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Abstract: This work presents a theoretical approach for the study of phonon dynamics and scattering properties of an infinite 

linear atomic chain perturbed by a mono atomic step. The coherent transmittance scattering cross-sections for incident phonons 

on the atomic waveguide structure are calculated using the Landauer-Buttiker electron scattering description and the matching 

method formalism with the nearest and next nearest neighbour interactions. Numerical results for different configurations yield 

an understanding of the chain dynamical properties and the effects on phonon transmittance due to incoming phonons. The 

reflectance and transmittance coefficients show spectral characteristic features depending on the cut-off frequencies for the 

propagating phonons. They illustrate the occurrence of Fano resonances in the scattering spectra that result from degeneracy of 

step localized modes and propagating continuum modes due to the breakdown of the translation symmetry in the propagating 

direction. Furthermore, the interferences between diffused and reflected waves in the step regions generate Fabry-Pérot 

oscillations whose number is determined by the distance between steps and the number of terraces. 

Keywords: Reticular Dynamics, Disordered Mesoscopic Systems, Crystallographic Waveguides, Matching Procedure, 

Phonon Scattering 

 

1. Introduction 

The presence of reticular defects in a structure affects 

substantially its dynamic, thermodynamic and kinetic 

properties. To study this influence, we must elucidate the 

phonons-defect interaction problem [1-5]. Interference effects 

generated in the elastic waves scattering by the reticular 

defects found a considerable interest since they can give rise 

to the resonant features of inter-crystalline interfaces which 

can be observed experimentally. Several authors [6–12] have 

shown that multiple scattering occupies a privileged place in 

the description of the transport phenomena. This point of 

view acquired these last years a certain practical importance 

owing to advances in nanotechnologies [13–17]. Indeed, it 

allows a better understanding in what occurs in low-

dimensional compounds such as quantum wires [8-9,18-19]. 

In this sense, scattering experiments are undertaken in 

various fields of physics in order to study the properties of 

mesoscopic systems. 

The modern developments of the lattice dynamics theory 

and its many applications have been discussed in detail in 

standard references such as Born and Huang [20], Lubfried 

and Ludwig [21], Maradudin and al. [23]. However, this 

theory of big convenient range concerns only the infinite 

systems. Large amounts of calculations, relating phonons in 

semi-infinite crystals are essentially based on the Green 

functions methods [15,22]. The matching method [6-8], 

derived from the Landauer-Büttiker principle [2,3], to which 

we resort makes it possible to analyze the behaviour of the 

elastic waves through the defect perturbed region. We are 

interested, in particular, with the effects produced by this 

interaction on the phonons transmittance spectrum within the 

long-wave limit and low-frequency [1,7,8]. The results 

obtained for the 1D model [9] coincide with that obtained for 

3D one [24] with the precision up to the numerical factor. In 

this work, however, we consider the propagation and the 

diffusion of the phonons by the structural defect in a 1D 

atomic chain. In spite of their simplicity, the one dimensional 

models give a qualitative description of many physical 

phenomena observed in the real three-dimensional systems. 

The organization of this paper is as follows. In Section 2, 

we present the basic elements of model. Section 3 describes 

briefly the numerical method formalism. The numerical 

results for an isolated step and multiple steps are discussed in 
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Section 4. Finally, a summary is made in Section 5. 

2. Description of the Model 

The considered model depicted in Fig. 1, is made of an 

infinite atomic nanowire assimilated to a perfect quantum 

waveguide, so as to form an isolated step according to the y 

direction. The mono-atomic step (defect region indicated by 

the grey area M) is treated as the perturbed interface between 

two single semi infinite atomic nanowires G (left) and D 

(right) occupying the half spaces on either side of the step. 

The implied interactions refer only to the bonding strengths 

between nearest and next nearest close neighbours. The 

bonding force between two close atoms of the nanowire is 

symbolized by a spring constant 1k ; the other additional 

constants as 1lvk  and 2lvk , are represented on the figure. 

There is experimental evidence that the frequencies of the 

localized vibrational states on the step can be either greater 

than the maximum frequency of the bulk phonon spectrum 

[26], or smaller than the frequency of the surface phonon 

mode [27] of the terraces. This has been modelled by 

attributing stiffened [28] or loosened [27] force constants in 

the neighbourhood of the step.  

 

Figure 1. Schematic representation of a 1D waveguide. The mono-atomic step is treated as the perturbed interface (grey area M) between two single semi 

infinite atomic nanowires G and D. 

3. Matching Method Principle 

Initiated by Feuchtwang in the sixties then revisited by 

Szeftel and al. in the eighties, the matching method returns 

account in a satisfactory way for the phonons dispersion 

curves [7] and for surface resonances. It gives also a more 

general definition of the resonance concept and allows a 

more transparent analysis of the displacements behaviour in 

the vicinity of the Van Hove singularities [29]. However, its 

execution requires the crystal subdivision in three distinct 

regions having all the same periodicity along the surface. The 

procedure was described in details in references [7-9]. We 

will just present the necessary stages to the comprehension of 

the results analysis. 

3.1. Perfect Nanowire Dynamics 

For an atom occupying the site (l) confounded with the 

origin of the coordinates system and vibrating at the 

frequency ω , the equations of motion can be written, using 

the harmonic approximation framework [23], in the 

following form: 
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where m  indicates the atom mass; xu  the atomic 

displacement and 
1k  symbolises the bonding strength 

constant between the two adjacent atoms localized at sites (l) 

and (l’). 

Taking into account the symmetry of the problem [30] and 

while applying the scattering boundary conditions for  which 

we get plane wave solutions, the perfect lattice atom equation 

of motion (1) rewrites itself in following form: 

0)1(22 =++−Ω ZZ ,                                (2) 

where
1

2 kmω=Ω  is the dimensionless frequency and 

Z  the phase factor of the plane wave. 

For aqieZ = , the resolution of the equation (2) determines 

the eigenfrequencies Ω  as well as the corresponding 

eigenvector
xu
� . When the real wavevector q  is running over 

the first Brillouin zone, one obtains the dispersion curve )(qΩ . 

Fig. 2 shows the shape of this curve, symmetrical relatively 

to frequency axis in the case of a lattice 
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parameter 1=a , 11 =k  and 1=m . 

 

Figure 2. Dispersion branch of the propagating mode characterizing the perfect atomic nanowire. 

Contrary to the electronic case where the curves are 

parallel sinusoids, we do not have here any hope to find a 

usable analytical expression. It will thus be necessary to 

resort to purely numerical methods to integrate this 

dispersion relation in the general problem in presence of 

defect. The result indicates that the only chain mode of 

vibration is acoustic ( 0→Ω as 0→q ). 

The treatment of the scattering problem in presence of 

defects imposes the simultaneous knowledge of the 

propagating part ( 1=Z ) defined previously and the 

evanescent one ( 1<Z ) of the perfect 1D waveguide. In other 

words, for a given frequency, all solutions are necessary even 

those whose module is lower than unity. The solution which 

can be obtained by inversing the dispersion relation yields the 

functional behaviour of the vibrating eigenmode shown in 

Fig. 3. The projection of the curves on the complex Z  plan 

shows that propagating mode solution follows the circle of 

unity radius equal to the module of the phase factor Z ; this 

solution is identified to the dispersion curve of Fig. 2. The 

evanescent solution ( 1<Z ), beyond the maximum frequency 

in this branch, corresponds to the curve contained inside the 

unit circle. 

 

Figure 3.  Functional behaviour )(ZΩ  of the vibrating mode of the perfect lattice quantum wire 

3.2. Coherent Phonons Scattering at the Step Edge 

Since the perfect waveguides do not couple between 

different eigenmodes, we can treat the scattering problem for 

each vibratory eigenmode separately. Generalization to every 

combination of these modes does not pose a particular 

problem. For an incidental wave 
inV  coming from the left of 

figure 1 in the eigenmode ν , 

uZV ii
in

�

�

)(= ,                                      (3) 

where Z  is the phase factor of the entering mode, u
�

 its 

eigenvector. The superscript )1( −≤i  indicates the site 

occupied by the atom relatively to the direction of 
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propagation. 

The resulting scattered waves, due to an elastic scattering 

by the defect, are composed of reflected and transmitted parts 

which generate vibrational fields in the two unperturbed half 

spaces G and D (Fig.1). The Cartesian displacement 

components of an atom pertaining to these areas can be 

obtained by using the matching method [7]. For such a site, 

the displacement components are expressed as a 

superposition of the perfect waveguide eigenmodes at the 

same frequency, i.e.: 
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where ξ  and η  indicate the reflection and transmission 

probabilities. The normalization of these coefficients with 

respect to the group velocity (shown in Fig. 4) of the plane 

wave gives transmittance Vgη=Λ  and reflectance Vgξχ = . 

In this case, we obtain unitarity of the scattering matrix. 

 

Figure 4. Phonon group velocity of the perfect atomic chain as function of the dimensionless frequency. 

By isolating the terms describing the incidental wave by 

using the relations (4) and (5), the inhomogeneous system of 

linear equations is finally put in the form: 
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where [ ]),,(
~

21 lvlv kkD Ω  represents the dynamical matrix of 

the defect, 
inV
�

 the incidental vector and X
�

 the vector 

gathering all the problem unknowns: the atomic 

displacements 
xu  of the defect atoms as well as the 

reflectance and the transmittance coefficients. These are 

necessary for the determination of atomic displacements in 

the boundaries as in the unperturbed areas G and D of the 

perfect waveguide. 

As example, for the isolated step of Fig. 1 we obtain a 

dynamical matrix [ ]86
~ ×D  from where a matching 

matrix [ ]68×R  is deduced. Then the vector X
�

 will be 

composed of six unknowns including the four vibrational 

displacements )(lu x  of the step irreducible atoms and two 

transmittance and reflectance probabilities, i.e. 

{ }Λ−−= ,),2,(,)1,(),1,1(),0,1( χlulululuX xxxx
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3.3. Phonons Spectra of Irreducible Step Atoms 

In combining the matching procedure to the Green’s 

functions and for a given wave vector parallel to the direction 

of propagation, the matrix phonon spectral density reads 
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where (l) ands (l’) are two atomic sites, α  and β  designate 

two different Cartesian directions and l
iPα  is the component 

in direction α  of the polarization vector of the atom (l) for 

the mode having a frequency mΩ . 

The vibration density of states (DOS) )(ΩiN  per atomic 

site in the perturbed defect region could be calculated by 

summing over the trace of the spectral density matrix 

( 1
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4. Numerical Results and Discussion 

4.1. Scattering at the Single Surface Step 

Phonons scattered by the step are analyzed relatively to an 

incident wave coming from the left in Fig. 1, with unit 

amplitude and a zero phase on the border atom (-1) located 

just at the site near the defect region M. Calculation is carried 
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out for 11 =k , 2.11 =lvk  and 8.02 =lvk . The numerical 

results obtained for the transmittance and reflectance 

probabilities in terms of the normalized dimensionless 

frequency are consigned in Fig. 5. 

 

Figure 5. Phonon transmittance Λ (full line) and reflectance χ (dotted line) as a function of scattering frequency for an isolated monatomic step in the case of 

a) loosened and b) stiffened force constants in the neighbourhood of the step. 

We notice that the presence of the step leads to a general 

decrease of the probability. As expected, the influence of the 

defect is relatively small in the acoustical regime because of 

the low implied frequencies. For 0→Ω  we get 0→Λ  in 

addition to the pronounced typical Fano-like resonance 

structure. This asymmetric resonance can be attributed to the 

presence of defect-induced resonant state, whose frequency 

depends on the value of the bonding forces in the step region. 

This generalized behaviour is also observed when 

backscattering becomes more significant for wave vectors 

near the zone boundary where the transmittance probability 

tend towards zero. Lastly the well known theoretical relation 

translating the conservation of energy principle, 

( ) 1=+Λ χ ,                                               (9) 

is fortunately satisfied and always checked for each 

frequency. Besides, this condition constitutes an effective 

control method of the results. 

Otherwise the spectrum is much more affected in the case 

of loosened force constants. In addition to resonance, this 

influence is translated by a less amplitude compared to the 

stiffened constants values. 

4.2. Isolated Double Step 

The surface-surface phonon scattering is now considered 

for a double step, schematized in top of Fig. 6, where the two 

step edges are sufficiently far apart to justify decoupling the 

dynamics of the two edges. However, there exists a domain 

where the two edges are still sufficiently close ( δ  

corresponds to a distance smaller than the surface phonon 

coherent length) where the two steps interact by exchanging 
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coherent surface phonons. 

 

Figure 6. Magnitude of the phonon transmittance as function of the scattering frequency for two identical steps separated by a distance δ  in the case of 

loosened force constants in the neighbourhood of the step. The dotted line refers to single step with the same parameters. The structure scheme is given above 

the figure. 

Fig. 6 gives the example of two identical steps separated 

by a plateau of variable length δ  and the transmittance 

probabilities they produce. 

The effects described previously in the case of isolated 

step appear, but they are even more difficult to isolate 

because of the biggest number of peak-dip structures near in 

frequencies. It is why we are not going to study in details 

these regions. On the other hand, we will limit ourselves to 

present a more global change of the transmission curves, 

provoked by the Fabry-Pérot oscillations issued from 

interferences between the multiple scatterings of propagating 

states in the perturbed region. 

The distance δ  represents always a whole multiple of 

network parameters a . It can be seen in Fig. 6 that the 

transmittance curves structure became richer of several peaks. 

We observe also a drastic δ  dependence of Fabry-Pérot 

oscillations. However, the number of main dips remained the 

same corresponding to the number of steps; but each of them 

divides in several secondary peaks that provide the total 

number of lattice parameter a  contained in horizontal 

distance δ . 

The fact that their number seems to be lower on the figure 

is simply related to a resolution problem in the implied 

frequency range. Same results are observed by V. Pouthier 

and al. [18] on the transmittance spectrum of a nanowire 

containing a set of linear clusters separated by different 

spacings. Some rapid oscillations in the boundary are due to 

the simultaneous presence of Fabry Pérot interferences which 

become more and more important with the increase of δ . 

The transmission spectrum displays more complex oscillation 

behaviours especially for higher frequency. Otherwise, the 

upper level of the Fabry Pérot oscillation can merge with the 

Fano-resonance peak. It should be noted that on average the 

global shape of the transmission curves is quite similar to that 

obtained in the case of an isolated step (in dotted line on the 

figure). 

4.3. Interaction of Several Steps 

The increase of the sample defect region doesn't bring 

anything of qualitatively new in relation to the case of the 

isolated step. The addition of steps results solely in the 

increase of the size of the linear system (6), but the matrix D
~  

keeps its structure. The supplementary blocks have the same 

shape as those characterizing a lonely isolated step. Naturally, 

we can be interested by a disposition of consecutive steps 

forming a staircase. We have limited our study to only fifteen 

steps which already generates a ( 3634 × ) defect matrix 

dimension. In Figs. 7 and 8, we investigate the dependence of 

the transmittance probabilities as function of the 

dimensionless frequency for different staircases in both cases 

of stiffened (Fig. 7) and loosened (Fig. 8) force constants 

in the perturbed step region. The dotted lines refer to a 

single isolated step. The transmission curves are turned into a 

number of peak-dip structures, the reason is that the modes 

will interfere with each other due to the multiple reflections 
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of the phonon waves in the perturbed region. In general, the 

multiple interferences in the perturbed waveguide imply the 

more complex transmittance spectra, especially for higher 

(Fig. 7) and lower (Fig. 8) frequencies. These interferences 

between multiply scattered waves result in Fabry–Pérot 

oscillations of increasing amplitudes with the frequency and 

whose number depends intimately of the number N of steps 

that the staircase includes. Similar results are obtained in the 

study of adatomic defects [9,12,31-32] and substitutional 

defect columns [8] in the perturbed double quantum chain. 

Defects are separated by different spacings in both 

configurations. 

 

Figure 7. Phonon transmittance versus scattering frequency for staircase having a variable number N of steps in the case of stiffened force constants in the 

perturbed step region. The dotted line refers to single step for the same parameters. 

 

Figure 8. Phonon transmittance versus scattering frequency for staircase having a variable number N of steps in the case of loosened force constants in the 

perturbed step region. The dotted line refers to single step for the same parameters. 

An interesting feature is that the dips which correspond to 

positions of transmission zero, shown in the middle 

frequency interval broaden with the increase of the step 

number and develop gradually into a stop frequency gap at 

which all phonons are reflected by the defect quantum 

waveguide. Note that on average, the transmission curves 

follow a shape globally similar to that of the isolated step in 

both states of strengths in a step region. 

4.4. Distributed Terraces 

Figs. 9a) to 9d) show some examples of regular sets of 

terraces and the corresponding transmittance coefficients that 

they produce in the acoustical mode of the linear quantum 

waveguide. As previously, the dotted curves refer to an 

isolated step. The transmittance spectra present qualitatively 

the same behaviour. In relation to the case of the isolated step, 

the structure of the transmittance curves became richer of 

several peaks. However, the number of main peaks remained 

the same, giving the distance between two consecutive steps; 

but each of them is subdivided in several secondary peaks 

that provide the total number of terraces of the structure. 

Same results are observed by V. Pouthier and al. [18] on the 
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transmittance spectrum of set of clusters separated by 

different spacings in a nanowire and by Fellay and al. [27] on 

the transmission probability for a sequence of equidistant 

symmetric local mass defects. We also observed the same 

spectral behaviour in studying the transmission coefficient of 

adatomic sequences in the planar quantum waveguide [28] 

and in the double quantum chain [30]. 

 

Figure 9. Phonon transmittance probabilities versus scattering frequency for a structure having a defect composed of one (a), two (b) three (c) and four (d) 

terraces of the same dimension. The dotted curve refers to single isolated step. The structure scheme is given above each figure. 

One can find from the figure that an additional terrace 

structure makes the frequency gap appear; and the gap width 

increases slightly with the step number. Furthermore, it is 

obviously that the width of resonance peaks at the frequency 

just near the gap region decreases. We can easily expect that 

an additional terrace structure increases the scattering of the 

phonons so that the thermal conductivity decreases. 

4.5. Phonons Densities of States 

In Fig. 10 we show the phonon densities of states (DOS) 

versus the normalized frequency for the set of the irreducible 

atoms (a), (b) and (d) of the perturbed mono-atomic step 

region M (see Fig. 1). 
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Figure 10. Density of states vs. incident phonon frequency for irreducible atoms of the mono-atomic step. 

The results were calculated, according to Eq. (8), in the 

cases of loosened ( 2.11 =lvk  and 8.02 =lvk , full line) and 

stiffened ( 6.11 =lvk  and 2.12 =lvk , dotted line) force 

constants in the neighbourhood of the step. Due to 

obvious symmetry effects, quite similar behaviors are 

observed for the couple of step atoms (b) and (c) above of 

Fig. 10. The both atoms (a) and (d), on both sides of the step, 

present the spectral curves with different amplitudes. It can 

be seen that DOS spectra of the irreducible step atoms are all 

characterized by two resonant peaks in the case of stiffened 

force constants. However, there is one common resonant state. 

This high-frequency peak occurring always at 0.2=Ω  

corresponds mainly to the longitudinal atomic chain mode 

near the Brillouin zone boundaries. On all sides, the other 

resonant peak shifts to higher frequencies with the force 

constants values according to the relation mk=Ω . This 

phonon localized mode is due to the presence of the mono-

atomic step. 

5. Conclusion 

Using the matching method formalism, we have 

investigated the phonon transmission in a linear waveguide 

nanostructure perturbed by a mono atomic step as reticular 

defect. It is observed strong resonant transmission 

determined by phonon scattering in step region. The position 

and the width of the resonance peaks are determined by 

loosened or stiffened force constants in the neighbourhood of 

the step. 

The transmittance coefficients in multiple step structures 

are also studied. The results show that the first additional step 

to the single step structure induces interferences which 

become more and more important with the increase of the 

plateau width δ . However, the number of main dips 

corresponds to the number of steps; but each of them divides 

in several secondary peaks that provide the total number of 

lattice parameter a  contained in δ . The transmittance 

spectra present qualitatively the same behaviour in 

considering several steps or terraces. An additional step 

structure suppresses the transmittance coefficient and forms a 

frequency gap; an additional resonance peak appears at the 

frequency just above the gap region for each additional step 

structure. The additional step structure increases the phonons 

scattering so that the thermal conductivity decreases. 
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