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Abstract: Based on the truncated second-order moments definition, the generalized factor of the circular flattened Gaussian 

beams (CFGB) in the cylindrical coordinate system through a hard-edged circular aperture is derived. Three special cases have 

been obtained from the closed-form expression for the generalized factor of the truncated CFGB, the non-truncated CFGB, the 

truncated and non-truncated Gaussian beams. The power fraction of the CFGB is calculated analytically and illustrated 

numerically. 
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1. Introduction 

In many applications, such as material thermal processing, 

inertial confinement fusion, second-harmonic generation, 

electron acceleration, and optical communication, a laser 

beam with a flat-topped spatial profile is required [1, 2]. This 

allows one to make better use of all the energy that is present 

in the laser beam or to make use of the entire volume. 

Several theoretical models have been proposed to describe a 

coherent flat-topped beam of circular symmetry [3, 4]. The 

desired uniform intensity distribution leads one to the study 

of Flattened Gaussian Beams (FGBs) or Super Gaussian 

Beams (SGBs). Flat-top laser beams can be realized by 

converting a Gaussian beam from a single transverse mode 

laser using an optical beam shaper [5]. Several approaches 

have been reported for the design of flat-top beam shaping 

devices. The most straightforward method is to truncate or 

attenuate the input Gaussian beam using a neutral density 

filter with a proper transversal transmittance profile [5]. The 

drawback of this approach is its poor energy efficiency. To 

improve the beam shaping efficiency, both reflective and 

refractive optical systems have been considered, resulting in 

the requirement of sophisticated optical surfaces that are 

difficult to fabricate and high beam shaper fabrication costs 

[6]. 

Recently, the characterization of laser beams has been the 

subject of many research works [7, 8]. In the last decade, 

many parameters and factors have been introduced in 

literature to describe different laser beams in practice. Among 

those parameters, we found the power in bucket (PIB), the M��  factor which is used to predict the laser beam quality [9, 

10] 

The analytical calculation of the power entering through an 

aperture (the power fraction) and the generalized beam 

propagation factor for different laser beams rectangular 

symmetry has been based on the definition of the moments of 

intensity of order 2. However, we must appeal to the 

definition of moment of intensity truncated [11] when the 

ABCD optical system has an opening. In the literature, the 

laser beams truncated Gauss beams, cosh-Gauss beams and 

Hermite-cosh-Gaussian beams admit analytical solutions [12, 

13]. 

In this step of work, we determine the closed-form 

expression for the power fraction (PIB) and the generalized 

beam propagation factor for truncated circular flattened 

Gaussian beams. These two last parameters are already 

determined in an approximate tone [14]. The truncated and 

no truncated Gaussian beams can be deduced as a particular 

case of the considered beams when N = 1. 

2. Power Fraction of Circular Flattened 

Gaussian Beams 

The electric field of circular flattened Gaussian beams at   

z = 0 can be expressed as the following finite sum of 

Gaussian modes 
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���, 0	 = ∑ �
 exp �− 
���� � ,�
��                  (1) 

Here �  is the waist width of the circular flattened 

Gaussian beams, the amplitude parameter 

�
 = ���	���� ��
 .                                  (2) 

Within Eq.(2), ��
  denotes a binomial coefficient and " �" = 1, 2, 3, … . 	  is the order of the flattened Gaussian 

beams. When" = 1, Eq.(1) reduces to a Gaussian beam. 

The power fraction ' is given as: 

' = ()*+()*,                                             (3a) 

Where, the total power entering through the aperture of - 

radius is defined by 

./0 = 1 1 	�3/ |�
	��	, 5, 0	|��6�650/ .            (3b) 

And, the total power of the beam through out the space. 

./7 = 1 1 	�3/ |�
	��	, 5, 0	|��6�6587/  .             (3c) 

The substitution from Eq. (1) into Eq. (3b) and after some 

algebraic manipulation, we obtain the expression of the total 

power 

./0 = 9:� ∑ ∑ �
�; �<��=��/� 
8; ��;���
��             (4) 

Where, the probability integral of the ?� -distribution 

defined by [15,16] 

<�χ�/ν	 = ��B �⁄ D�B��1 tB���e�F�	dtH�/              (5a) 

And I� = √K + MN                            (5b) 

The truncation parameter N = 0�                                          (5c) 

By letting - 	→∞  and, use of the property of the 

probability function 

limH→7 <Tχ� UV W = 1                             (6) 

One obtains 

./7 = 	9:� ∑ ∑ �
�; � �
8;��;���
��                     (7) 

Finally, Eq. (3a) can be written as 

' = ∑ ∑ X�XYZ<��F��/���[Y \*Y]�*�]�
∑ ∑ X�XY� ��[Y�*Y]�*�]�                            (8) 

This equation is a closed-form of the power fraction of 

circular flattened Gaussian beams. To illustrate this 

result.Fig.1 describes the variation of '  versus truncation 

parameter α for some values of ". 

From this formula, we can deduce two limiting cases: 

� for an infinitely large aperture. in this case the Eq.(8) is 

reduced to ' = 1                                      (9) 

� When N=1 the expression of ' reduced to the '�^_``a^b. '�^_``a^b = <�4N�/2	                    (10) 

 

Fig. 1. The power fraction ' as a function of truncation parameter N for 

various order ". 

3. def-Factor of Truncated Circular 

Flattened Gaussian Beams 

Following the Refs [7], we define the second-order 

irradiance 〈��〉	in spatial domain,	〈i�〉 in frequency domain 

and the cross second moment 〈r	p〉 of a hard-edged diffracted 

read 

〈��〉 = �()+ 1 1 	�3/ ��|���, 5, 0	|��6�65	.0/         (11) 

〈p�〉 = �k�()+ 1 1 	�3/ |Em��, 5, 0	|��6�65	0/ + �nok�()+ 1 	�3/ |E	�-, 5, 0	|�65.                                      (12) 

〈r	p〉 = ��apq)r 1 1 	�3/ srtEm��, 5, 0	u∗E��, 5, 0	 − rEm��, 5, 0	E∗��, 5, 0	wrdr65	./̂                               (13) 

The prime indicate derivation with respect to �, x	is the 

wave number, and 	∗ is the complex conjugate. 

The generalized beam propagation factor yz�-factor reads 

in the cylindrical coordinate system 
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yz� = x{〈��〉〈p�〉 − 〈�	p〉�.                    (14) 

Substituting from Eq. (1) into Eq. (11) can be written as 

〈��〉 = 3|�()+ ∑ ∑ �
�; �<��=��/} �
8;	� ��;���
��       (15) 

Substituting from Eq. (4) in to Eq. (12) can be written as 

〈p�〉 = 3k�()+ ∑ ∑ 4KM�
�; �<��=��/} �
8;	� ��;���
�� + o�3ok�()+ |E	�-, 0	|�	                                     (16) 

Where |��-, 0	|� = ∑ ∑ �
�;exp	�−�K + M	N�	�;���
��    (17) 

Note that 〈r	p〉	 vanishes since the Circular Flattened 

Gaussian field distribution is real valued in the waist plane. 

Finally, the analytical expression of yz� -factor can be 

written as 

yz� = ~∑ ∑ �����<��F��/� ��[�	� ��∑ ∑ }b������<��F��/� ��[�	� ���]���]� 8��� ∑ ∑ ������]���]� ����=�����]���]�
∑ ∑ �����<��F��/� �[� ���]���]�

                             (18) 

From this formula, we can deduce two limiting cases: 

� for an infinitely large aperture, in this case the Eq.(18) is reduced to 

y	� = lim�→7yz� =
�∑ ∑ ����� �

(�[�)���∑ ∑ }b������ �
(�[�)����]���]� ���]���]�

∑ ∑ ����� �
�[����]���]�

                                                (19) 

� If " = 1 corresponding to Gaussian beams. Using the 

relation between the probability integral of the ?� -

distribution and the incomplete gamma function, and 

the recurrence relation for the incomplete gamma 

function Eq.(18) simplifies to 

yz� =
������2N2�2N2��2N2���8��� ��2N2�2N2��2N2�

����2N2
    (20) 

The expression (18) is a closed-form of yz� − factor of the 

circular flattened Gaussian beam passing through a hard-

edged aperture. To illustrate Eq.(18), we present in Figs. 2 , 

the yz� − factor versus the truncation parameter N for which 

the power fraction, for various values of ". 

 

Fig. 2. yz� − factor of a circular flattened Gaussian beams versus N with (a)	" = 2 , (b) " = 3, (c) " = 4, (d) " = 5. 

These figures show that for all values of beam order, the 

yz� −factor decreases with N	and tends to the no truncated 

y	� −factor	. So, for " = 2, the value of y	�	is 1.0307 . From 

these figures, we can determine the values of y	�	which are 

respectively: 1.1353, 1.1833, 1.2370 for " = 5,7,  and 10 . 

Also, we can determine from our analytical expression of the 

yz� − factor some particular cases. 

4. Conclusion 

On the basis of the generalized truncated second-order 

moments, generalized yz� −  factor of hard-edge diffracted 
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circular flattened Gaussian is derived. The closed-form 

expression for the yz� − factor of hard-edge diffracted CFGB 

is dependent on the truncation parameter N and beam order N. 

Two special cases of M -factor of hard-edge diffracted CFGB, 

one is the case for N →∞, for untruncated case, and the other 

is the case for N=1, for truncated Gaussian beam, have been 

discussed. In addition, the power fraction is demonstrated 

analytically and numerically. 
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