for 

amyotrophic lateral sclerosis, ischemia-stroke [64,69], 

neuroimmune [39,70] and neurodegenerative diseases [71], 

and to encourage neuron survival [72,73]. 

 

Figure 2. A. Structure of hepatocyte growth factor (HGF) consisting of a α-

chain (69 kDa) that includes four Kringle domains and a β-chain (43 kDa) 

plus a serine proteinase homology (SPH) domain, linked by disulfide bonds 

(S). B. Structure and basic functions of the c-Met receptor consisting of a α-

chain (50 kDa) and a β-chain (140 kDa) linked by disulfide bonds. HGF 

binds to c-Met resulting in tyrosine phosphorylation leading to the activation 

of a number of biological functions. 
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4. Interaction Between Angiotensin IV 

and the HGF/c-Met System 

Several years ago members of our laboratory set about 

identifying a molecular target with structural homology to 

angiotensin IV and physiological functions in agreement with 

those identified for the AngIV/AT4 receptor system. We 

discovered a partial match with the protein angiostatin, and 

the related plasminogen family member HGF. We noted that 

the functions associated with the HGF/c-Met system overlap 

extensively with those mediated by the AngIV/AT4 system 

and include facilitated hippocampal long-term potentiation 

(LTP), calcium signaling, memory consolidation, augmented 

neurite outgrowth, dendritic arborization, facilitation of 

cerebral blood flow and cerebroprotection, seizure protection, 

and augmented wound healing (reviewed in [36,37]). This 

prompted the hypothesis that AngIV analogs may exert their 

activity via the HGF/c-Met system. Recently we reported that 

the AT4 receptor antagonist Norleual-AngIV inhibited HGF 

binding to c-Met and HGF-dependent signaling, proliferation, 

invasion, and scattering [74]. The mechanism of action 

regarding Norleual-AngIV’s ability to act as a c-Met receptor 

antagonist is by inhibiting the dimerization of HGF which is 

a prerequisite to c-Met receptor activation [75,76]. These 

results strongly suggest that the biological effects of 

endogenous AngIV, and AngIV analogs, are mediated 

through the HGF/c-Met system.  

Subsequent research findings relevant to the hypothesis 

that the AngIV/AT4 receptor system acts via HGF/c-Met 

include the following: 1) As mentioned earlier, in contrast 

with the AT1 and AT2 receptor subtypes heavy brain 

distributions of the AT4 receptor reside in structures 

implicated in depressive disorders including neocortex, 

piriform cortex, hippocampus, and nucleus basalis of 

Meynert, consistent with expectations concerning brain 

locations for a receptor acting as a mediator of cognitive 

processing [77-80]. Partial determination of brain c-Met 

receptor distributions agree with this pattern [81,82]. 2) The 

AT4 receptor subtype’s ability to facilitate LTP, separate from 

NMDA-dependent LTP, suggests a nonglutamatergic 

signaling pathway [83] and agree with such findings 

concerning the HGF/c-Met system [63]. 3) The finding that 

facilitation of the AT4 receptor subtype results in increased 

internalization of calcium via at least three different calcium 

channels, suggests a rapid and salient cell signaling event [83] 

and agrees with the observation that HGF-induced responses 

also depend upon the internalization of calcium [84]. 4) 

Conversion of AngII to AngIV appears to be necessary for 

AngII-induced DA release in the striatum [85], and 

acetylcholine release in the Hip [86] indicating the relatively 

greater importance of AngIV over AngII with regard to 

stimulating neurotransmitter release. 5) The coupling of 

increased neural intracellular calcium with matrix 

metalloproteinases released into the extracellular space 

suggests a neural plasticity function [87,88]. And 6) Recent 

neural imaging work completed in our laboratory indicates 

that the AT4 receptor agonist Nle
1
-AngIV (Figure 3) 

stimulates dendritic spine numbers and size in the Hip, as 

well as overall dendritic arborization suggesting a plausible 

mechanism to explain the ability of these molecules to 

enhance synaptic plasticity and connectivity among neurons 

[89]. Additionally, Nle
1
-AngIV was found to be significantly 

more potent than BDNF in stimulating spine numbers and 

size. In agreement HGF has been shown to increase dendritic 

arborization in cultured hippocampal neurons [84].  

 

Figure 3. Chemical structures of Nle1-AngIV (Norleucine-YIHPF) and 

Dihexa (N-hexanoic-YI-(6) amino hexanoic amide). 

5. Stress, Depression and the RAS 

Behavioral and physiological responses to acute stress, 

threat and danger are reasonably fixed and programed to 

promote survival. Thus, a rather elaborate neural circuitry is 

activated to modulate fear-related behaviors designed to 

protect the individual from damage while fleeing, defending 

or initiating attack. During acute stress cognitive repertoires 

are limited resulting in a fearful behavioral mode that appears 

to be under the control of the mesolimbic dopaminergic 

reward system [90,91]. Physiological responses include 

increased heart rate and blood pressure thus providing 

additional oxygenated blood to the brain and muscles groups; 

while corticotropin releasing hormone is released into the 

cerebroventricular system resulting in heightened arousal. 

This is accompanied by a succession of regulatory behaviors 

such as eating, drinking, sexual behaviors, sleeping, etc. 

[92,93]. Exposure to stress/threat is associated with a 

proinflammatory state that readies the immune system for 

possible injury. Elevated stress mediators include cortisol and 

cytokines that trigger insulin resistance thus raising plasma 

glucose levels. This mechanism is designed to benefit 

structures that are not dependent on insulin for glucose 

transport such as the brain and immune system [94]. Such a 

response to stress also promotes a procoagulant state in order 

to combat possible hemorrhage. Thus, plasminogen activator 
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inhibitor-1 is released from visceral fat cells in order to 

inhibit plasminogen accompanied by the release of 

fibrinogen. 

During chronic stress and major depression the 

dopaminergic reward system is inhibited producing a state of 

anhedonia. A proinflammatory state is activated accompanied 

by a significant reduction in neuroplasticity and neurogenesis 

[95,96]. The RAS plays a prominent role in mediating these 

effects [97]. In particular AngII binding at the AT1 receptor 

subtype promotes nicotinamide adenine dinucleotide 

phosphate (NADPH)-dependent oxidases, a significant 

source of reactive oxygen species (ROS) [98,99]. Such 

activation of the AT1 receptor also results in the stimulation 

of the NF-kB signal transduction pathway facilitating the 

synthesis of chemokines, cytokines, and adhesion molecules, 

all important in the migration of inflammatory cells into 

regions of tissue injury [100]. Given the above reports it 

follows that if AngII activation of the AT1 receptor subtype 

results in facilitation of the NADPH oxidase complex and 

thus formation of free radicals, then blockade of the AT1 

receptor should serve a protective function. This appears to 

be the case [101,102]. Treatment with AT1 receptor 

antagonists, known as angiotensin receptor blockers (ARBs), 

protects DA neurons in both 6-hydroxydopamine (6-OHDA) 

[90-94], and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) animal models [103,104]. Specifically, ARBs have 

been shown to reduce the formation of NADPH oxidase-

derived reactive oxygen species following administration of 

6-OHDA [105]. Further, treatment with ACE inhibitors has 

been shown to offer protection against the loss of DA 

neurons in MPTP [106] and 6-OHDA animal models [107]. 

The likely mechanism underlying this ACE inhibitor-induced 

protection is a reduction in the synthesis of AngII acting at 

the AT1 receptor subtype (reviewed in [108]). 

As mentioned earlier AngII activation of the AT2 receptor 

subtype has been shown to offer neuroprotection. The AT2 

receptor subtype is present in several fetal tissues including 

uterus, ovary, adrenal gland, heart, vascular endothelium, 

kidney and brain (particularly neocortex and hippocampus) 

[40,109-111]. As development progresses the expression of 

the AT2 receptor decreases. It appears that adult mammalian 

brain levels of this receptor are reasonably low [41,112]. The 

AT2 receptor has been linked with cell proliferation, 

differentiation, and tissue regeneration [113,114]. Results 

from a study utilizing mesencephalic precursor cells 

indicated that AngII, acting at the AT2 receptor, facilitated 

differentiation of precursor cells into DA neurons [115]. 

Along these lines, activation of the AT2 receptor has been 

shown to inhibit NADPH oxidase activation [47,116]. 

However, Rodriguez-Pallares et al. [117] found that AngII 

treatment of 6-OHDA lesioned adult rats increased neuron 

cell death. This could be due to the much greater relative 

numbers of brain AT1 receptors, as compared with AT2 

receptors, such that the beneficial effects of AT2 receptor 

activation was overwhelmed by AT1 activation. For a 

thoughtful and detailed review of the literature concerned 

with the influence of acute and chronic stressors on the CNS 

and immunity system as related to depression the reader is 

referred to Gold [118]. 

6. Synaptogenesis and the RAS-HGF/c-

Met System 

As discussed earlier AT1 receptor blockade has a 

neuroprotective effect [101,103]. Less obvious is the 

likelihood that AT1 receptor blockade results in accumulating 

levels of AngII which is converted to AngIII and then to 

AngIV. Thus, an alternative explanation of these AT1 receptor 

antagonist findings is that increases in endogenous AngIV 

levels facilitate activation of the HGF/c-Met receptor system 

resulting in neuroprotection of neurons. In this way AngIV 

may act in combination with AT1 receptor blockade to protect 

neurons. Our laboratory has offered evidence that AngIV, and 

AngIV analogs, facilitate HGF/c-Met activity [89]. Support 

for this claim is presented in several recent reports. First we 

found that the action of AT4 receptor antagonists depends on 

inhibiting the HGF/c-Met receptor system by binding to and 

blocking HGF dimerization [74,75]. In contrast, AT4 receptor 

agonists facilitate synaptogenesis by acting as mimics of the 

HGF dimerization domain (see Figure 2 hinge region) [76]). 

This work has culminated in the synthesis of a small 

molecule AT4 receptor agonist or active metabolite capable of 

penetrating the blood-brain barrier (BBB) and facilitating 

cognitive processing presumably by increasing 

synaptogenesis. This small molecule (MM-201, named 

Dihexa) has a Kd for HGF ≈ 65 picomolar [81]. The AngIV-

HGF/c-Met interaction could explain earlier reports 

indicating that activation of the AT4 receptor facilitated 

cerebral blood flow and neuroprotection [49,119,120].  

In agreement with the above findings HGF has been 

shown to positively impact ischemic-induced injuries such as 

cardiac [121] and hind limb ischemia [122], and reduce the 

infarct volume of stroke [123]. HGF has also been shown to 

eliminate Hip neuronal cell loss in transient global cerebral 

ischemic gerbils [69], and transient focal ischemic rats [124]. 

Date and colleagues [64] have reported HGF-induced 

improvements in escape latencies by microsphere embolism-

cerebral ischemic rats as measured using a circular water 

maze task. These authors noted reduced damage to cerebral 

endothelial cells in ischemic animals treated with HGF. 

Shimamura et al. [62] have shown that over-expression of 

HGF following permanent middle cerebral artery occlusion 

resulted in significant recovery of performance in the Morris 

water maze and passive avoidance conditioning tasks. 

Treatment with HGF was also found to increase the number 

of arteries in the neocortex some 50 days following the onset 

of ischemia. 

As a means of better understanding how AT4 receptor 

agonists and antagonists modify synaptic plasticity members 

of our group evaluated their influence on hippocampal LTP. 

We determined that the application of Nle
1
-AngIV 

significantly facilitated LTP in the CA1 field of hippocampal 

slices [49]; while both AngIV and Nle
1
AngIV enhanced LTP 



82  John W. Wright, Joseph W. Harding:  Harding. Angiotensin analogs and Depression   

 

in the dentate gyrus in vivo [125]. Pretreatment with the 

specific AT4 receptor antagonist Divalinal-AngIV prior to 

tetanization significantly disrupted the maintenance phase of 

LTP. Nle
1
-AngIV facilitation of LTP was shown to be 

dependent upon increased intracellular calcium via L- and T-

type voltage-dependent calcium channels [83]. The ability of 

these agonists to promote Ca
2+

 entry, particularly via L-type 

channels, suggested the potential mechanism of altered 

dendritic arborization [126]. We next directly examined the 

ability of AT4 agonists to facilitate dendritic arborization in 

disassociated rat hippocampal neurons labeled with mRFP-

bactin to visualize the cytoskeleton, including the spines. 

Quantitative analysis from neurons exposed to Nle
1
-AngIV 

for 5 days indicated an increased number of dendritic spines 

per dendrite, accompanied by a significant expansion of 

dendritic arborization [89]. The above observations support 

the hypothesis that the primary mechanism underlying 

memory facilitation by AngIV (and its analogs) is the ability 

to enhance synaptic communication and neural activity. 

These Nle
1
-AngIV-induced increases in dendritic 

arborization are consistent with the hypothesis that AT4 

receptor ligands alter HGF docking at the c-Met receptor. 

There are several reports indicating that HGF and c-Met are 

neuronally expressed in several brain structures including 

neocortex and Hip, and appear in high densities at excitatory 

synapses within the Hip [82]. Activation of the c-Met 

receptor by HGF promotes neurite outgrowth [127] and 

dendritic branching by cortical neurons in slice cultures [128]. 

The complexity of the dendritic branching could be 

attenuated with anti-HGF antibodies. Tyndall and colleagues 

[84] reported that HGF increased the size and complexity of 

dendritic arborization in dissociated Hip neurons in culture. 

This facilitation could be blocked by pretreatment with the 

NMDA receptor antagonist, DL-2-amino-5-

phosphonopentanoic acid (APV). It was further determined 

that this HGF effect was dependent upon elevations in 

intracellular calcium and accompanying increases in 

autophosphorylation of CaMKII. These results suggest that 

calcium-dependent processing underlies HGF’s ability to 

increase dendritic arborization, and are consistent with our 

findings indicating increased hippocampal neuronal 

intracellular calcium with Nle
1
-AngIV treatment and 

facilitated hippocampal dendritic arborization. Pretreatment 

of cultured hippocampal neurons with an AT4 receptor 

antagonist inhibited this Nle
1
-AngIV-induced arborization 

[89]. 

In sum, these results indicate a role for the HGF/c-Met 

receptor system in cerebroprotection and are consistent with 

the notion that AngIV increases blood flow by a NO-

dependent mechanism [50]. In support of this hypothesis 

Faure et al. [129] have reported that increasing doses of 

AngIV via the internal carotid artery significantly decreased 

mortality and cerebral infarct size in rats twenty-four hours 

following embolic stroke due to the intracarotid injection of 

calibrated microspheres. Pretreatment with the specific AT4 

receptor antagonist Divalinal-AngIV, or Nω-nitro-L-arginine 

methyl ester (L-NAME), abolished this protective effect. 

Sequential cerebral autoradiography revealed that AngIV 

facilitated the redistribution of blood flow to ischemic areas 

within a few minutes. Thus, AngIV may yield its cerebral 

protective effect against acute cerebral ischemia via an 

intracerebro-hemodynamic c-Met receptor-mediated NO-

dependent mechanism. Given these results a metabolically 

stable BBB penetrant small molecule that activates the 

HGF/c-Met system could prove highly efficacious in the 

treatment of depression. 

7. The Development of Angiotensin IV-

Based Small Molecules 

AngIV-based pharmaceuticals have been suggested as 

potential anti-dementia therapeutic agents by several 

investigators [130-133]. In an effort to develop such a drug 

we synthesized a number of AngIV-based compounds 

possessing extended half-lives by utilizing amino acid 

replacement and reduced peptide bonds (CH2-NH2) between 

residues [134,135]. As mentioned earlier this resulted in the 

development of two potent receptor antagonists, Norleual-

AngIV and Divalinal-AngIV [49,74,76,136,137], and one 

promising agonist, Nle
1
-AngIV. About this same time Taisho 

Pharmaceutical disclosed a series of compounds evaluated in 

competition binding experiments with [
125

I]AngIV utilizing 

guinea pig hippocampal membranes [138,139]. Taisho made 

use of a styrene moiety to replace three amino acids of 

AngIV (HPF), and further reduced the amide bond between 

Y and I.  

Although a number of AngIV-based analogs exhibited 

favorable behavioral results as evaluated using animal 

models, two critical physiochemical properties continued to 

hinder drug development. These included: 1) a lack of 

metabolic stability resulting in short circulating half-lives (eg. 

Nle
1
-AngIV = 1.42 min., [81]; and 2) an inability to penetrate 

the BBB. This latter limitation of AngIV-related peptides 

results from considerations of molecular size, overall 

hydrophobicity, and hydrogen-bonding potential as reflected 

by the size of the encompassing hydration sphere. Such 

limitations prompted efforts to design and synthesize new 

AngIV-based small molecules with these desirable properties.  

Members of our laboratory determined that the Nle
1
-

AngIV agonist effects derived from its N-terminal region 

given that fragments as small as tetra- and tripeptides 

retained the ability to overcome scopolamine-induced 

amnesia [89]. Further, Nle
1
-AngIV, as well as these shorter 

fragments, augmented hippocampal synaptic connectivity via 

the formation of new synapses [89]. Functionality of these 

synapses was inferred from analog-induced spinogenesis and 

the colocalization of synaptic markers in newly formed 

dendritic spines which were coupled with enhanced 

miniature excitatory postsynaptic currents. These results 

encouraged the possibility that a clinically useful small 

molecule could be designed possessing oral efficacy, 

increased metabolic stability with an extended half-life, and 

BBB penetrability. Subsequent design and synthesis efforts 
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yielded a small molecule with increased hydrophobicity, 

decreased hydrogen bonding potential, and significantly 

increased metabolic stability: N-hexanoic-Tyr-Ile-(6) amino 

hexanoic amide (Dihexa; Fig. 3). This compound induces 

spinogenesis/synaptogenesis at picomolar concentrations [89] 

and penetrates the BBB intact and/or as an active metabolite 

[81].  

We reported that Dihexa binds with high affinity to HGF 

and induces c-Met phosphorylation in the presence of 

subthreshold levels of HGF [140]. Dihexa also stimulated 

Hip spinogenesis and synaptogenesis equivalent with HGF. 

Treatment with the HGF antagonist Hinge (KDYIRN), as 

well as a short hairpin RNA directed at c-Met, significantly 

inhibited these actions. Further, Dihexa or an active 

metabolite penetrated the BBB in sufficient quantity to 

facilitate memory consolidation and retrieval in the 

scopolamine-induced amnesic rat model of Alzheimer’s 

disease as well as in aged rats employing the Morris water 

maze task of spatial memory [81]. These findings have 

recently been extended to show that by day 8 of testing those 

animals given Hinge by intracerebroventricular (icv) 

injection and saline (by gavage) performed equivalently to 

the control group (icv aCSF followed by saline) [140]. 

Members of both groups located the hidden platform 

significantly faster than those animals given scopolamine 

(icv) followed by saline. Animals treated with scopolamine 

plus Dihexa (by gavage) performed equivalently with 

members of the group given aCSF and Dihexa. Finally, those 

animals given scopolamine and Hinge (icv) followed by 

Dihexa revealed much slower latencies to find the platform. 

Taken together these results indicate that Dihexa is capable 

of reversing the cognitive deficits induced by scopolamine; 

while the co-application of Hinge and scopolamine blocked 

the ability of Dihexa to rescue spatial memory. The 

application of Hinge alone did not interfere with basal 

performance. This finding is consistent with earlier results 

utilizing the Morris water maze task showing that icv 

treatment with AngIV, and AngIV analogs, was ineffective at 

facilitating learning and memory in normal functioning 

animals [141]. Thus, it appears that the brain HGF/c-Met 

system is designed to respond to injury as seen in stroke and 

neurodegenerative diseases by facilitating synaptic plasticity 

and neurogenesis. This hypothesis is further supported by 

transient elevations in CNS HGF levels measured in several 

degenerative diseases including amyotrophic lateral sclerosis, 

multiple sclerosis, Parkinson’s disease and spinal cord injury 

[142-145]. 

8. Conclusion 

Major depression is a psychological disorder seen in all 

age groups. New treatment strategies are needed to address 

the neuropathology caused by this disease given that upwards 

of 50% of patients respond poorly to presently available 

medications. Activation of the HGF/c-Met receptor system 

may offer neuroprotection to neurotransmitter pathways and 

promote synaptogenesis and neurogenesis in the Hip and 

PFC, two structures that show volume reductions with 

depression. However, the use of HGF has at least two 

problems: 1) HGF is a large heterodimeric protein that is 

very expensive to synthesize; and 2) As a large protein HGF 

does not penetrate the BBB and thus cannot reach brain 

locations where neurodegeneration is occurring. We have 

discovered that the small peptide AngIV, and its analogs, 

facilitate HGF dimerization which is a prerequisite to binding 

and activation of the c-Met receptor [75,76]. HGF is 

intimately involved in cell survival, proliferation, migration, 

and differentiation [55-57], and blunts neurodegenerative 

influences [62]. However, the AngIV analog Nle
1
-AngIV 

does not readily pass the BBB. Thus, an AngIV-based small 

molecule, Dihexa was developed that possesses sufficient 

metabolic stability coupled with BBB penetrability. Dihexa 

acts via the HGF/c-Met receptor system to facilitate synaptic 

connectivity and plasticity. The availability of a small 

molecule HGF mimetic represents a significant advantage 

over the use of large HGF analogs to accomplish the 

treatment goal of preventing stress/depression-induced 

neurodegeneration. It remains to be seen whether treatment 

of patients with major depression is possible and efficacious 

using Dihexa. 
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