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Abstract: Using molecular dynamics simulations, we study interacting polyelectrolyte brushes that are grafted to two 

parallel surfaces (quasi-Planar Membrane). The interactions between brushes are important, for instance, in stabilization of 

dispersions against flocculation. We simulate the relative shear motion of both neutral and polyelectrolyte end-grafted 

polymer brushes. The flexible neutral polymer brush is treated as a bead-spring model, and the polyelectrolyte brush is 

treated the same way except that each bead is charged and there are counter ions present to neutralize the charge. We 

investigate the friction coefficient, monomer density, and brush penetration for the two kinds of brushes with both the same 

grafting density and the same normal force under good solvent conditions. 
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1. Introduction 

Adhesion of membranes and vesicles has attracted 

considerable experimental and theoretical interest because of 

its prime importance to many bio-cellular processes [1, 2]. 

Theoretical treatments of membranes composed of single 

component lipid bilayers have revealed that generic 

interactions such as van der Waals, electrostatic or hydration 

interactions govern the adhesive properties of interacting 

membranes. It is also worthwhile to mention that related 

phenomena are found in unbinding transition of nearly flat 

membranes [3] or adhesion of vesicles to surfaces [4]. 

In addition to general non-specific interactions mentioned 

above, it is known from the works of Bell and coworkers [5, 

6] as well as others [7], that highly specific molecular 

interactions play an essential role in biological adhesion. This 

interaction acts between complementary pairs of proteins 

such as ligand and receptor, or antibody and antigen. A well-

studied example of such coupled systems is the biotin-avidin 

complex. The avidin molecule has four biotin binding sites, 

two on each side, and forms a five-molecule biotin-avidin-

biotin complex. The resulting specific interaction is highly 

local and short-ranged. 

Currently, the adhesion of two adjacent plasma membranes 

is provided by bound pairs of such adhesion macromolecules 

which form bridges between the membranes. We distinguish 

three types of adhesion depending on the structure of 

bridges: i) Bolaform-sticker adhesion where each bridge 

molecule consists of a single sticker having two sticky ends. 

One sticker end is anchored to one membrane while the other 

end is adhering directly to the second membrane. ii) 

Homophilic-sticker adhesion where the bridges are formed 

by two stickers of the same type. Each sticker is anchored on 

one of the membranes, while their free ends bind together to 

form the bridge. iii) Lock-and key adhesion where the 

bridges consist of two different stickers forming a ligand-

receptor type bond. This case represents an asymmetric 

adhesion due to the lack of symmetry between the ligand and 

receptor. 

A model system for these complex interactions is provided 

by systems containing lipid bilayers and polymers brush. 

From the physical point of view, polymer brush consists of 

polymer chains densely grafted to a membrane surface, 

which is immersed in a solvent. The chains stretch from 

membranes and repel each other. The balance between 

elasticity and repulsion of the chains generates completely 

different conformations and properties than for isolated 

chains. Electrostatic interaction involved in polyelectrolyte 

brushes results in a number of additional physical properties. 

Mutual repulsion between polymer segments and 
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electrostatic forces between charged monomers and counter 

ions strongly influence the conformation of the 

polyelectrolyte brush [8, 9]. A great deal of theoretical and 

experimental research has been conducted to investigate the 

frictional behavior when lateral sliding between two 

opposing polymer brush membranes occurs [10, 11, 12, 13, 

14, 15, 16]. The normal force and shear force have been well 

studied experimentally by the surface force apparatus (SFA) 

both on neutral polymer brush membranes and 

polyelectrolyte brush membranes. These experiments on 

neutral polymer brushes showed that the polymer brush 

surfaces have ultralow friction coefficients when the 

membrane surfaces are brought into contact [17]. 

In this work we provide a general phenomenological 

approach for the adhesion of membranes. Using a molecular 

dynamics, we simulate the relative shear motion of both 

neutral and polyelectrolyte end-grafted polymer brushes. The 

flexible neutral polymer brush is treated as a bead-spring 

model, and the polyelectrolyte brush is treated the same way 

except that each bead is charged and there are counter ions 

present to neutralize the charge. We investigate the friction 

coefficient, monomer density, and brush penetration for the 

two kinds of brushes with both the same grafting density and 

the same normal force under good solvent conditions. 

 

Fig. 1. The schematics of two opposing polymer brushes a neutral brush(on 

the right) and a charged brush (to the left). Each polymer chain is grafted to 

its lipid bilayers by its end monomer. Each monomer on charged chains 

carries one negative charge except for the end-grafted monomer. In addition, 

explicit monovalent counterions are added to the polyelectrolyte brushes to 

neutralize the system. 

2. Simulation Details 

Pair-potential used here is that derived by Lennard-Jones 

(L-J).The repulsive part of the potential (L-J) is Greater than 

the attractive part at small distances, and inversely at long 

distances. After this analysis, the potential has the following 

expression [21] 
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where σ  and ε  are, respectively, the well depth is and 

distance parameters of the (L-J), r
c

 is the cutoff distance, 
m

r  

is the distance where the intermolecular potential reaches a 

minimum.In the (L-J) potential, the short-range repulsion is 

thought to be dominated by the standard 12r  law, whereas the 

long range London attraction varies as 6r  law. Thus, the 

repulsive part is set with a power 12 only for convenience, 

whereas the attractive part has a good theoretical foundation 

based on three different effects; the dispersion force, the 

permanent charge distribution and the induced. 

 

Fig. 2. The Lennard-Jones potential. This potential is repulsive. 

for 1/6
 r  2 σ≺  and attractive for 1/6

 r  2 σ≻ . There is a 

minimum in the potential at 1/6
 r = 2 σ . 

 

Fig. 3. Correlation function of Lennard-Jones potential. 

The first derivative of the expression of (L-J) potential he 

presented as follows  

LJ 6 12

7 13

1 1
U (r) 12 2 ,

r r r
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The position of the potential minimum 
m

r  is given as  

1

m
6r 2 ,= σ                                   (3) 

The expression (1) and (3) in the birth of a new term to the 

(LJ) potential  
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A (L-J) potential with this truncation point is often known 

as the Weeks-Chandler-Andersen (WCA) potential [19], and 

it results in purely repulsive interactions. This potential is 

convenient for computational work because it is short-

ranged, and therefore computationally undemanding, but still 

retains the essential physics, i.e. the repulsive (excluded 

volume) interaction. The truncated and shifted LJ potential is 

defined as 
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where ε is the (L-J) energy parameter and σ the (L-J) length 

parameter. When using the (L-J) potentials in simulation, it is 

customary to work in a system of units where σ = 1 and ε = 1. 

 

Fig. 4. Comparison of WCA potential (Bleu - solid line) and (L-J) (Red- dotted 

circles) potential. 

The Finitely Extensible Non-linear Elastic (FENE) [20, 

21] molecules that we simulate here consist of a linear chain 

of N beads interacting via pair potentials. Adjacent beads 

along the chain interact via a combined FENE spring 

potential and WCA potential. Beads which are not on the 

same molecule and beads which are on the same molecule 

but not adjacent interact just by the WCA potential (5). For 

two adjacent beads separated by the vector r, the FENE 

contribution to their interaction is, 
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Where the spring constant 2
LJk=30 ε σ  and the maximum 

extent distance 0R 1.5= σ . Logarithmic factor in the FENE 

potential bears no physical meaning and is strictly for 

computational advantage. 

This potential mimics the stiff and non-penetrable covalent 

bonds between monomers. The choice of such LJ potential 

and FENE potential parameters prevents bond crossings and 

yields realistic dynamics of polymer chains [22, 23]. This 

potential gives rather stiff bond lengths with fluctuations 

being smaller than 10%. The nonlinearity allows a very 

efficient mixing of the different vibrational modes. 

 

Fig. 5. Correlation function of Weeks-Chandler-Andersen (WCA) potential. 

 

Fig. 6. FENE (finitely extensible nonlinear elastic potential) and harmonic 
Potential 

where 0
R  is a finite extensibility (see Fig.4). The FENE 

potential is harmonic at its minimum but the bonds cannot be 

stretched beyond a maximum length determined by 0
R  

The average bond length, found by minimizing

FENE LJ
U (r) U (r)+ , is b 0.98= σ . 

For polyelectrolyte brushes, the Coulomb interaction 

between two charged particles is included. Charged particles 

interact with each other through a solvent medium, which is 

presumed to be water in the simulation. Then the Coulomb 

potential between two charged particles i and j in our 

simulation system is given by 

i j

Coul ij B B
j

q q

ri
U ( ) k Tlr =                            (7) 
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Where 
i

q 1= +  for the charged chain monomers, and 

i
q 1= −  for the counterions, which are treated explicitly as 

charged LJ particles, Bl is the Bjerrum length which is 

defined as the length at which the electrostatic energy equals 

the thermal energy: 

2

B

0 B

e
l ,

4 k T
=

πεε
                             (8) 

where e is the unit charge of the interacting particles, and ε
and 0ε  are the permittivity of the vacuum and of the solvent, 

respectively (
0

B  7.1Al =  in water). Here we restrict ourselves 

to monovalent species in salt free solution. The solvent is 

taken into account via the dielectric background, whose 

properties influence the form (hydrophil or hydrophob) of the 

interaction potential of the monomers. Unless mentioned the 

Bjerrum length is always fixed to 
B  3.0 .l = σ   

The particle-particle particle-mesh (PPPM) method 

implemented in the Large-scale Atomic/Molecular Massively 

Parallel Simulator (LAMMPS) was used to calculate 

electrostatic potential between charged particles [24]. All 

particles except anchored segments interact repulsively with 

the walls at z =0 and z = L with the (L-J) potential,  
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where z is the distance between particles and the wall to 

which the polymer under consideration is attached. Cutoff 

distance zc is set to 1/6
2 σ  to only keep the repulsive 

interaction. Therefore the total potential energy of the 

polyelectrolyte brush system is given by 

Total LJ FENE Wall Coul
U U U U U= + + +                 (10) 

 

Fig. 7. A comparison of the FENE and WCA potentials, and their sum. 

 

Fig. 8. The Coulomb potential. The bottom curve represents the interaction 

between two particles of opposite charge, the top curve represents the 

interaction of particles of equal charge. 

 

Fig. 9. The Coulomb potential, represents the interaction of the particles of 

equal load with different values of the effective charge 

In classical mechanics, a physical system is described 

entirely by its potentials and equations of motion (EOM).  

The way that MD simulations provide the mechanical 

properties of the biopolymers is by calculating each 

monomers' EOM via solving Newton's second law for an 

interactive many body system numerically. The method used 

by LAMMPS (Large-scale Atomic/Molecular Massively 

Parallel Simulator) to evaluate the (EOM) is called the Verlet 

algorithm There are various, essentially equivalent, versions 

of the Verlet algorithm, including the original method [25, 

26], and a `leapfrog' form [27]. Here we concentrate on the 

`velocity Verlet' algorithm [28], which may be written. 
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Notice that the momentum calculated in the first equation 

goes into the second equation for the evaluation of position. 

The position enters into the third equation implicitly since 

the force depends on positions.  

In pulling experiments, biopolymers are placed in some 

solutions with a definite temperature, T. From the derivation 

of the F-R relation, it is clear that the entropic elasticity can 

only be manifested when T 0K≠ . The motion of particle i  

at position ( )r t
i

, which is a function of time t , is described by 

Langevin equation, [29] 

( )
2

i i
total2

d r dr
m U m W t .

i idtdt
= −∆ − Γ +                (12) 

In this equation, the left side of this equation is the product 

of mass and the acceleration of particle i . The right side is 

summations of three forces. The first term at the right is the 

systematic interaction force due to the intra- and inter- 

molecular interaction, which is defined as total potential 

applied on each particle. The second term is a viscous force 

(frictional drag) which is proportional to the particle's 

velocity, where  Γ  is a friction constant. The third term ( )W t
i

 

is a Gaussian random force, representing the effect of a 

continuous series of collisions onto the particles from 

underlying fluid molecules, with 

( ) ( ) ( )
BW t W t ' 6mk T t t '  ,i i ij

= Γδ δ −               (13) 

( )W t 0,i =                                    (14) 

Where denotes the ensemble’s average and 
ij

δ  is the 

Kronecker delta, and  Γ  is a consequence of the fluctuation-

dissipation relation. In our simulations. 

Table 1. Derived units. 

    Γ  T(temperature) τ (time) tδ  

10.5 −τ  B
1.2 kε  mσ ε  4.5 105 

Table 2. Reduced units  

    Mass Energy Length Charge 

m ε  σ  Q 

3. Results and Discussion 

In this section, we presented results of simulations of the 

variation of friction coefficient as function of velocity for 

neutral brushes and charged brushes, after we will be 

interested by numerical studies of the monomer density. We 

sheared the system by moving the upper wall at constant 

velocity (v,0,0) while keeping the distance between the two 

surfaces constant. We calculated the normal force Fn and 

shear force Fs directly by adding together the vertical z 

components and the horizontal x components, respectively, 

of forces acting between the substrates and all particles. The 

corresponding stresses so obtained are labeled 
s

σ  and 
n

σ , 

respectively. The friction coefficient is defined as 

s n
µ = σ σ . 

 

Fig. 10. The variation of friction coefficient as function of velocity for neutral 

brushes. 

 

Fig. 11. The variation of friction coefficient as function of velocity for charged 

brushes. 

 

Fig. 12. Comparison between the variation of friction coefficient as function of 

velocity for neutral and charged brushes  

In figure (11), we compare friction coefficients between 

neutral brushes and polyelectrolyte brushes with parameters 

specified in the figures captions figure (8), figure (9) and Fig. 

(10), with N 18=  polymer chains of length N 36=  
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monomers anchored to the wall surface in a square lattice at 

the grafting density 2

g 0.082ρ σ = . 

From our molecular dynamics simulation results, the 

friction coefficient between neutral polymer brushes is much 

larger than the value between two charged brushes under 

same grafting density and surface separation. The normal 

force was almost constant for both neutral and charged 

systems as a function of shear velocity. The increase in 

friction coefficient with velocity is due to the increase in the 

shear force. When the wall separation distance D was 

decreased, the normal force and shear force on the wall 

increased for both neutral and charged brushes. This result 

comes from stronger interactions between beads in the 

system because decreasing the surface separation distance D 

results in an increase in the global monomer density of the 

polymer brushes, which can be seen in figure (12), and the 

counterion density. Also, the values of normal forces on the 

walls in the polyelectrolyte brush systems are about an order 

of magnitude greater than the values in the neutral brushes, 

even though both of them have the same grafting density and 

chain length. 

 

Fig. 13. The monomer density profiles for neutral brushes (Red line with dotted 

triangles) and charged brushes (Black line with solid triangles) without the 

relative sliding.With separation distance 

 

Fig. 14. The monomer density with separation distance and three values of 

the grafting density of polymer brushes, (Blue dotted circles), (Blue dotted 

circles). 

 

Fig. 15. Comparison between the variation interpenetration as function of 

velocity for neutral and charged brushes (Red dotted circles). 

4. Conclusion 

Using the MD simulations, we simulate the relative shear 

motion of both neutral and polyelectrolyte end-grafted 

polymer brushes on two parallel membranes, which are 

immersed in a solvent. From our molecular dynamics 

simulations, for the case of equal grafting density, we 

demonstrated that polyelectrolyte brushes have a smaller 

friction coefficient (order of magnitude)and monomer 

penetration than neutral polymer brushes, although the 

polyelectrolyte brushes supported a much higher normal load 

than the neutral brushes for the same degree of compression. 

Charged and neutral brushes with their grafting densities 

chosen so that they support the same load exhibited 

approximately the same degree of interpenetration, but the 

polyelectrolyte brush exhibited a significantly lower friction 

coefficient. For these systems, the normal force is much 

larger in the charged system and the number of contacts is 

smaller in the charged system. Our results suggest that the 

extra normal force contribution provided by the counter ion 

osmotic pressure that exists for polyelectrolyte brushes 

permits polyelectrolyte brushes to support the same load as 

an identical neutral polymer brush of higher grafting density. 

Because of the resulting lower monomer density for the 

charged brushes, fewer monomer collisions take place per 

unit time, resulting in a lower friction coefficient. 

Surprisingly, the interpenetrations between top and bottom 

brushes of both neutral brushes and charged brushes are 

almost same when we exert the same normal force pressure 

on the grafting membrane surfaces of these two kinds of 

brushes. 
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