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Abstract: In this work, we establish the Conditions that must satisfy the characteristic coefficients of the nonlinear and 

flattened dispersive optical fiber so that certain classes of solitary waves propagate there with fewer fluctuations. Once the 

conditions are established, we determine the exact solutions as well as the corresponding nonlinear partial differential 

equations that govern the propagation dynamics in this transmission medium. The propagation of the solutions obtained is also 

tested. The method used to obtain the analytical solutions is based on the control of the properties of the Bogning implicit 

functions whereas the numerical simulations are made through the split-step method which is very adapted to simulate the 

propagation of the signals. 
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1. Introduction 

Nonlinear physics in its branch of photonic optics has been at 

the center of many telecommunications technology 

applications in recent years. Among the transmission media 

and waveguides developed by these technologies, optical 

fiber is attracting even more interest, probably because of its 

high bandwidth and insensitivity to external electromagnetic 

disturbances. This great interest is also reflected by the large 

number of research works devoted to this ultimate 

transmission medium. The propagation dynamics of the 

waves in the fiber is generally modeled by partial differential 

equations of Schrödinger type with nonlinear terms, 

dispersion terms and dissipation terms characterized by their 

coefficients [1-5]. If the coefficient of nonlinearity is 

responsible for the unpredictable effects that the propagating 

wave may undergo, the dispersion coefficient is responsible 

for the spread of the signal and the dissipation coefficient 

responsible for the absorption or losses of the energy. These 

observations and remarks assume that these effects must be 

taken into account during the fabrication of an optical fiber 

capable of better transmitting a signal. There are several 

types of optical fibers but the optical fiber that will be the 

focus of our study in this paper is the nonlinear dispersive 

and flattened optical fiber. The main characteristic of this one 

is that it is subject to strong dispersions and this can be 

understood because of its flattened shape. The nonlinear 

partial differential equation that models the propagation 

dynamics of waves in this type of fiber generally has higher 

order dispersion terms (greater than or equal to 4). Thus, the 

work that we have defined consists in establishing the 

constraint relations which make it possible to determine the 

type of wave (solitary wave) likely to propagate without 

difficulties in the waveguide. once these conditions are fixed, 

we make corrections to the initial differential equation to 

obtain an equation which admits for exact solution the 

analytical sequence attributed to the wave that must 

propagate in the optical fiber [6-8]. To achieve this, we will 

first assume that the fiber is immersed in a medium with 
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arbitrary characteristic coefficients ( )1,2,3,4in i = and 

subsequently find a uniting relation such that the desired 

solution is effective. The method and technique used to 

obtain the results is the one we develop in recent years in our 

many works [9-33]. 

This article is organized as follows: Section 2 establishes 

coefficient range equations as well as the range of 

possibilities for obtaining solutions. In Section 3, we propose 

analytical solutions as well as constraint relations for this to 

be possible. In section 4, we numerically verify the 

propagation of solitary wave solutions obtained and finally 

we end the work with a conclusion. 

2. Equation of Range of Coefficients and 

Possibilities of Solutions 

We define the family of nonlinear partial differential 

equations that describes the propagation dynamics of the 

wave in a dispersive and flattened optical fiber as 

2 4
2

1 2 3 42 4
0

U U U
in n n U U n

ξ τ τ
∂ ∂ ∂+ + + =
∂ ∂ ∂

               (1) 

where ( )1, 2,3, 4in i = are the characteristic coefficients of the 

fiber, ξ is the spatial variable andτ is the temporal variable. 

The flattening of the fiber is materialized hereby the partial 

derivative of order 4 (
4

4

U

τ
∂
∂

). We propose to construct the 

solution of equation (1) in the form 

( ) ( ), expU A ikξ τ τ ξ=                            (2) 

where ( )A τ is the temporal envelope of the wave solution 

and k the wave number. The introduction of the ansatz (2) in 

equation (1) gives 
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We propose to construct the solution of equation (3) in the 

form 

( ) ( ),n mA aJτ ατ=                                 (4) 

where a is a constant to be determined, ( ),n mJ ατ the implicit 

function whose numbers n and m are real to be determined 

andα a parameter to be determined as well. Thus, taking into 

account equation (4) in (3) gives 
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This equation is generally called the range equation of the 

coefficients, since it represents the equation whose analysis 

makes it possible to determine the coefficients. In the case of 

equation (5), the only coefficient to be determined is a . The 

different equations to be solved depend on the values 

assigned to n and m . 

But the choice of the values of n and m is not hazardous; we 

have established in our previous work that the values of n and

m for which are listed among the values of n and m for which 

some terms of equation (5) are grouped together. Thus, the 

values of n and m for which some terms of equation (5) are 

related are given by 

3 1 1 3
, 2, , 1, ,0, ,1, ,2

2 2 2 2
n m

 ∈ − − − − 
 

               (6) 

The various combinations of the pair ( n , m ) likely to lead 

to solutions are recorded in the table below called fields of 

possibilities for finding solutions. 

Table 1. Fields of possibilities for finding solutions. 
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3. Analytical Solutions and Constraint Relationships 

In this section, we look for solutions corresponding to the different values of the pair ( ),n m of the table 1. 

1. case ( ) ( ), 2,0n m = : We obtain from equation (5), the following equation 

22 2 4 4
2 2,0 2 4,2 1 2,0 3 6,0 4 4,2 4 6,42 6 42 120 0n aJ n aJ n kaJ n a aJ n aJ n aJα α α α− + − + − + =                               (7) 

Knowing that 4,2 2,0 4,0J J J= − and 6,4 2,0 4,0 6,02J J J J= − + , equation (7) becomes 

( ) ( ) ( )22 4 2 4 4
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Equation (8) is verified if for 0a ≠ , we have 
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The resolution of equations (9), (10) and (11) allows having 
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We deduce from equation (14) that 
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The sought solution is given by 
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Solution (15) is the exact solution of the equation below obtained by modifying the coefficients of equation (1) 
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                                               (17) 

2. case ( ) ( ), 2,1n m = : We obtain from equation (5), the following equation 

( ) ( ) 22 4 2 4 4
2 1 4 2,1 2 4 4,3 3 6,3 4 6,55 23 6 12 96 0n a n ka n a J n a n a J n a aJ n aJα α α α α+ + − − − − =                   (18) 

The observation of equation (17) imposes for the purpose of simplifying the form of the equation to write the following 
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transformations 

4,3 2,1 4,1J J J= −                             (19) 

6,3 4,1 6,1J J J= −                             (20) 

6,5 2,1 4,1 6,12J J J J= − +                         (21) 

Taking into account relations (18), (19) and (20) in 

equation (17) leads to 
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Equation (21) is verified if we have 
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We obtain from equation (23) 
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Taking into account the relationships and constraints above 

allows to write the solution 
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Equation (26) is the exact solution of the corrected 

equation 
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3. case ( ) ( ), 2,0n m = − : We obtain from equation (5), the 

following equation 

( ) ( ) 22 2 4
2 1 2,0 2 4 0,2 3 6,02 2 4 0n n k J n n J n a aJα α α− −− + − + =  

(29) 

Equation (29) is verified if and only if 2
2 42 ,n n α= 3 0n =

and
4

4

1

4n
k

n

α
= with 1 0n ≠ . In these conditions, the seeking 

solution is given by 
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Equation (30) is the exact solution of the following partial 

differential equation 
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                 (31) 

We can see that equation (30) describes the propagation 

dynamics in the very weakly nonlinear flattened optical fiber 

( 3 0n → ). 

4. Numerical Study 

In this section, we use the split-step method [34] to 

discretize the nonlinear partial differential equations (17) and 

(28) and to propagate their corresponding solutions. Thus, the 

constraint relations between the coefficients of the terms of 

the nonlinear partial differential equation allowed choosing 

the values of the parameters. We organized this numerical 

study in two cases. 

1. First case 

The nonlinear partial differential equation (17) is 

discretized so that the envelope ( ),U ξ τ is given by the 

relation (16). The profiles obtained are as follows 

 

 
Figure 1. Propagation of the solitary wave (16) in equation (17): the left 

profile is obtained for: 
4 0.01n = , 

1 0.01n = ,
3 10n = − , 0.8α = , θ π=  the 

right profile is obtained for 
4 0.5n = , 

1 20n = ,
3 2n = − , 0.2α = , / 6θ π= . 

2. Second case 

The nonlinear partial differential equation (17) is 

discretized so that the envelope ( ),U ξ τ is given by the 

relation (16). The profiles obtained are as follows 
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Figure 2. Propagation of the solitary wave (16) in equation (17): the left 

profile is obtained for: 
4 0.5n = , 

1 20n = ,
3 2n = − , 0.2α = , / 6θ π=  the 

right profile is obtained for 
4 0.1n = , 

1 5n = ,
3 1n = − , 0.13α = , θ π= . 

5. Conclusion 

We have in the framework of this article studied how to 

choose the characteristic parameters of the single-mode fiber 

flattened so that the differential equations that govern the 

propagation dynamics in this transmission medium admit 

desired solutions. To achieve this, we divide the work into 

two major parts. A first part, where we have analytically 

established the relationships linking the parameters of the 

fiber or medium in which the fiber is immersed, so that the 

solutions we need have been obtained. To this end, we 

assigned the coefficients ( )1, 2,3, 4in i = to the different terms 

of the nonlinear partial differential equation to solve and 

subsequently obtain the constraints that bind the in

coefficientsto in and other parameters of the studied system. 

We have found a field of possibilities of obtaining solutions 

through the different values that can take n and m . We note 

that in the case of the flattened optical fiber that is to say 

highly dispersive, the solitary wave solutions obtained are 

pulse of second order and kink of second order. All the 

values of the pairs ( ),n m do not lead to the important 

solutions in physics domain. We get a second-order pulse for 

the pair (2,0) and a second-order kink solution for the pair 

(2,1). The split-step method is used to study the propagation 

of the solutions obtained. The study in this paper is very 

fascinating and interesting analytically because beyond its 

physical reach, it has aconsiderable mathematical 

significance. Numerically, we have checked the reliability of 

the solutions obtained. This study can potentially have very 

positive impacts in propagation phenomena in the optical 

fiber and naturally in mathematics for nonlinear physics. 
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