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Abstract: The new approach to geometrization of electromagnetic field is suggested, where previous author’s results on 

geometrical interpretation of quantum objects are taken into account. These results can be considered as a justification for 

considering of spaces with higher dimensions for geometrization of electromagnetic field. Electromagnetic fields and 

potentials are considered here as components of torsion tensor in 5-dimensional affinely connected space where the usual 4-

space-time is a pseudo-Euclidean hyperplane. Electromagnetic potentials and tensor of electromagnetic field are represented by 

different components of the torsion tensor as it should be for the notions of different physical meaning. Suggested 

geometrization is free of such disadvantages of the known 5-dimensional Kaluza’s theory as the absence of physical 

foundations for introduction of additional spatial dimensions and the lack of any relationship with quantum mechanics. 
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1. Introduction 

Geometrization of electromagnetic field is one of the 

problems on the way of establishing the geometrical 

paradigm in physics where all mater is considered as some 

deformation of the space. This idea was suggested in 19 

century by mathematicians Clifford and Riemann, and the 

first confirmation of this idea was obtained by Einstein who 

showed that in general relativity gravitational field can be 

interpreted as some distortion of the space geometry. Soon 

after this attempt investigations of geometrization of the 

electromagnetic field was undertaken by Einstein himself 

and by many of his followers. At first this work was 

directed to finding such non-Euclidean geometry of 

physical 4-space whose geometrical characteristics could be 

identified with electromagnetic fields and potentials, but all 

attempts on this way have failed. Another approach was 

proposed by Kaluza who assumed that geometrical meaning 

of electromagnetism can be connected with geometrical 

properties of 5-dimensional Riemannian space-time [1]. In 

particular, he identified electromagnetic potentials with 

some components of the metric tensor of this space. 

However, this concept met many objections. As its main 

disadvantages Einstein indicated the absence of physical 

prerequisites for introducing fifth dimension and the 

absence of any connection with quantum mechanics [2]. 

Subsequent attempts to geometrize electromagnetic fields 

had no success, and the interest in the problem for the rest 

of 20th century essentially decreased (though there were 

attempts to use the idea of many-dimensional spaces for 

developing unified theory of all known physical fields [3] 

and there were rare attempts to introduce geometrical ideas 

in physics within the framework of the usual 4-dimensional 

space-time [18]). 

In this work the geometrization of electromagnetic field is 

achieved via 5-dimensional approach that is free from above-

mentioned disadvantages. The principally new idea here is 

that we use as the starting point the geometrization of 

quantum objects, suggested earlier by the author [4-9]. This 

geometrization assumes that quantum particles can be 

considered as projections of the spatial topological defects 

moving in the space with dimensionality more than three. We 

show that electromagnetic fields and potentials can be 

represented as different components of torsion tensor of the 

5-dimentional affinely-connected space where the usual 4-

space-time is a pseudo-Euclidean hyperplane. Notice that 

different geometrical representation of fields and potentials is 

in line with their different physical nature demonstrated, in 

particular, by Aharonov-Bohm effect [10]. 

This geometrization of electromagnetic field is the 

geometrization of the bose-field. Geometrization of the 

Dirac equation, suggested earlier by the author, can be 
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considered as geometrization of the fermi-field, and we 

start with presentation of the main points of this 

geometrization [4-9]. 

2. Geometrization of Quantum Particles 

Let us remind at first the main points of the suggested 

geometrical interpretation of quantum mechanics. The 

starting moment here is the topological interpretation of the 

Dirac’s relativistic equation for free particle with spin ½. 

Symmetric form of this equation is [11] 

ˆ ,p m iki k
µ ψ ψµ γ =                      (1) 

m  is the mass of the particle, 

ˆ ( / , )p i i t iµ µ= ∂ = ∂ ∂ − ∇ , 

µγ ( 0,1,2, 3µ = ) are 4x4 Dirac’s matrices, ( )i xψ  - 

Dirac’s byspinor, 1,2,3,4i = . We use in (1) the relativistic 

units where 1c= =ℏ . Here and later on we use the 4-

metrics with signature ( + − − − ). With such units the 

elementary charge square is 2 1/137.e =  Solution of Eq.(1) 

for free particle’s states with definite values of 4-momentum 

p µ  has the form of the plane wave 

1
exp ( 2 )p pu i x µ

µψ π λ −= − ,                      (2) 

where pu -- definitely normalized byspinor and 

2 2 2 2 2 1 1
1 2 3 4

, 2 , 2m mp mµ µλ λ λ λ λ λ π λ π− − − − − − −− − − = = =  (3) 

Within traditional interpretation Eq. (1) describes the only 

possible results of measurements over quantum object, 

namely possible values of its 4-momentum. But this equation 

does not include any other information about the object 

before or between the measurements (what it is within 

classical notions, for example). However in our hypothesis 

we assume that Eq. (1) inсludes in fact such information. The 

starting point is the fact that above solution of Eq. (1) can be 

interpreted as a basic vector of a representation for the 

infinity translation group, including all translations of the 

form 

0 0 1 1 2 2 3 3.ns n n n nλ λ λ λ= − − −                    (4) 

Here 0 1 2 3, , ,λ λ λ λ  - four basic orthogonal vectors into 

four - dimensional pseudoeuclidean space and 

0 1 2 3, , ,n n n n  - integers. The physical pseudo-Euclidean 

space-time does not have such symmetry (corresponding to a 

symmetry of infinite сrystal), and our main suggestion is that 

this group acts in the auxiliary space--the universal covering 

space of some closed 4-manifold described by Eq. (1). Such 

spaces are used in topology for description of closed 

manifolds because discrete groups, working into such spaces, 

isomorphic to so called manifold’s fundamental groups. 

Elements of this group are different classes of closed paths 

that starts and finishes at the same point (Poincare group 1π
[12-14]). In particular, an infinite translation group operating 

in one-dimensional Euclidian space is isomorphic to a 

fundamental group of the one-dimensional closed manifold 

homeomorphic to a circle. An infinite translation group 

operating in two-dimensional Euclidean space is isomorphic 

to a fundamental group of the two-dimensional closed 

manifold homeomorphic to a torus [12-14]. In addition, the 

wave function (3) is a byspinor—tensor realizing two-valued 

representation of a rotation group and so can be considered as 

a description of a symmetry of nonorientable geometrical 

objects [15, 16]. 

This consideration leads to a hypothesis that (1) can be 

considered as a description of a closed manifold (by 

coordinates of its universal covering space), namely, as a 

description of the closed nonorientable topological space-

time 4-manifold, where spin ½ corresponds to index of the 

two-valued rotation group. It can be shown that due to the 

pseudo-Euclidean metric of the physical space-time such 

four-dimensional object represents moving microscopic 

region of three-dimensional space of size of order	�/�� 

and that this region is an intersection with the topological 

defect that is located in external space of higher 

dimensionality. Such geometrical construction has wave-

corpuscular and stochastic properties. This gives an 

opportunity to identify this geometrical object with the 

quantum object described by Eq. (1) [4-7]. It was also 

shown that application of this interpretation to the atomic 

spectra theory leads to reasonable results in calculations of 

spectrum of a helium atom [8, 9]. 

The fact that geometrical representation of quantum 

objects needs introduction of spaces of higher 

dimensionality plays, as we will see, a principal role in 

geometrization of classical electromagnetic field. Therefore, 

let us remind how closed 4-space-time manifold can 

represent movement of topological defect of three-

dimensional space in the space of higher dimensionality. 

We use now the low dimensional analogy. We have to 

notice that modern 4-dimensional topology does not give 

any opportunity to discuss in detail the properties of 4-

dimensional manifolds (in any case there is even no 

classification of 4-manifolds [12, 13]). Therefore the low 

dimensional analogy is the only possibility to demonstrate 

specific features of manifolds representing quantum 

particles. Let us consider the simplest low dimensional 

realization of our 4-space-time --- 2-dimensional pseudo 

Euclidean space-time, whose inhabitants are one 

dimensional creatures living in one dimensional Euclidean 

space. Let us consider one of the simplest closed space-time 

topological manifolds that is possible in this space --- two 

dimensional manifold, homeomorphic to a torus (such 

manifold represents quantum particle in this space). And, at 

last, let us consider the usual torus without all his possible 

homeomorphisms. (Such torus is specified by topological 

product of two circles �� × ��
	 ). In Euclidean space this 

torus looks as known closed surface, represented at Fig. 1A. 
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Figure 1. Geometrization of the free fermi-field (low-dimensional analogy). 

In pseudo Euclidean space one of the circles (��
	) is turned 

to hyperbola [15], and our torus looks as a hyperboloid (Fig. 

1B). Cross-sections of this hyperboloid for different values of 

time by planes parallel to XY-plane describe movement in 

this plane of expanding circle. The habitants of one 

dimensional world could only detect the points of 

intersection X (T) of expanding circle with their world and 

they will interpret these points as moving quantum particles. 

As for circle itself, it will be considered as topological defect 

of the “physical” one dimensional space situated in external 

two dimensional space. 

3. Geometrization of Classical 

Electromagnetic Field 

Let us underline the special features of geometrical 

representation of quantum particles that have to be taken into 

account in geometrization of the electromagnetic field. 

1) Geometrical representation of quantum particle needs 

introduction of the “external” space with dimensionality 

more than three (aside from time-dimension). 

2) Topological defect corresponding to quantum particle 

occupies a finite region of microscopic size in the “external” 

space. 

These comments lead to the suggestion that the 

geometrical representation of electromagnetic field also has 

to include consideration of external 5-dimensional space 

where physical space-time is a 4-dimensional pseudo 

Euclidean hyperplane. This external space is closed and runs 

in the direction of fifth dimension to а microscopic distance 

(of order of atomic sizes).  

It is easy to see that the starting point coincides with the 

idea of the known work of Kaluza [1] where he firstly 

suggested to consider fifth dimension for the geometrization 

of electromagnetic field. And the hypothesis about closed 

space in the direction of fifth dimension discussed earlier by 

Einstein and Bergmann [2]. But there were no any quantum 

mechanical foundations in both these works for suggested 

hypotheses, and here is the first essential distinction from our 

work. And the second main distinction is in choosing of the 

geometry of the external 5-dimensional space. It was 

suggested earlier that 5-dimensional space is a Riemannian 

one, and then some components of Riemannian metric were 

identified with components of electromagnetic potential. 

Such approach have not been successful (the history of the 

problem can be seen in [3]). Geometrical interpretation of 

quantum particles, suggested by the author, considers these 

particles as topological manifolds that have no definite form. 

This indicates that geometry of 5-dimensional space (within 

geometrization of electromagnetic field) should be more 

complex than Riemmanian one – a simplest of non Euclidean 

geometries. Therefore, in this work we suggest that 

electromagnetic field should be identified with geometrical 

properties of non Riemannian space, namely, with properties 

of affinely connected space with torsion where the usual 4-

space-time is a pseudo-Euclidean hyperplane. 

Let us recall the distinctive features of affinely connected 

space with torsion [15]. In affinely connected space the field 

of so called affine connectedness k
ijΓ  is preassigned on 

manifold for every coordinate system ix , and this 

connectedness is transformed with coordinate 

transformations by the law 

'
'

' ' ' ' ' ' '

2 k k i j k
k k

ijki j k j i j k

x x x x x

xx x x x x

∂ ∂ ∂ ∂ ∂Γ = + Γ
∂∂ ∂ ∂ ∂ ∂

.                (5) 

The torsion tensor of this space is defined as 

antisymmetric tensor k k k
ij ij jiS = Γ − Γ and this tensor is 

different from zero in our case. Its geometrical meaning is 

that it violates the parallelogram rule [15]. 

Geometrization of electromagnetic field is the establishing 

of correspondence between components of torsion tensor and 

characteristics of this field. Indexes of a torsion tensor take 

five different values in correspondence with five coordinates 

of the space being considered. Each component of the torsion 

tensor depends in general on five coordinates – four 

coordinates of the pseudo Euclidean physical space-time 

(that is hyperplane in 5-dimension space) and on fifth 

coordinate. In accordance with remarks at the beginning of 

this Section we suggests that above 5-dimensional space is 

closed in the direction of fifth dimension and that the space 

runs in this direction to a microscopic distance. The 

macroscopic scales are used in description of classical fields. 

Therefore we suggest that the dependence of the torsion 

tensor on fifth coordinate can be neglected. 

We denote possible values of space-time coordinate 
, , ,t x y z  by Greek letters µ , ν or γ and we denote index of 

fifth dimension in the torsion tensor by digit 5. Then nonzero 

components of the antisymmetric torsion tensor ij
( , , , )kS t x y z

can be written as 

5 5 5
5 5 5 5

, , , ,S S S S S
µ µ

µν µ µ ν ν , S
µ

νγ                          (6) 
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First of all 0S
µ
νγ =  because for 4-dimensional space-time 

torsion is zero. Components 5Sµν have the same tensor 

properties in the 4-space-time as components of 

antisymmetric tensor of electromagnetic field Fµν  and can 

be identified with this tensor 

5
,S Fµν µν=                                  (7) 

and components 
5 5
5 5

S Sµ µ= −  have the same tensor 

proprieties in the 4-space=time as components of 

electromagnetic potentials Aµ and they can be identified with 

these 4-vectors 

5 5
5 5

.S S Aµµ µ= − =                              (8) 

As for “superfluous” components 
5 5S S
µ µ
ν ν= − , we have to 

take into account that electromagnetic interaction is always 

exists along with weak interaction forming the so called 

electroweak interaction [17]. We suggest that above 

components are ‘traces” of weak interaction and that they can 

be neglected within consideration of electromagnetic 

interaction. Then 

5 5 0.S S
µ µ
ν ν= − =                               (9) 

Notice that relation (9) is relativistic invariant and, 

consequently, it is true in 4-space-time for any coordinate 

system. 

According to (7, 8), components of tensor of 

electromagnetic field (electric and magnetic fields) and 

components of electromagnetic potential are defined by 

essentially different components of torsion tensor. This 

confirms the fact, demonstrated by Aharonov-Bohm effect, 

that electromagnetic potentials are not abstract mathematical 

values. useful for calculations of electromagnetic fields, but 

that they have their own physical meaning [10]. 

Finally, geometrization of electromagnetic field is defined 

by relations (7, 8). These relations establish correspondence 

between physical characteristics of electromagnetic field in 

pseudo Euclidean 4-space-time and geometrical 

characteristics of 5-dimensional non Euclidean space. 

4. Results 

The main results are: 

1. It is shown that a necessity of consideration of 5-

dimensional space-time in geometrization of classical 

electromagnetic field is a consequence of necessity of 

consideration of 5-dimensional space-time in 

geometrization of quantum particles. 

2. It is supposed that in geometrization of electromagnetic 

field the above 5-dimensional space is a affine space with 

torsion where physical 4-space-time is a hyperplane. 

3. The relations established between components of the 

field and components of the potential and principally 

different components of torsion tensor of above 5-

dimensional space (this can be considered as 

geometrical interpretation of effect of Aharonov-

Bohm). 

5. Conclusion 

The results obtained in the paper is the first (known to the 

author) attempt to geometrize bose- and fermi-fields 

simultaneously. Because such fields are in foundation of all 

matter these results may be important from the point of view 

of establishing of geometrical paradigm. There are of course 

many other problems to be solved: geometrization of other 

gauge fields, geometrization of quantized fields, and so on. 

Some of these problems will be considered in subsequent 

publications. 
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