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Abstract: The locally resonant sonic material (LRSM) is a kind of structural composite. Such composite typically consists of 

an elastic matrix periodically embedded with metallic spheres, which are coated with soft rubber. Owing to its capability of 

controlling the low frequency sound, the LRSM has a promising prospect in the application of underwater acoustic materials. 

This paper proposes a mass-damper-spring model to explain the sound absorbing mechanism of the LRSM, and derives 

analytical formulae to evaluate the absorbing performance. After reasonable simplification, the analytical formulae can 

intuitively illustrate the relationship between the absorbing performance and the parameters of the LRSM. The correctness of the 

physical model was verified by comparing the analytical evaluation with the numerical result calculated by the 

layer-multiple-scattering method. The result shows that the sound absorption of the LRSM is induced by the energy dissipation 

of the damped local resonator subjected to excitations. The influence of the parameters on the absorbing performance of the 

LRSM is analysed systematically. It is shown that a resonator with a heavier core and a stiffer coat can produce a better sound 

absorbing performance. 
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1. Introduction 

The locally resonant sonic material (LRSM) is a kind of 

structural composite, which is composed of periodically or 

randomly arrayed local resonators as the inclusion and elastic 

or fluid materials as the host. The local resonators (LRs) are 

typically continuous structures, which possess both acoustic 

behaviours and resonant modes, such as Helmholtz resonators 

for air-borne sound [1-3] or metal cores coated with soft 

rubber for solid-borne sound [4-6]. Such composites are 

capable of controlling waves with the lattice constant two 

orders of magnitude smaller than the relevant wavelength [4]. 

This unique property gives rise to a variety of novel 

phenomena and applications in the area of sound and vibration 

[1-30]. These intriguing features include low-frequency band 

gaps [5, 7-11], low-frequency sound shielding [12-15], 

low-frequency sound absorption [16-21], negative dynamic 

density or elastic modulus [2, 22-25], and even negative 

refraction [26, 27]. On account of their negative dynamic 

properties and negative refraction behaviours which natural 

materials do not possess, LRSMs are also designated as 

acoustic metamaterials [23, 26, 28-30]. 

Although recent studies have been focusing on the negative 

refraction of LRSMs, there is a promising prospect in using 

such composite as underwater sound absorbing materials. 

Several papers have been devoted to investigating the 

potential of LRSMs in the low-frequency underwater sound 

absorption [16-21]. Zhao et al. analysed the sound absorbing 

performance of LRSMs with viscosity theoretically for the 

first time [16]. A following research on the absorption 
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behaviour of such composite was carried out by using the Mie 

scattering and the multiple scattering theories [17]. Then the 

feasibility of low-frequency acoustic absorption of LRSMs 

was experimentally verified [18]. Based on the finite element 

method (FEM), Wen et al. analysed the effect of locally 

resonant modes on the absorbing performance of LRSMs [19]. 

The optimization of sound absorption of LRSMs had also 

been studied by employing genetic algorithms [20]. Moreover, 

a locally resonant phononic woodpile had been proposed and 

investigated for the underwater sound absorption [21]. 

However, most of these researches are based on sound field 

models, FEMs or experiments, which are not efficient enough 

for the parametric analysis, and not intuitive enough for 

revealing the absorbing mechanism. 

Simplified mechanical models may be helpful for revealing 

the physical insights of the sound absorption of the LRSM. 

After the proposal of the LRSM [4], Goffaux et al. first applied 

a chain of masses and springs to explain the asymmetric peaks 

observed in the transmission spectra of a finite slab of coated 

cylinders [15]. The same method was applied to analyse the 

dispersion relation of their infinite counterpart [31]. Hirsekorn 

introduced a simpler mass-spring model in order to predict the 

resonant frequency of local resonators [14]. Wang et al. 

improved it with a better estimation of equivalent parameters 

and extended it to predict the lower and upper edges of resonant 

gaps for two and three dimensional LRSMs [9]. Recently, 

Huang et al. devoted to studying the double negativity, the band 

gap and the wave attenuation of an infinite mass-in-mass lattice 

model [32, 33]. However, few studies have considered using a 

mechanical analogue to investigate the sound absorption 

performance of the LRSM. 

Inspired by these forerunners’ work, this paper evaluates the 

absorbing performance of the LRSM by using a 

mass-damper-spring model. Based on the long-wavelength 

limit, analytical formulae are derived from the proposed 

model, which relates the absorbing coefficient with the 

parameters of the LRSM. The verification of the physical 

model is carried out by comparing the analytical evaluation 

with the numerical result of the layer-multiple-scattering 

(LMS) method, and the absorbing mechanism of the LRSM is 

clarified in detail. Furthermore, the influence of the material 

and the structural parameters on the absorbing performance of 

LRSM is analysed systematically. 

2. The Mass-Damper-Spring Model for 

the Evaluation of the LRSM’s 

Absorption 

This paper focuses on the locally resonant sonic material 

with spherical resonators, which are periodically arrayed, in 

order to enable the comparison of analytical evaluation with 

the numerical calculation of LMS method [34]. As is known to 

all, local resonators (LRs) can be arranged in several different 

patterns [5], and the Bragg scattering effect can be stimulated 

in the composite if the wavelength of waves is comparable to 

the structural periodicities [35, 36]. However, since this paper 

mainly discusses the absorption of the LRSM induced by the 

local resonance, which arises at the long-wavelength 

frequency region, we ignore the Bragg scattering effect and 

choose one slab of square arrayed resonators as the research 

subject, whose side view is shown in Fig. 1(a). In this figure, 

the dotted circular areas represent the cores of resonators, the 

white annuli around cores represent the coats of resonators 

and the grey hollow rectangle indicates the matrix of the 

LRSM. Figure 1(b) shows the diagram of a single unit cell of 

the slab. The radius of the core is denoted by
1
r , the thickness 

of the coat byh , the lattice constant of the cell byd , and the 

thickness of the slab byL . Each region of the composite is 

assumed as an elastic material characterized by mass density

i
, Young’s modulus

i
E , and Poisson’s ratio

i
, with the 

subscript 1,2,3i representing the matrix, the coat, and the 

core, respectively. In addition, the coat has a hysteretic 

damping with the loss factor denoted by
2

. The surrounding 

material is assumed to be elastic or fluid materials whose 

characteristic impedance is matched with the matrix, so as to 

avoid the reflection of the boundary affecting the absorbing 

performance of the composite. 

 
Fig. 1. (a) The side view of the LRSM considered in this paper, (b) the diagram of a single unit cell, and (c) the schematic of the physical model. 
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As shown in Fig. 1(a), a plane wave is normally incident 

onto the left side of the composite. If the propagating direction 

of the incoming wave is defined as s-axis and the zero point is 

set at the left interface of the composite, the incoming wave 

can be expressed as
i i

exp ju U t s , where 
i
U  

represents the amplitude of particle velocity,  represents 

the angular frequency of the wave, and  represents the 

wavenumber of the wave in the surrounding medium. 

Although no reflection is stimulated at the interface since the 

impedance of ambience is matched with matrix, the local 

resonator can back scatter part of the propagating waves 

during the resonance. Hence, the reflected wave is assumed as

r r
exp ju U t s , and the transmitted waves as

t t
exp ju U t s L . According to the 

long-wavelength limit, the displacement and velocity of 

particle at any point in the matrix should be approximately 

identical. Thus, it is reasonable to treat the matrix as a rigid 

body with a velocity of 
m m

exp ju U t  (shown in Fig. 

1(c)). Therefore, the displacement of the matrix can be derived 

as exp jy Y t , where 
m

jY U , and the 

displacement of the core is expressed as exp jx X t . 

In order to evaluate the composite’s sound absorbing 

performance, a mass-damper-spring system with a moving 

foundation is proposed as the physical analogue of the LRSM, 

which is shown in Fig. 1(c). In the diagram, m implies the 

equivalent mass of the resonator, k  the equivalent stiffness 

of the coat, and 
2

 the hysteretic damping loss factor of the 

coat. The foundation shown as a grey box represents the rigid 

matrix of the LRSM. For convenience, the spring and the 

damper are combined as a complex stiffness 
2

ˆ 1 jk k , 

since the force induced by hysteretic damping also depends on 

strain [37]. According to Newton’s second law, the 

time-independent equation of the oscillator’s motion can be 

obtained as: 

2 ˆ 0mX k X Y .           (1) 

If the normalized angular frequency is denoted by 

0
, where 

0
/k m  is the natural angular 

frequency of the corresponding lossless system, the 

relationship between X and Y can be written as 

2

2

2

1 j

1 j

Y
X .               (2) 

Note that X is a complex value, which contains both 

magnitude and phase information of the oscillator’s 

displacement. According to the dissipating behaviour of the 

hysteretic damping [37], the time-averaged power of the 

oscillator’s dissipation can be derived by using Eq. (2) and 

m
jY U : 

24
2 2 m

2 2
2 2

2
2 1

k U
W kf X Y .    (3) 

However, 
m
U is still unknown. By employing the 

continuity of velocity at the boundary of the composite and the 

energy conservation law, the following relations can be 

obtained: 

i r m

m t

i r t

U U U

U U

W W W W

,            (4) 

where 
i
W , 

r
W , 

t
W represent the time-averaged sound 

power of the incoming wave, the reflected wave and the 

transmitted wave within one unit cell respectively. By 

referring the acoustic intensity formula [38], one can readily 

obtain 
22

0

1

2l l
W Z d U , in which the subscript i, r, tl  

denotes different waves,d is the lattice constant of the cell, 

and 
0
Z represents the characteristic impedance of the 

surrounding medium. By inserting them into Eq. (4), one can 

obtain 
m i

2 2U U Q , in which 

4

2
2 2 2

0 2
1

k
Q

Z d
.           (5) 

Hence, the absorbing coefficient of a unit cell of the LRSM 

(the energy ratio of the dissipation versus the incoming wave) 

can be written as 

2
4

m

2 22
2 2 2

i i0 2

4

21

UW k Q
A

W U QZ d
. (6) 

To evaluate the absorbing performance of LRs by Eq. (6), 

the equivalent mass (m ) and stiffness ( k ) of the system still 

need to be estimated, which depend on the deformation field 

of the resonator. As for the spherical LRs stimulated by 

normally incident waves, Wang et al. proposed three methods 

to estimate these parameters [9]. Specifically, method I 

regarded the mass of the core as the oscillator’s mass, and 

treated the coat in region a (shown in Fig. 1(b)) as two layers 

of rubber with equal thickness h for simplicity. Thus, the 

equivalent mass and stiffness can be expressed as 

3

1 3 1

4

3
m r , 

2

11 1
1

2C r
k

h
,          (7) 
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where 
2 2

11

2 2

1

1-2 1+

E
C is the P-wave modulus of the 

coat, and 
3

is the density of the core. Moreover, method III 

improved the estimation by taking account of the coat’s mass 

and the variation of the coat’s thickness in region a, whose 

expressions are written as: 

2 c a 1
m m m , 

3/2
3 3 2 211

2 2 1 2 12 2

2 1

4

3

C
k r r r r

r r
.                       (8) 

In the above formula, a b m

a c

m m m

m m
denotes the 

mass ratio between the foundation and the oscillator, 

3 3

a 2 2 1 b

4

3
m r r m  and 

3/2
2 2

b 2 2 1

4

3
m r r

represent the mass of the coat in region a and b respectively, 

while 3

c 3 1

4

3
m r  and 2 3

m 1 2

4

3
m Ld r  indicate 

the mass of the core and the matrix in one cell, where 

2 1
r r h  is the outer radius of the resonator. 

To verify the methods proposed by Ref. [9], the forced 

response of the core is also calculated using a displacement 

field model proposed by Liu et al. [22], which can be used to 

retrieve the equivalent stiffness of the coat. In this approach, 

the magnitude of the core’s displacement is written in the form 

of 

2

C C

1 3 2

r g
X Y

r R
,           (9) 

where 
C
Y  is the magnitude of the matrix’s displacement,  

represents the angular frequency of the forced vibration, 
2

 and 

3
 are densities of the coat and the core respectively, while 

g  and R  are two frequency-dependent functions 

whose expressions can be found in Ref. [22]. By substituting Eq. 

(9) into (1) and choosing m2 as the mass of oscillator, one can 

obtain the equivalent stiffness of the coat as follow: 

2

C 2 C C C
/k m X X Y .          (10) 

Additionally, before discussing the influence of parameters, 

the criteria also needs to be decided which are used for 

assessing the absorbing performance of the LRSM. Since the 

absorption spectrum of the local resonance has a profile 

analogous to the frequency response of the magnitude for a 

damped oscillator, the peak absorption and the bandwidth of 

half-peak are employed to assess the absorbing performance 

[37]. The peak absorption, denoted as , records the 

maximum absorption of the LRSM which usually occurs 

around the resonant frequency. Correspondingly,  records 

the accurate frequency at the peak absorption. The bandwidth of 

half-peak, denoted as , describes the frequency range of 

the spectrum where the absorbing coefficient decreases from 

the maximum to the half-peak value. 

According to these criteria, the corresponding analytical 

formulae can be further deduced. However, Eq. (6) is too 

complicated for an intuitive analysis. If we use instead 

of  during the derivation of Eq. (6), the 

absorbing coefficient will have the same expression as Eq. (5). 

This implies that  demonstrates the absorbing performance 

of the composite without considering the back scattering waves 

of the resonator, whereas Eq. (6) is a revised formula after 

including the reflection. Although  will overestimate the 

absorbing performance of the LRSM since the displacement of 

the foundation is larger than the counterpart after considering 

reflection, it is simpler than Eq. (6) and suitable for qualitative 

analysis. By substituting  and  into , one can obtain 

the expression of absorbing coefficient at the resonant 

frequency ( , ) without including the reflection: 

5

3 2 1 2

0 2

2 0 2 2

2 12

3 1 1 2

E r
Q

Z d h
.       (11) 

Moreover, the damped resonant frequency can be derived 

from Eq. (1): 

2

2 2 2

3 1 2 2

3 1 1 11

4 1 1 2d

E
f

hr
.      (12) 

Based on Eq. (5) and (11), the half-peak bandwidth can be 

further obtained by solving the following equation: 

4

2

22
2 2 2

2 0
0 2

21

k km

Z dZ d
.       (13) 

It should be noted that the term on the left side renders 

Eq. (13) as a quartic polynomial equation, which is 

complicated and needs further simplification [39]. Since the 

relative angular frequencies ( ) of the half-peak edges are 

usually close to 1, it is reasonable to substitute with
0

in Eq. 

(13), which will lead to a quadratic polynomial equation of 
2 . Meanwhile, if we only consider the absolute displacement 

of the oscillator (X) when calculating its dissipating power 

(refer to Eq. (3)), the approximate value of the half-peak 

bandwidth can be obtained as 

maxA

maxf

halff

m iU U

 m i2 2U U Q 

Q

Q

1m 1k Q

1  0 
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0
half 2 2

1 1
2

f .         (14) 

3. Parametric Analysis on the Absorbing 

Performance of the LRSM 

In order to verify the correctness of the physical model, an 

initial case is proposed here, which has a similar configuration 

with Ref. [4]. The resonator is composed of a lead sphere with 

a radius (
1
r ) of 5mm, coated with silicone rubber whose 

thickness (h ) is 2.5mm (shown in Fig. 1(b)). The LRs are 

arranged in a square lattice with spatial periodicity (d ) and 

the thickness of the slab ( L ) to be 15.5mm. The material 

parameters used are
3

1
1180 kgm , 

9

1
4.449 10  PaE , 

1
0.399 for epoxy; 

3

2
1300 kgm , 

5

2
1.175 10  PaE , 

2
0.469  for 

silicone rubber; and 
3

3
11600 kgm , 

10

3
4.082 10  PaE , 

3
0.370 for lead. Besides, the 

silicone rubber has a hysteretic damping with
2

0.1 . By 

substituting these parameters into Eq. (7), (8), (10) and then 

Eq. (5) or (6), one can calculate the absorption spectra from 

different methods, which are shown in Fig. 2(a). The x-axis of 

the figure represents the frequency ( f ), while the y-axis 

represents the absorbing coefficient (A ). As shown in the 

legend, the dot-dash curve demonstrates the evaluation by Eq. 

(5) and (7), which is denoted as 
1 1
,Q m k ; the dotted curve 

indicates the evaluation by Eq. (6) and (8), which is named as

2 2
,A m k ; the dashed curve illustrates the evaluation by Eq. 

(6) and (10), which is designated as
2 C
,A m k ; while the solid 

curve shows the actual absorption spectrum calculated from 

LMS method [34]. Figure 2(b, c) shows the relative magnitude 

( /X Y ) and the phase angle ( Arg /X Y ) of the core versus 

the matrix, which are predicted by
2 C
,A m k method. 

 
Fig. 2. (colour online) The absorption spectra (a) predicted by different methods; the relative magnitude (b) and the phase angle (c) of the core against the matrix 

predicted by 2 C
,A m k . 

In Fig. 2(a), an obvious discrepancy can be found between 

the absorption evaluated by 
1 1
,Q m k  and the numerical 

result calculated by LMS method. In fact, the overestimation 

of resonant frequency is caused by the excessive 

simplification of
1
m and

1
k , and the overestimation of the 

maximum absorption is due to the negligence of reflected 

waves. In contrast, 
2 2
,A m k  and 

2 C
,A m k  precisely 

predict the absorbing performance of the LRSM. Slight 

differences with LMS result can only be found in the 

magnified subplot. Such agreement not only verifies the 

correctness of the mass-damper-spring model in predicting the 

absorption behaviour of the LRSM, but also affirms the 

absorbing mechanism as the energy dissipation of the damped 

local resonator subjected to excitations. More explicitly, the 

matrix, stimulated by the incoming wave, reciprocates as a 

rigid body along the wave’s traveling direction according to 

the long-wavelength limit. The metallic core which is attached 

to the matrix through the viscoelastic rubber will also oscillate 

constrainedly, whose response depends on the nature of the 

resonator and the characteristic of the excitation. Therefore, 

the relative magnitude ( /X Y ) and the phase angle 

( Arg /X Y ) of the two objects vary with the frequency of 

the incoming wave, as shown in Fig. 2(b, c). Since the core 

and the matrix never vibrate in the same way, the rubber coat 

will deform cyclically, and thus dissipate the energy due to its 

hysteretic property. Such dissipation will reach the peak when 

the frequency of incoming wave equals to the damped 
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resonant frequency of the local resonator, because the relative 

magnitude will also reach its maximum. Finally, since all the 

cells of the LRSM have the same configuration, the absorbing 

performance of the composite will be exactly the same as that 

of a unit cell. 

In addition, Fig. 2 also shows the half-peak bandwidth 

predicted by Eq. (11) and (14), as well as the real half-peak of 

1 1
,Q m k . The former is depicted by a dotted line segment 

with crosses on both ends (denoted as 
half
f ), while the latter 

by a solid line segment with asterisks on the ends (denoted as

half
f Q ). Although a slight deviation on frequency can be 

found between the predictive and the actual values, the widths 

of half-peak bands are nearly the same, which implies the 

simplification of Eq. (14) is reasonable. The deviation is 

induced by the derivation of
0
Q , in which the undamped 

natural frequency (
0

) is used, whereas the real peak 

absorption of a damped system usually occurs at a higher 

frequency. 

Figure 3 shows the regularity of the composite’s absorption 

affected by the Poisson’s ratio of the coat (
2

) based on the 

initial case. The subplot (a) presents the grey scale image of 

the absorption calculated by LMS method. Each point in the 

image indicates an absorbing coefficient of the composite at a 

specific f and
2

, where f denotes the frequency of the 

incident wave. For comparison, the peak frequencies (
max
f ) 

and the edges of the half-peak calculated by
1 1
,Q m k ,

2 2
,A m k ,

2 C
,A m k and LMS methods are also marked on 

the image. The legend in Fig. 3(a) shows the notation for 

different methods, e.g. the dotted curve with plus signs 

represents
max
f evaluated by

2 2
,A m k , while stems along the 

curve ended with plus signs indicate the edges of the half-peak. 

Besides, subplots (b, c) show the variation of peak absorption 

(
max
A ) and half-peak bandwidth (

half
f ) calculated by 

different methods, which share the same x-axis (
2

) and the 

legend. The notation of different methods inherits the 

convention from Fig. 2. It needs to be noted that
max
f ,

max
A and

half
f of 

1 1
,Q m k  method shown in the following figures 

are directly estimated by Eq. (11), (12) and (14). 

 

Fig. 3. (colour online) The influence of the Poisson’s ratio of the coat (
2

) on the absorbing performance of the LRSM based on the initial case. Subplot (a) 

shows the grey scale image of absorption (A) calculated by LMS method and the peak frequencies with half-peak edges predicted by different methods; while 

subplots (b) and (c) show the peak absorption (
max
A ) and the half-peak bandwidth (

half
f ) evaluated by different methods. 

In Fig. 3(a), the peak frequencies predicted by 
1 1
,Q m k  

and 
2 2
,A m k  scarcely match with LMS result except at 

certain circumstances (
2

0.436 for
1 1
,Q m k , while 

2
0.470 for

2 2
,A m k ). Accordingly, discrepancies are 

also found in the peak absorption and the half-peak bandwidth 

of both methods, which are shown in Fig. 3(b, c). A detailed 

investigation ascribes the failures of 
1 1
,Q m k  and 

2 2
,A m k  methods to the inaccurate estimation of equivalent 

parameters. Specifically, both Eq. (7) and (8) introduce the 

P-wave modulus (
11
C ) to calculate the equivalent stiffness of 

the coat [9]. Such modulus is defined as the ratio of axial stress 

to axial strain in a uniaxial strain state. However, this is not the 

case how the coat deforms. Actually, when the coat is 
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stretched (or compressed) in the direction of core’s vibration, 

it will also produce a contraction (or expansion) in the lateral 

direction. Since 
11
C  will increase rapidly when

2

approaches 0.5, both
1
k and

2
k will be overestimated, which 

results that
max
f , 

max
A  and 

half
f evaluated by 

1 1
,Q m k  

and 
2 2
,A m k  are significantly higher than the real. 

Conversely, when the coat is away from ‘rubbery state’ 

(
2

0.42 ), 
1
k and 

2
k  will be underestimated as they 

ignore the stress produced by the coat in region b (shown in 

Fig. 1(b)), thus eventually causing the evaluations of two 

methods lower than the real. 

In contrast, 
2 C
,A m k can accurately predict the peak 

frequency with the varying of
2

, which is shown in Fig. 3(a), 

since 
C
k  is retrieved from the displacement field model. The 

max
A  and 

half
f  evaluated by 

2 C
,A m k  are also improved 

in comparison with other methods. The presence of a small 

amount of error for 
max
A  is due to the estimation of 

2
m . 

Although 
2
m  has taken the coat’s mass into account, it is still 

unable to describe the change of the coat’s dynamic mass 

induced by the lateral deformation, which is related to
2

. 

Figures 4 to 8 shows successively the regularity of the 

composite’s absorption based on the initial case and affected 

by the radius (
1
r ) and the density (

3
) of the core, as well as 

the thickness (h ), the Young’s modulus (
2
E ), and the loss 

factor (
2

) of the coat. The meaning of the curves in each 

subplot is identical with that of the counterparts in Fig. 3. 

 
Fig. 4. (colour online) The influence of the core’s radius (r1) on the absorbing performance of the LRSM. 

 

Fig. 5. (colour online) The influence of the core’s density ( 3 ) on the absorbing performance of the LRSM. 
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Fig. 6. (colour online) The influence of the coat’s thickness (h) on the absorbing performance of the LRSM. 

 
Fig. 7. (colour online) The influence of the Young’s modulus of the coat (E2) on the absorbing performance of the LRSM. 

 
Fig. 8. (colour online) The influence of the coat’s loss factor (

2 ) on the absorbing performance of the LRSM. 
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Through a comprehensive comparison from Fig. 4 to 8, it 

can be observed that the 
maxf , 

maxA  and 
halff  evaluated 

by  2 2,A m k  are in reasonable agreement with the 

numerical result of LMS method, and  2 C,A m k method 

performs even better especially in the prediction of peak 

frequency. This result reinforces the correctness of the 

physical model, and clarifies its adaptability. Apparently, 

 2 C,A m k  can accurately predict various sorts of LRSMs if 

only their matrix match with the surrounding and satisfy the 

long-wavelength limit, while  2 2,A m k  behaves alike except 

for the variation of the Poisson’s ratio of coat. It can also be 

seen that both maxf  and maxA  predicted by  1 1,Q m k  are 

always higher than the result calculated by LMS method. 

These deviations are consistent with the previous analysis 

about Fig. 2, which is due to the overestimation of equivalent 

parameters and the ignorance of reflected waves. The 
halff  

predicted by  1 1,Q m k  also have appreciable discrepancies 

by comparing with actual results. 

However, the accuracy of evaluation is not the purpose of 

deducing 
0Q , 

df  and 
halff   (refer to Eq. (11), (12) and (14)), 

but the general tendency of variation. Despite the deviation, 

 1 1,Q m k  correctly predicts the regularities of 
maxf  and 

maxA  regardless of the variation of parameters. According to 

Eq. (11) and (12), it can be found that the density of the core 

(
3 ), the radius of the core (

1r ), and the loss factor of coat (
2 ) 

play different roles in 
df  and 

0Q , i.e. act as numerator and 

denominator in different formulae. This implies that 

increasing the density or the radius of the core, which also 

means increasing the mass of the core, will simultaneously 

lower the natural frequency of resonator and improve its peak 

absorption; decreasing 
2  will improve the peak absorption 

and decrease the damped resonant frequency as well, but the 

variation of df  is much smaller than the influence by other 

parameters. In contrast, increasing the stiffness of coat, such 

as increasing the Young’s modulus (
2E ) and the Poisson’s 

ratio (
2 ) of coat, or decreasing its thickness ( h ) will increase 

both 
df  and 

0Q . All these inferences from Eq. (11) and (12) 

can be certified by the numerical results of LMS method as 

shown in Fig. 3 to 8. On the other hand, the regularity of 

halff  calculated by LMS method also coincides with the 

expression of Eq. (14), that either raising the resonant 

frequency of resonator or increasing the loss factor of coat will 

broaden the half-peak bandwidth. 

In addition, the lattice constant ( d ) and the characteristic 

impedance of the surrounding (
0Z ) shown in Eq. (11) 

demonstrate the proportion of dissipating power against the 

incoming power of one unit cell. Since they are irrelevant to 

the dissipating feature of the resonator, we do not show their 

comparisons of different methods any further, but simply 

explain their meanings. Apparently, with the increasing of 

lattice constant, more waves will propagate through the cell 

while the excitation of resonator remains the same, which will 

eventually reduce the absorbing performance of the LRSM. 

Similarly, if the acoustic intensity of the incoming wave 

remains the same, the matrix and ambient media with higher 

characteristic impedance will result in a smaller excitation of 

resonator, and so that a poorer absorption. 

4. Conclusions 

In this paper, a mass-damper-spring model is proposed to 

evaluate the absorbing behaviour of the LRSM. Based on the 

long-wavelength limit, the analytical formulae were derived 

from the physical model, which are used to predict the 

composite’s absorption. By comparing the analytical model 

with the layer-multiple-scattering method, we validated the 

correctness of the physical model and revealed the absorbing 

mechanism of the LR as the energy dissipation of the damped 

local resonator subjected to excitations. A systematic 

discussion was carried out about the influence of material and 

structural parameters on the absorbing performance of LRSM. 

The result shows that a heavier and stiffer resonator can 

produce a better sound absorbing performance. Hence, the 

measures for optimizing the absorbing performance of the 

LRSM include: (i) using cores with a heavier density and 

larger radius, which can simultaneously reduce the natural 

frequency and enhance the peak absorption; (ii) using coats 

with a stiffer and more rubbery material with a thinner 

thickness to enhance the composite’s absorbing performance; 

(iii) the loss factor of coats should be chosen moderately to 

balance the peak value and the bandwidth of the resonant 

absorption; (iv) local resonators should be arrayed closely so 

as to increase the energy ratio of dissipation to excitation. 

Finally, it is worth to be noted that such physical model is 

potential for evaluating the absorption behavior of other local 

resonators with different shapes, since it does not rely on the 

shape of the local resonator. 
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