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Abstract: The values of the Gibbs function of a system with C components create a 2-dimensional topological manifold that 

is piecewise smooth and continuous. Each of the C+2 smooth elements of such a manifold represents the states of a phase 

within the system. The elements are glued together along the C types of phase transformation lines, which converge to a single 

point that represents the invariant state of the system (i.e. a state with zero degrees of freedom). Transformation lines, treated 

as edges, and the smooth elements of the manifold, i.e. faces, constitute a zero-vertex graph that represents the invariant state. 

This graph is referred to here as the graph-map of the invariant state. The distribution of each component in an invariant state 

depends on the configuration (distribution) of the phase transformation lines. Because the smoothness and continuity of the 

manifold makes certain configurations of the lines forbidden, some forms of invariant states are also forbidden, even though 

they satisfy the Gibbs phase rule. Some academic handbooks do not take this fact into account, and provide forbidden 

configurations as examples of invariant states. States that only differ in terms of the permutation of two or more of their 

components will belong to the same class. This study shows that all real graph-maps can be represented by C-vertex graphs 

with C+2 edges that have an even value of the vertex valence. The number of such graphs, i.e. the number of classes of 

invariant states, ηo(C), is shown to meet the recurrence relation ηo(2k+1) = 2*ηo(2k) -  ηo(2k-1), where k = 1, 2, 3, 4. Knowing 

the number ηo(C) for several small values of C allows us to determine the number of invariant states in a thermodynamic 

system using the above equation, regardless of the complexity of the system. 

Keywords: Graph Theory, Thermodynamic Equilibrium, Invariant Thermodynamic State 

 

1. Introduction 

It was shown how by using the graph representation of 

equilibrium states, described in the previous work, determine 

the qualitative composition of all thermodynamically 

permissible phases of invariant states in complex systems. 

The dependence of the number of classes of such states on 

the number of components of the system was found. It was 

shown which invariant states are forbidden in 

thermodynamics. First things first. 

Papers trying to apply the theory of graphs in 

thermodynamics [1-10] date from almost a century. It is 

worth noting, however, that in these publications the authors 

did not undertake the investigation of invariant states in 

complex thermodynamic systems. The presented work is 

therefore the first and only work on the subject determining 

the number of invariant states and the composition of 

individual phases in complex thermodynamic systems. The 

multiphase chemical system is in thermodynamic equilibrium 

if the chemical potentials of the individual components in all 

phases are equal. This condition leads to the Gibbs phase rule 

binding the number of parameters describing the equilibrium 

(number of degrees of freedom) f, with the number of 

components C, and the number of phases P, of the system. 

As a general rule, when P = C + 2, the equilibrium describes 

zero thermodynamic parameters: f = 0. It means that such a 

state can exist only at one point, with strictly defined 

thermodynamic parameters. Changing any parameter in this 

state disturbs the balance, causing a transition to a state with 

fewer phases. Therefore, the state with the maximum number 

of phases (P = C + 2) is called the invariant state (state with 

zero degrees of freedom). Until recently, invariant states have 

been studied only in one-component systems. Investigation 

of such a state was rather a simple task, as it was about 
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establishing the value of pressure and temperature at which 

three phases can coexist at the same time. In complex 

systems, starting from binary ones, the invariant state was in 

thermodynamics a complete "terra incognita". This state is 

realized by a specific distribution of C components between 

C + 2 phases. 

From the combinatorial point of view, there can be many 

such distributions. Theoretically, therefore, there can be 

many classes of invariant states in complex systems. Until 

recently, thermodynamics could not answer whether there is 

only one type of invariant state in chemistry (which?) among 

the whole lot of combinatorially of permitted ways of 

distributing C components between C + 2 phases. Or maybe 

thermodynamically will be allowed several (which, how 

many?) types / classes of invariant state? 

The lack of answers to these questions caused that the 

researchers gave examples of invariant states in complex 

systems guided by intuition, which, as will be shown in this 

work, is sometimes unreliable. Partial answer to the above 

questions was provided by the first work in this series [10]. 

In it, you can find a more reliable tool than the intuition 

necessary in the study of invariant states. I am sending this 

interested reader to this work. 

As shown in [10], each thermodynamic equilibrium state 

represents a planar graph on the topological manifold of the 

Gibbs function (topological manifold of the function = the 

hypersurface created by the set of points representing the 

values of the function) [10]. The vertices of this graph 

represent degrees of freedom; edges - individual components 

(exactly, chemical potentials of individual components); 

faces - individual phases of the system (strictly a set of states 

of these phases). 

In this way, in the work the concept of a zero-vertex graph 

appeared, which represents the invariant state of the system, 

[10]. The graph (C edge and C + 2 faces) is nothing but a 

map of the area around the invariant point on the topological 

manifold of Gibbs' function. Since the Gibbs function is a 

continuous division such should not lead to the appearance of 

holes in the surface. In this way, the problem of 

thermodynamically allowed invariant states has been reduced 

to the number of non-isomorphic maps on which the C edges 

divide the surfaces of the manifold into C + 2 pieces. Divide 

so that the division does not "hole" the surface. 

It can be easily seen that in this way the problem of finding 

invariances became a trivial problem. In the above-

mentioned work [10] it was shown that in binary systems 

there can be three, and in ternary systems - five, different 

classes of invariant state. For systems with more than 3 

components, the problem of finding allowed invariant states 

by finding a graph - map is still a trivial matter, but 

unfortunately very laborious and laborious. This last defect 

results from the inconvenience of operating with zero-vertex 

graphs. Therefore, in the present work an alternative way of 

representing invariant states has been proposed. This method 

is a consequence of the observation that inconvenient at work 

zero-vertex map graphs are isomorphic with ordinary / 

normal graphs. Isomorphism is defined as follows: 

edge graph - map ↔ vertex of the normal graph 

face graph - map ↔ edge of a normal graph 

According to the above mentioned isomorphism, the 

invariant state in the C component systems taking into 

account the fact that the graph - map lies on the surface 

without holes, shows that the normal graphs resulting from 

this isomorphism will have C + 2 edges and an even valence 

(This graph property is also called the "vertex degree". Since 

one word "degree" in this work occurs in the thermodynamic 

context ("degree of freedom"), I will continue to use the term 

"valence of the vertex".) of all C vertices. Because 

constructing such graphs is extremely easy (in the presented 

work such graphs for C < 9 are shown) and thus finding the 

allowed invariant states in complex systems becomes a 

solved problem. The solution to this problem has also shown 

that in the textbooks [11], as an example of an invariant state 

in binary systems, it is forbidden from the thermodynamic 

point of view, because its state would have to represent 

Gibbs' "full of holes" function. While counting individual 

graphs of the invariant state, it was noticed that the number 

of these states is related to a simple recursive relation that 

allows calculation of the total number of invariant states 

classes in arbitrarily complex systems. 

The results presented in the work allow to formulate 

answers to the above-mentioned questions: 

i. in complex C component systems, there may be not one 

but many classes of invariant states; 

ii. the number of these classes can be calculated on the 

basis of the recurrence dependence presented in the 

paper; 

iii. each class of invariant states is represented by a graph 

with C + 2 edges and C evenly valence vertices; 

iv. the composition of all the phases of the invariant state is 

easily determined on the basis of an invariant state 

graph. 

At the end, I realize that at the present moment the 

problem of determining the form and number of invariant 

states in very complex systems, rather has no practical 

significance, and serves only to satisfy the curiosity of a 

chemist. Will it always be that way?. 

2. Theory 

The thermodynamic state in a isothermal-isobaric system 

is described by the values of the pressure, p, temperature, T, 

and the chemical composition, 
Cxxx ~,,, 21 ⋅⋅⋅⋅⋅ , where xi is the 

mole fraction of the i-th component (the tilde over the 

symbol of one of the fractions means that for closed systems, 

the fraction is determined by the values of the other fractions: 

)(1~
121 −+⋅⋅⋅++−= CC xxxx ) where the values are the 

arguments of the Gibbs function )~,,,,,( 21 CxxxTpG ⋅⋅⋅⋅⋅ . In 

such conditions, equilibrium is defined by the minimum of 

the Gibbs function. This minimum enforces equality on the 

chemical potentials, ( )n
iµ , of each of the C components, i = 

A, B, C, … in each of the P phases of the system: 
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The equations (1) cause the number of variables that 

characterize the equilibrium to decrease from P*(C-1)+2 to 

what is referred to as the number of degrees of freedom in a 

system, f: 

2f C P= − +                                   (3) 

It is easy to notice that the number of variable parameters, f, 

that characterize the equilibrium decreases with the number of 

phases of the system, P. If P is equal to C+2, the equilibrium 

becomes invariant, i.e. equilibrium can only exist in a single, 

particular state; whereas altering any of the thermodynamic 

parameters of this state will break the invariance. However, it 

would be incorrect to believe that satisfying the equation P = 

C+2 under the strictly defined values of the thermodynamic 

parameters is sufficient to make a system invariant, as this is 

only true for unary systems. In complex systems, the sufficient 

conditions for invariance result from the fact that the point 

representing the invariant state is the intersection point for the 

phase transformation lines located on the Gibbs function 

topological manifold [10]. 

In order to explain the nature of the sufficient conditions, 

we should first outline the topological interpretation of 

thermodynamic equilibria [10]. The topological equivalent of 

the Gibbs phase rule (3) is referred to as Euler’s theorem for 

planar graphs on 2-D surfaces isomorphic to the surface of a 

sphere [12]. If f denotes the number of vertices of a planar 

graph, C denotes the number of edges, and P denotes the 

number of faces, then according to Euler’s theorem, the 

parameters of the graph are given by Equation (3), i.e. an 

equation that is identical to the Gibbs phase rule. As Study 

[10] shows, this correspondence between the theorems from 

two different fields of science allows us to propose that the 

values of the Gibbs potential create a 2-D, piecewise smooth 

and continuous (i.e. with no holes), topological manifold. 

The above study proves that, by applying the conditions that 

result from Gibbs-Duhem’s theorem onto a function, the 

dimensions of the manifold of that function 

)~,,,,,( 21 CxxxTpG ⋅⋅⋅⋅⋅  are reduced (from C+1 to 2) [10]. 

The same study shows that the state of thermodynamic 

equilibrium is represented by planar graphs located on the 

manifold, which are referred to as state graphs [10]. The 

correspondence between the phase rule and Euler’s theorem 

has been known in the field of Chemistry since the 1930s 

[10]. However, researchers were unable to recognize this 

correspondence for a long time. One reason, though not the 

only one, for this inability was an issue concerning the state 

graphs for systems in an invariant state. As has already been 

explained, such graphs should not have any vertices (f = 0) 

and should contain C edges and C+2 faces. Consequently, 

vertex-less graphs were considered to be an impossibility. 

Some researchers believed that the correspondence between 

the phase rule and Euler’s theorem was coincidental (after 

all, how could an invariant state possibly be represented with 

a vertex-less graph!). However, Study [10] shows that such a 

graph is simply comprised of two phase transformation lines 

located on the Gibbs function topological manifold. These 

lines constitute the edges of the graph of the invariant state, 

and its faces are the smooth faces of the manifold, which 

correspond to the states of each phase within the system. 

Figure 1 presents such a graph for a unary system, C = 1. As 

can be seen in the figure, the graph constitutes a mapping of 

the topological manifold onto the plane (p, T). In other 

words, the graph is a 2-D map of the manifold, which is why 

we can propose calling such a graph a graph-map. The faces 

of the graph are marked with Greek letters, while the 

segments of the edges are marked with Latin letters: k, l, m… 

We use the term segments of the edges, rather than edges, 

because the graph does, in fact, contain a single edge that 

bifurcates at the invariant point. Why a single edge instead of 

three? Firstly, because f = 0 and C = 1 only enable a single 

edge to be defined by Equation (1). If we denote the 

components of the system as A, B, C… and assume that the 

unary system contains the component A, then Equation (1) 

will take the following form: 

:

:

:

A A

A A

AA

k

l

m

 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =
  ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ = 
 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  

α β

β γ

γ α

µ µ

µ µ

µ µ
                           (4) 

 

Figure 1. Mapping the Gibbs function topological manifold for a unary 

system onto the plane (p,T) creates a graph-map of an invariant state. The 

edge of the graph-map, i.e. the line k, l, m that bifurcates in the invariant 

state, is given by Equations (4) and is comprised of segments α, β, γ which 

determine the equilibrium of each phase. 

That is, the edge in the graph-map is given by the 

equations that define the equilibrium of the individual 

components within the corresponding phases of the system. 

Let us explain this using the invariant states in binary 

systems, C = 2, as an example. To differentiate between the 
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components, we will denote them on the graph-map as: A – a 

continuous line; B – a dashed line; C – a dotted line, etc. 

Figure 2 shows the graph-maps for all the invariant states that 

are possible in binary systems. As the figure indicates, three 

invariant states exist in binary systems. Both edges (even 

though they are composed of several segments) of the graphs 

in these states will now be defined, respectively, by: 

: :

: :
: : :

: :

::

A A A A

A AA A

B BA A

BB BB

k k k

l l
a b c

m m

nn

   ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ = ⋅⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ =
   
   ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ = ⋅⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =   ⋅ ⋅ ⋅ ⋅⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅   

⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ = ⋅⋅ ⋅ ⋅⋅ ⋅ ⋅ =   
   

⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ =⋅⋅ ⋅ ⋅⋅ ⋅ ⋅ =      
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 
 ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ = 
 
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α δ

α β

β γ

γ δ

µ µ

µ µ

µ µ

µ µ

              (5)

 

Figure 2. Mapping the Gibbs function topological manifold for a binary 

system onto the plane (p, T) creates a graph-map of three invariant states 

that are possible in the binary states (a, b, c). The edges of the graph-map, 

i.e. the lines k, l, m, n that bifurcate in an invariant state, are given by 

Equations (5) and are composed of segments α, β, γ, δ  which determine the 

equilibrium of each phase. Component A (specifically, the chemical potential 

of Component A) is marked in the graph with a continuous line, and 

Component B is marked with a dashed line. Phase compositions in figures a, 

b, c give Eq.(6). 

Note that each edge segment of a given component is 

associated with two different phases, X and Y (even though 

the compositions of the phases cannot differ qualitatively). 

As a result, the edge of any component, i = A, B, C…, will 

be associated with an even number of phases in total. 

Unfortunately, using such graph-maps to represent the states 

of complex systems is inconvenient, and equations such as 

(5) create lengthy descriptions of these graph-maps; hence 

there is the need for an alternative method of encoding each 

invariant state in these complex systems. Note that every 

graph of a complex system is comprised of faces that 

represent the state of each phase. Every face is separated on 

two sides by an edge segment, i.e. a line that is defined by the 

chemical potential of the components X and Y, respectively. 

It will be convenient to denote such a face representing a 

particular phase by enclosing the symbols of these 

components in parentheses, as in (X…Y). If face (X…Y) 

corresponds to several phases, it will also be reasonable to 

precede its symbol with the number denoting its multiplicity, 

instead of repeating the symbol of the face multiple times. 

However, if both components are the same, we will simply 

use (X) instead of (X... X). All the faces encoded in this 

manner will be enclosed in square brackets. The graph-maps 

of the invariant states in Figure 2 will then be encoded with 

equations composed of the following sequence of symbols: 

: [2( )2( ... )] : [( )( )2( ... )] : [4( ... )]a A A B b A B A B c A B⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                                      (6)

These equations allow for the creation of new graphs 

(different to the graph-maps), which will prove useful for 

counting the invariant states. The vertices of such graphs 

denote the individual components, A, B, C…, of the system 

(or, strictly speaking, the chemical potentials of the 

components), while their edges (including the loops) 

represent the phases and indicate what components of the 

system that are present in a given phase. For instance, a 

graph corresponding to Formula “a” in Equation (6) will 

have two vertices connected with two edges, with vertex A 

also containing two loops. At this point [12] it is useful to 

remember that the valence of a vertex is given by the total 

number of edges coming into and out of the vertex (which 

means that a loop contributes twice as much to the valence!). 

This information, together with the above information 

describing the number of phases that are associated by the 

edges of a given component on a graph-map, leads to the 

conclusion that the graphs of invariant states will have 

vertices with an even value of valence. Figure 3 presents three 

graphs that were created in this manner for binary systems, 

while the corresponding maps are shown in Figure 2. 

 

Figure 3. A different graph representation of the invariant states in a binary 

system. Each graph corresponds exclusively to a particular graph-map from 

Figure 2. The vertices with an even numbered valence represent the 

individual components of the system A, B (specifically, the chemical 

potentials of these components), and the edges of the graphs are the 

individual phases α, β, γ, δ of the system. 

At this point, the following question arises: “Do such 

graphs of invariant states account for all possible invariant 

states in a system with C components?” Unfortunately, the 
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answer is “no”. The graph-maps constructed in the 

aforementioned manner and the graphs of invariant states 

introduced a moment ago are only representatives of the 

individual classes of invariant states. It seems that the content 

of each class can be determined with at least two methods. 

Let us begin with the simplest method. 

1. The first class can be expanded onto each state by 

exchanging the components of the class representatives, e. g. 

A↔B or A↔C, etc. Thus, we will obtain all possible 

graphs/formulas of the invariant states. From this point on, 

we will separate the names of the components in all the 

formulas within each phase with commas, rather than an 

ellipsis (as was the case for the classes), e. g. (A, B). We can 

observe that for the class of the binary state graphs (6), the 

exchange A↔B does not create any new invariant states for 

the classes marked “b” and “c” in Equation (6), but it does 

create an additional state for the class marked “a”. Thus, 

Equation (6), which describes the classes of the invariant 

states, is transformed into Equation (7), which describes the 

individual states within these classes: 

: [2( )2( , )], [2( )2( , )] : [( )( )2( , )] : [4( , )]a A A B B A B b A B A B c A B⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅                               (7)

In other words, binary systems can come with four 

different invariant states: two belonging to one class and 

one belonging to each of the other two classes. We will call 

the classes that contain more than one invariant state 

degenerate classes. If an invariant state belongs to a 

degenerate class, then it is impossible to determine which 

state of this class in particular constitutes that invariant 

state, e. g. whether the state in question is [2(A)2(A,B)] or 

[2(B)2(A,B)]. This is because every thermodynamic system 

can contain only a single invariant state (we treat each 

allotrope and polymorph as different substances), and thus, 

we do not know which permutation of the components will 

occur in a given state. Consequently, it seems reasonable to 

use the classes of states, rather than the states themselves, to 

count the invariant states. 

A graph created for an invariant state for a particular 

thermodynamic system should belong to a class of graphs. 

If it does not, then we can conclude with full certainty that 

such a state does not exist in reality. It is worth bearing this 

information in mind, even though some authors of academic 

handbooks [11] provide a forbidden equilibrium as an 

example of an invariant equilibrium in a complex system (C 

= 2). Specifically, Karapientiantz [11] claims with respect 

to a water-salt system (let us denote these components as A 

and B, respectively) that the invariant equilibrium 

corresponding to this system contains a saturated solution 

of salt (phase α), ice (phase β), steam (γ), and salt crystal 

sediment (δ). Such an example of an invariant state seems 

so natural that it is astonishing to learn that the state is 

impossible in reality! Why? Let us consider the formula 

that encodes this state: [2(A)(B)(A, B)]. The list of binary 

invariant states (7) does not include a state with this 

formula. However, that does not yet prove the non-

existence of such a state. Therefore, let us consider the 

graph-map and the state graph that are shown in Figures 4a 

and 4b. The graph-map of this state (Figure 4a) indicates 

the presence of a hole in the Gibbs function topological 

manifold (the hole is marked with a question mark in the 

figure). The Gibbs function of this state would have to be 

discontinuous, which is impossible. 

 

Figure 4. A graph-map (Figure 4a) and its corresponding graph (Figure 4b) 

of an invariant state in a binary system, which [3] claims occurs in a water-

salt system. In actuality, the hole in the graph-map (the area marked with 

“?” in Figure 4a) indicates that such a state does not exist due to a 

discontinuity of the Gibbs function manifold. The non-physicality of the state 

is also demonstrated by its graphical representation (Figure 4b), as the 

vertices of the graph have an odd-numbered valence. 

Thus, we must accept the fact that the invariant state of the 

water-salt system proposed in [3] does not exist! 

Furthermore, it does not exist even despite the apparent 

soundness of the proposed phases and their correct number, 

as that “sound” phase composition leads to a discontinuous 

Gibbs function. At this point, let us add that in the correct 

invariant state, either phase β or δ (but not both) will be 

binary, rather than unary, as the author [11] suggests. 

Furthermore, we can consider the state graph in Figure 4b 

that corresponds to such a discontinuous graph-map. It is 

easy to notice that the valence of at least some of the vertices 

of the graph is odd-numbered (or even all of the vertices, as 

in this case). An odd value of the valence is characteristic for 

the graphs that correspond to discontinuous graph-maps, 

which include not only [2(A)(B)(A,B)], but also [3(A)(A,B)], 

[(A)3(A,B)], [(A)(B)(C)(A, C)(B, C)], etc. Therefore, 

invariant states are represented by an even-numbered valence 

of vertices, with the number of vertices equal to the number 

of components, C, and the number of edges equal to the 

number of phases of the invariant state, C+2. The Appendix 

to this study provides all such graphs for systems containing 

no more than 6 components. By counting the graphs for each 

C, we will arrive at their numbers, marked ηo, which are 

equal to the number of classes of the invariant states. Table 1 

shows the values of ηο obtained in this manner, including the 
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values of ηo for C ≤ 8 (the graphs for C = 7 and C = 8 are 

excluded from the Appendix due to their high number). The 

table indicates that, for each system with an even number of 

components, its ηo differs by the same amount from the ηo of 

both its neighbors with an odd number of components. In 

Table 1, these numbers are 2, 2, 5, 5, 9, 9, 14, and 14. 

Table 1. Number of graphs of invariant state classes, ηo, for systems with no 

more than 8 components (C ≤ 8). The parameter ∆=ηo(C) - ηo(C-1) indicates 

that the ηo for states with an even number of components differs by the same 

amount from both of its neighbors with an odd number of components. 

k  1  2  3  4 … … k 

C 1 2 3 4 5 6 7 8 … … 2k 

ηo 1 3 5 10 15 24 33 47 … …  

∆  2 2 5 5 9 9 14 … … k(k+3)/2 

The application of the table difference method [13, 14] for 

this sequence of integers indicates that the above difference 

for any C = 2k, where k = 1, 2, 3, 4, … will be given by: 

ηo(2k) - ηo(2k-1) = ηo(2k+1) - ηo(2k) = k(k+3)/2, where k = 1, 

2, 3, 4…                                    (8) 

Note that Equation (8) leads to the conclusion that the ηo 

for systems with an even number of components meet the 

following equation: 

ηo(2k+2) = ηo(2k) + (k2 + 4k + 2), where k =1, 2, 3, 4,   (9) 

Equations (8) and (9) can then be easily transformed into 

the following second-degree recurrence relation for ηo: 

ηo(2k+1) = 2*ηo(2k) - ηo(2k-1)                 (10) 

By creating the graphs of the invariant states for several 

small values of C, these equations can be used to calculate 

the ηo for thermodynamic systems of any complexity
1
. Of 

course, these numbers will indicate the number of classes of 

invariant states, rather the number of the states themselves. 

The latter number can be obtained by following the 

procedure described in Section 1, i.e. by permutations the 

components. However, there is another method for expanding 

the classes into a set of states, which we will now describe 

based on a particular example. Consider Graph 3 for C = 3 in 

the Appendix. Let us assume that the vertices of the graph 

represent the individual components A, B, C... in order of 

decreasing valence (if multiple vertices have the same 

valence, then the order is irrelevant). Thus, the graph will 

represent the class of invariant states that is given by the 

formula [3(A…B)(A…C)(C…B)]. The method described in 

Section 1 (permutation of the components) allows for the 

conclusion that this class represents such states as: 

[3(A,B)(A,C)(B,C)] [3(A,C)(A,B)(B,C)] 

                                                             
1
 It turns out that the simple mathematical transformations of equations (8), (9) 

and (10) lead to the following explicit dependence of the number of classes of 

invariant states, ηo, on the number of independent components: 

ηo(2k) = 3 + 2*(k -1)(k +1) +k*(k -1)(2k -1)/6,  

ηo(2k+1) = 3 + 2*(k -1)(k +1) +k*(k -1)(2k -1)/6 +k*(k +3)/2, where k =1, 2, 3, 

4,… 

[3(A,B)(B,C)(A,C)] [3(B,C)(A,C)(A,B)]          (11) 

As is mentioned above, the states obtained by permutation 

the components in a given class are uninteresting, and the 

single invariant state in a system makes these states 

undifferentiable. Conversely, it would be interesting to 

determine the maximum number of components in the phases 

of an invariant state. If we were to mechanically expand the 

class graphs into each invariant state solely through the 

permutation of the components, we could conclude that none 

of the phases of the invariant state could contain more than 2 

components, even within the systems with 3 or more 

components. However, we can disprove this possibility by 

applying another method for determining the invariant states 

in a given class, i.e. we will analyze the intersection of 2-D 

topological manifolds that are immersed in spaces of more 

than 3 dimensions. 

Structures such as planes or smooth 2-D manifolds behave 

slightly differently in these spaces when compared to their 

behavior in a 3-D space. Remember that in a 3-D space, two 

different planes (but also two smooth elements of a 2-D 

manifold) may either not intersect (they can be parallel to 

each other) or may intersect only along a straight line. Then, 

what is the situation for spaces with more than 3 dimensions? 

Some may even ask, “What use are such spaces for us?” Let 

us explain. The thermodynamic states of systems constitute 

points in a space that spans the C+2 coordinate axes 

(pressure, temperature, C-1 components, and an axis of the 

values of the Gibbs function). Specifically, the set of these 

states forms a 2-D, piecewise smooth manifold immersed in a 

space with C+2 dimensions. We will analyze the behavior of 

these structures based on the relationship between two 

ordinary 2-D planes. Let these two planes be immersed in a 

space that spans the axes marked ξa, ξb, ξc, ξd…, and let z 

denote the value axis, as per the usual notation. If the first 

plane spans the first two axes, and the second plane spans the 

next two axes, then the two planes are given by: 

a b

c d

z a b m

z c d n

= + +
= + +

α

β

ξ ξ
ξ ξ                                     (12) 

where a, b, c, d, m, and n are the parameters of a plane. 

We can then distinguish three cases that show the possible 

relationships between the planes zα and zβ, which indicate a 

different method for expanding a class into a set of the 

individual states. 

i. If the axes ξa, ξb are completely different from ξc, ξd, 

then both planes either have no common point, because 

they lie in completely different subspaces; or, if the free 

parameters are equal, i.e. m = n, then the planes have 

only a single common point, such that ξa = ξb = ξc = ξd 

=0, z = m. Of course, in a 3-D space, it is impossible for 

planes to only intersect at a single point. 

ii. If the axes ξa, ξb are identical to ξc, ξd, then both planes 

either intersect along the line ξa = (-bd*ξb - mn)/ac, 

where ac = a-c, bd = b-d, mn = m-n; or, if the 

parameters are a = c and b = d, then the planes have no 
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common points, i.e. they are parallel to each other. 

These situations occur in a 3-D space. 

iii. If two of the axes are identical, e. g. ξa and ξc, but the 

other two, ξb and ξd, are different, then both planes will 

also intersect (zα = zβ) along a geometric structure given 

by ξa = (-b*ξb - d*ξd – mn)/ac. This structure is simply a 

2-D plane. To summarize, we may state that in spaces 

with more than 3 dimensions, two planes (but also 2-D 

topological manifolds) can also intersect at a single 

point and along a 2-D plane (manifold). The latter case 

does not occur in an ordinary 3-D space, and it will be 

of interest to us when we investigate the number of 

components in each phase of an invariant state. 

Another question arises at this point: “What do these 

topological and geometrical analyses have to do with 

describing an invariant state?” Invariant states are represented 

as a point on the phase transformation line, i.e. the line at 

which two 2-D topological manifolds intersect, with each 

manifold representing the thermodynamic states of both 

phases. Of course, each manifold differs from an ordinary 

plane, but their intersections at spaces with 4 or more 

dimensions are qualitatively similar to the aforementioned 

intersection of planes. That is, the manifolds are able to 

intersect along a line – most likely a curve, rather than on a 

straight line. Furthermore, the manifolds in spaces with 4 or 

more dimensions are able to intersect along a 2-D manifold 

and at a single point. We are interested in their intersections 

along a 1-D line and a 2-D manifold, and we will analyze the 

implications of these varied modes of intersection based on a 

familiar example of a class (10) in a system with C = 3 given 

by Graph 3 in the Appendix. Let us now expand the formula 

for this class to mark the individual phases: 

[3(A…B)(A…C)(B…C)] ≡ 

[(A…B)(B…A)(A…B)(B…C)(C…A)]         (13) 

Let α, β, γ, δ, φ denote the individual phases within this 

system, as per the usual notation. We will analyze the 

equilibrium between phases β and γ of this system as an 

example. The formula shows that this equilibrium depends 

on the identicality between the chemical potentials of 

component A in both phases: 

A A=β γµ µ                                   (14) 

In topological terms, this identicality corresponds to the 

intersection of the manifold of the chemical potential of 

component A in phase β and the manifold of the chemical 

potential of component A in phase γ. The intersection may 

sometimes take place along a 1-D line (curve), i.e. a 

geometrical structure that depends on a single variable, in 

this case, the content of component A, xA (see Section 2.2). 

This type of intersection in the manifolds of both phases does 

not introduce any additional components into the phases. 

However, in a space with more than 3 dimensions, Equation 

(14) may sometimes also describe the intersection in the 

manifold of the chemical potentials along a 2-D manifold 

that depends on two variables (see Section 2.3), e. g. the 

contents of component A and component C. The latter type 

of intersection indicates that at least two phases, β and γ,, 
have three components, because their phase transformation 

“line” depends on the coordinates xA and xC: 

[(A,B)(B, C, A)(A, C, B)(B, C)(C, A)]             (15) 

Thus, the fact that in spaces with more than 3 components, 

the equilibrium condition (e. g. the one in (14)) may be 

topologically met in more manners than in a 3-D space 

indicates that the individual phases of the invariant state may 

contain more than 2 components. Whether this will be true 

for particular physicochemical systems is impossible to 

determine at this point, as the topology of the 

thermodynamics of the Gibbs function manifold are not well-

documented. 

3. Summary and Conclusion
2
 

To date, invariant states in complex thermodynamic 

systems have not been the subject of an in-depth theoretical 

scrutiny [15]. This may be the reason why even some 

academic handbooks provide incorrect examples of such 

states, e. g. within binary systems. In our previous study, we 

showed that the invariant states in systems with C 

components are represented by a planar graph-map with zero 

vertices, C edges, and C+2 faces. While this representation 

can be used to count the invariant states, the method is 

extremely complicated and leads to errors due to the 

difficulties in establishing the non-isomorphic configurations 

of the edges in a graph-map, i.e. those that create different 

graphs. Consequently, in this study an alternative 

representation has been proposed: an invariant state is 

represented by a graph with an even-numbered valence, C 

vertices, and C+2 edges. Each such graph corresponds 

exclusively to a particular graph-map. This representation 

also has other advantages: it is easy to interpret, i. e . its form 

allows researchers to easily establish the content of each 

phase of the state and to easily find all non-isomorphic 

graphs, even for very complex systems. In the study, it was 

shown that the number of these graphs, ηo, and thus, the 

number of different classes of invariant states for a system 

with C components, meets the Recurrence Relation (10). This 

allows ηo to be calculated for any value of C. Every class can 

then be expanded into the individual invariant states by 

permutation its components, although this endeavor is 

slightly pointless, since the states of a given system are 

indistinguishable. The classes can also be expanded into the 

corresponding states by analyzing the intersections between 

the topological manifolds of each phase. This endeavor is 

more reasonable, but is also much more difficult due to a lack 

of theoretical methods for investigating the Gibbs function 

topological manifold. 

 

                                                             
2
 The paper is dedicated to the memory of my friend Burek, who died on July 21, 

2016. 
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Appendix 

The table included in the Appendix contains the graphs for 

each class of invariant states for the systems with C ≤ 6. The 

graphs for C = 7 and C = 8 are so numerous that they have 

been omitted in the table. Each vertex of a graph corresponds 

to the individual components of the system composed of C 

components (specifically, to the chemical potentials of the 

components), and its edges (including loops) are simply the 

phases of the system. Numbers on individual state graphs 

have been placed to inform how many different invariant 

states exist in C component systems. 

 

Figure 5. Graphs of all allowed invariant states in thermodynamic systems whose number of independent components is not greater than 6. 
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