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Abstract: We consider a principal (e.g., a ridesharing platform such as Uber or Lyft) who receives two types of jobs (e.g., 

passengers requesting solo or shared rides) according to a Poisson process. The principal first decides which jobs to admit 

and then assigns an agent (e.g., driver) to perform them. The agent who is assigned the job has preference between the two 

types of jobs. The agent can independently decide whether to accept or reject a job which is assigned to them. The principal 

and the agent receive different rewards from each job thus resulting in incentives misalignment. The research questions are: 

(1) which job(s) should the principal admit? (2) How much should the principal pay the agent? To answer these questions, 

we model the agent as an M / M / 1 loss system. Using a Markov decision process and dynamic programming, we find the 

optimal wage the principal should pay the agent and a threshold admission policy (also known as trunk-reservation or 

switching-curve policy). Prior literature did not consider two players (agent and principal) with misaligned objectives and 

each making dynamic decisions. We contribute to the literature by adding another layer of decision making and by 

introducing server (agent) independence wherein the servers have preferences regarding the type of job they wish to 

perform. 
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1. Introduction 

Consider a principal that assigns jobs to an agent. The 

principal first decide whether to admit a job and then decide 

how much to pay the agent to do the job. There are two types 

of jobs and the agent has preference between them. The agent 

first observes the type of job and the pay offered by the 

principal and then decides whether to do it or not. The 

research problem is to maximize the principal’s profit when 

there is misalignment between the players’ incentives. Both 

the principal and the agent are strategic, risk-neutral, and 

independent. This means both aim to maximize their 

profit/rewards and will participate if and only if their 

expected reward is at least as high as the utility from external 

options. The specific research questions are as follows: (1) 

which job(s) should the principal admit? (2) How much to 

should the principal pay the agent? 

To motivate the problem setting, consider the case of a 

ride-sharing platform such as Uber or Lyft (see Figure 1). 

The ride-share platform (principal) gets requests from 

passengers (jobs) and then match them with drivers (agents). 

Drivers are independent contractors who use their private 

cars to transport passengers on the ride-share platform’s 

behalf. Passengers can ride alone (solo) or share (pool) the 

ride with other passengers (e.g., UberPOOL, Lyft Line). It 

has been reported that drivers generally prefer solo rides over 

pooled rides. According to Uber’s head of driver product, 

“We heard from drivers that Pool feels like extra work 

without additional pay. Multiple pickups in particularly made 

Pool trips more challenging.” (Source: Los Angeles Times). 

Drivers experience a higher inconvenience from a pooled ride 

because it is more stressful and a hassle to pick-up and drop-off 

two different passengers in a single trip. While a pooled ride is 

cheaper than a solo ride, the expected travel time for the former 

is higher than that of the latter. This is due to the additional pick-

ups/drop-offs and possible detours during a pooled ride. 

Moreover, pooled passengers may be strangers and sharing the 

space with each other may cause discomfort between them, 

creating an unpleasant service experience. The driver’s rating 

could be negatively affected if one of the customers disliked the 

service due to co-passenger’s bad behavior. 
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Figure 1. An example of principal-agent setting. 

Therefore, a driver may have an incentive to not accept a 

pooled ride request and instead wait for a solo request. In 

doing so, the driver forgoes the certain reward from the 

pooled ride she just rejected in hopes of getting the more 

preferred choice (solo ride) soon. Meanwhile, the ride-share 

platform does not experience any inconvenience cost that the 

drivers incur when serving pooled rides. It may so happen 

that the ride-share platform may even prefer a pooled ride 

over a solo ride depending on the net profit (=total 

fare−driver’s wage) per unit time. This presents 

misalignment in the incentives of the driver and the ride-

share platform. In this context, the problem is to maximize 

the ride-share platform’s profit given the drivers’ preference 

between solo and pooled rides. 

Another example of principal-agent misalignment when 

the agent is independent is the case of a journal editor 

assigning a manuscript to a referee/reviewer for peer-

review. The editor (principal) first decide whether to desk-

reject a paper (job). The editor then assigns a referee (agent) 

to review the paper based on the referee’s area of expertise. 

The referee has preference over the type of papers to review 

(e.g., some referees prefer theoretical papers over empirical 

ones) and can choose to accept/reject an invitation to 

review. The referee’s personal preference and decision to 

accept the invitation to review is independent of the editor. 

The editor is concerned with managing the cycle-time and 

throughput. 

2. Literature Review 

Many papers have tackled admission control problems 

under different settings [3-10, 15-19]. Our paper in 

particular relates to Altman et al. [1], Ormeci et al. [11] and 

Savin et al. [13]. Altman et al. [1] study admission control 

of calls made by multiple classes of customers with no 

waiting room. They build a discrete model and use dynamic 

programming and fluid approximation to develop structural 

properties of optimal policies. They introduced the so-

called “threshold policy” which states that in a system with 

two customer classes (phone calls to a call-center), a call of 

one type should be admitted only if the number of calls of 

the other type is below a threshold. Ormeci et al. [11] 

conducted a similar study. They consider a Markovian loss 

queueing system with two classes of customers. Each class 

has a different service rate and reward. Similar to Altman et 

al. [1], they also show the existence of a threshold policy. 

Furthermore, they show the conditions under which there 

exists a preferred class such that whenever a server is free, 

any customer belonging to the preferred class is accepted 

by the system. Compared to the above-mentioned works, a 

more application-based study was done by Savin et al. [13]. 

They study the capacity allocation of a car rental business 

with two types of customers. Using fluid approximation, 

they develop a computationally efficient heuristic to 

allocate capacity on the optimal fleet size. 

We contribute to the literature by adding another layer of 

decision making and by introducing server (agent) 

preference wherein the servers have preferences regarding 

the type of job they perform. Unlike our work, prior 

literature did not have two players (agent and principal) 

with misaligned objectives and each making dynamic 

decisions. We relax the assumption present in most optimal 

admission control problems that each server performs the 

task assigned to it. 

3. The Agent’s Problem 

Now we will discuss the model specifics, starting with 

the agent’s problem. Assume there are two types of jobs, 

indexed by � = 1, 2 . The agent receives type- �  jobs 

according to a Poisson process with parameter �� > 0. The 

service-time for a type- �  job is distributed exponentially 

with mean 1/�� > 0. When the agent is busy doing a job, 
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she receives no additional requests. In other words, there is 

no waiting room for requests if the agent is busy and 

therefore, we model the agent as an �/�/1 loss system. 

When doing a job, the agent receives wages at a rate of 
 

per unit time. Without the loss of generality, we normalize 

the agent’s operating cost to zero. 

Suppose the agent have preference between the two jobs. 

For example, suppose the agent dislikes doing one type of 

job (say, type-2). To capture this, assume the agent incurs 

an inconvenience cost � per unit time when doing type-2 

jobs. Hence, the effective wages of the agent for doing a 

type-1 job is 
� = 
  and a type-2 job is 
� = 
 − � . 

Whenever the agent receives a job-request, she must either 

accept it or reject it right away. Intuitively, she will decline 

a request if the expected earnings from it is too low or if she 

finds it better to forego the immediate earnings from it in 

hopes of getting a more lucrative job soon. Assume 

earnings are continuously discounted at a rate 0 < � < 1. 

The agent’s problem is to find the optimal action (accept or 

reject) whenever a new request arrives, such that it 

maximizes the total expected discounted rewards over an 

infinite horizon. 

At any given time, the agent is in state � ∈ {0, 1, 2}, where � = 0 indicates when the agent is idle, and � = 1 and � = 2 

indicate when the agent is serving job types- 1  and 2 

respectively. When the agent is idle (� = 0) and a type-� job 

arrives, she can either accept or reject it. Denote the action 

“accept” as � = 1 , and “reject” as � = 0 . Note that even 

though the state evolves over continuous time, the actions are 

taken only at arrival epochs, and therefore, we can maximize 

the total expected discounted rewards using a discrete-time 

Markov Decision Process [12]. 

To find the equivalent discrete-time system, we use 

uniformization to re-scale the transition-rates so that each 

transition happens at regular intervals [6, 14]. Specifically, we 

define � = �� + �� + �� + �� and divide the actual transition 

rates �� and �� by �. Then the transition rates out of state � = 0 

is (�� + ��)/�, out of state � = 1 and � = 2 are ��/� and ��/�, 

respectively. Next, we add a “fictitious” transition with rate 1 − (�� + ��)/� from state � = 0 to itself, and “fictitious” self-

transitions with rates 1 − ��/� and 1 − ��/� , respectively, to 

states � = 1  and � = 2  (Markov-Chain before and after 

uniformization are given in Figure 2). Continuous-time 

discounting at a rate � is equivalent to the system terminating 

with probability � in the next transition [12]. This implies, at 

every stage, with probability �, all future rewards are set to zero. 

So, the maximum transition rate is � + �. 

 

Figure 2. Uniformization and fictitious transitions. 

The agent makes decisions � ∈ {0, 1} only at arrival epochs. When the agent is busy, she cannot accept any request, 

meaning, actual decision making occurs only when the agent’s state is � = 0. Furthermore, at service completions, no actions 

are necessary. Let �� be the optimal total expected discounted earnings starting at a non-arrival event (include actual and 

fictitious service-completions). Let �� , � = 1, 2, be the corresponding value starting when a type-� job arrives and the agent is 

not busy. The optimality equations are as follows: 

�� = �� ! [���� + ���� + (�� + ��)��],                                                                 (1) 

�� = �� !max'(�,���(�), � = 1, 2,                                                                        (2) 

where, 

��(�) = ) �� ! ((
� + ��)�� + (� − ��)��), when	� = 1,!� ! ��, when	� = 0.                                                (3) 
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Proposition 1 states the optimal policy for the agent, which in turn helps the principal decide the wages to pay so that the 

agent is incentivized to make the choice desired by the principal. 

PROPOSITION 1 [How much to pay the agent?] It is optimal for the agent to (1) accept both job-types if 
01�01 = 
0�0, or 

if 
0�0 < 
01�01 and 
01�01�01 ≤ 
0�0(�01 + � + �01), and (2) accept only job-type �′ if 
0�0(�01 + � + �01) ≤ 
01�01�01, where �, �′ ∈ {1, 2} and � ≠ �′. 
Proof of Proposition 1. For a given policy 5, denote the expected discounted infinite-horizon earnings starting in state � as �05 . If the agent accepts both jobs, denote the policy as 5 = (1, 1), and if she accepts either only type-1 job or only type-2 job, 

denote the policies as 5 = (1, 0) and 5 = (0, 1) respectively. 

If the agent accepts both jobs, 

��(�,�) = 678797(� 8:) 6:8:9:(� 87)�;6:(� 87) (� 8:)(� 67 87)<,                                                                 (4) 

��(�,�) = 8:;9:;6:(� 87) �(� 67 87)< 678797<�;6:(� 87) (� 8:)(� 67 87)< ,                                                         (5) 

��(�,�) = 87;97;(� 67)(� 8:) �6:< 6:8:9:<�;6:(� 87) (� 8:)(� 67 87)< .                                                           (6) 

If the agent accepts only job 1, 

��(�,�) = 6:8:9:�(� 6: 8:),                                                                                (7) 

��(�,�) = 8:9:(� 6:)�(� 6: 8:),                                                                                (8) 

��(�,�) = 6:8:9:�(� 6: 8:).                                                                                 (9) 

If the agent accepts only job 2, 

��(�,�) = 678797�(� 67 87),                                                                                (10) 

��(�,�) = 678797�(� 67 87),                                                                                 (11) 

��(�,�) = 8797(� 67)�(� 67 87).                                                                                 (12) 

Note that �0 > 0, �0 > 0,
0 ≥ 0,0 ≤ � ≤ 1 where � = 1, 2. Policy 5 = (1,1) is optimal (accept both job-types) if �>(�,�) ≥�>(�,�), �>(�,�) for every ? = 0,1, 2. On simplification, we get the required conditions: 

@
� = 8:9:87 A or @
� < 8:9:87 and�� ≤ 8797(� 8:)8:9:E8797A or @�� ≤ 8:9:(� 87)8797E8:9: and
� > 8:9:87 A.                           (13) 

Similarly, policy 5 = (1,0) is optimal (accept only type-1 job) if �>(�,�) ≥ �>(�,�), �>(�,�) for ? = 0,1, 2, which holds if 

�� ≤ 8:9:6:97(� 6: 8:)                                                                                   (14) 

and policy 5 = (0,1) is optimal if 

�� < 67979: and�� ≥ 8:9:(� 67)6797E8:9: .                                                                        (15) 

4. The Principal’s Problem 

Using Proposition 1, the principal learns how the agent 

makes her choices regarding accepting/rejecting a job and 

therefore, can set wages 
�, 
� so that the agent accept the 

types of jobs the principal assigns her. Now the question is, 

how does the principal decide which jobs to assign? The 

principal has to take into account agent preference and the 

total number of agents (capacity). To find out, let the system 

state, defined as the number of jobs of each type being served, 

be denoted as (F�, F�) . Let GH(F�, F�)  be the expected 

discounted reward of the principal when there are I  more 

periods to go. Denote J�  as the exogenous price paid by 

customer type- �  to the principal. Define uniformization 

constant Γ = �� + �� + L(�� + ��) + �. Without the loss of 

generality, assume Γ = 1. Let M = {1, 2, . . . , L} where L ≥ 1 

is the number of agents. Let N be Bellman operator such that ∀F� + F� <= L: 
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GH �(F�, F�) ≡ NGH(F�, F�) = QR
S ��max{J� − 
� + GH(F� + 1, F�), GH(F�, F�)} +��max{J� − 
� + GH(F�, F� + 1), GH(F�, F�)} +F���GH(F� − 1, F�) + F���GH(F�, F� − 1) +((L − F�)�� + (L − F�)��)GH(F�, F�)

                           (16) 

Also, define G�(F�, F�) = 0 for all F�, F� ∈ M and F� + F� ≤ L. 
PROPOSITION 2 [Which job(s) should the principal admit?] For given F� , F0  where �, � ∈ {1, 2}, � ≠ � , there exist a 

threshold F� which depends on F�, such that a fresh arrival of type-� job is accepted if and only if F0 < F�, where F� = L − F�  if G(F� + 1, L − F� − 1) > G(F� , L − F� − 1) and F� = T�I(F0:	0 ≤ F0 ≤ L − F� − 1, G(F� + 1, F0) ≤ G(F� , F0)) otherwise. 

Proof of Proposition 2. We need the following two lemmas to prove Proposition 2. 

LEMMA 1: GH(⋅) is a (weakly) decreasing function. 

Proof of Lemma 1: We use mathematical induction to prove GH(F�, F�) ≥ GH(F� + 1, F�) and GH(F�, F�) ≥ GH(F�, F� + 1) for 

all F�, F� ∈ M, F� + F� + 1 ≤ L and I ∈ ℤ . First, we will prove 

GH(F�, F�) ≥ GH(F� + 1, F�).                                                                            (17) 

For I = 0, G�(F�, F�) = G�(F� + 1, F�) = 0. So (17) is true for I = 0. 

Next, suppose GH(F�, F�) ≥ GH(F� + 1, F�) is true for some I > 0 (induction hypothesis). 

We have GH �(F� + 1, F�) = ��max{J� − 
� + GH(F� + 2, F�), GH(F� + 1, F�)} + ��max{J� −
� + GH(F� + 1, F� +1), GH(F� + 1, F�)} + (F� + 1)��GH(F�, F�) + F���GH(F� + 1, F� − 1) + ((L − F� − 1)�� + (L − F�)��)GH(F� + 1, F�). 
We also have GH �(F�, F�) = ��max{J� −
� + GH(F� + 1, F�), GH(F�, F�)} + ��max{J� − 
� + GH(F�, F� + 1), GH(F�, F�)} + F���GH(F� −1, F�) + F���GH(F�, F� − 1) + ((L − F�)�� + (L − F�)��)GH(F�, F�). 
It is easy to see that if our induction hypothesis is true, then GH(F� + 1, F�) ≥ GH(F� + 2, F�), GH(F�, F�) ≥ GH(F� +1, F�), GH(F�, F� − 1) ≥ GH(F� + 1, F� − 1), GH �(F�, F�) ≥ GH �(F� + 1, F�). 
Hence, GH(F�, F�) ≥ GH(F� + 1, F�) is true for I = 0 and, if it is true for some I > 0, then it holds true for I + 1 as well. 

The case for type-2 jobs (i.e., GH(F�, F�) ≥ GH(F�, F� + 1)) can be shown analogously. X  

LEMMA 2: GH(⋅) is a sub-modular function. 

Proof of Lemma 2: We want to prove that 

GH(F�, F�) − GH(F�, F� + 1) ≤ GH(F� + 1, F�) − GH(F� + 1, F� + 1),                                          (18) 

for F� + F� + 2 ≤ L, F�, F� ∈ M and I ∈ ℤ . 

Just like in the proof of Lemma 4, we use mathematical induction to prove (18). 

For I = 0, clearly (18) holds true because G�(⋅) = 0. Next, suppose (18) holds true for some I > 0 (induction hypothesis). 

Consider the following strategy: It is optimal to accept job type-1 if it arrives during state (F�, F�) and to reject if it arrives 

during state (F� + 1, F� + 1). We have, 

max{J� − 
� + GH(F� + 2, F�), GH(F� + 1, F�)} + max{J� −
� + GH(F� + 1, F� + 1), GH(F�, F� + 1)} ≥GH(F� + 1, F�) + J� − 
� + GH(F� + 1, F� + 1) =max{J� − 
� + GH(F� + 1, F�), GH(F�, F�)} + max{J� − 
� + GH(F� + 1, F� + 1), GH(F�, F� + 1)}               (19) 

The last two terms in (19) represent the one-stage optimal decision under consideration (that is, accept job type-1 if it arrives 

during state (F�, F�) and reject if it arrives during state (F� + 1, F� + 1)). Also, note that the last three terms in (16) represent 

non-arrival epochs where no decisions are made. Therefore, using the induction hypothesis and (19), if the optimal actions are 

as stated above, whenever (18) holds for I > 0, it holds for I + 1 as well.
1
 

Next, consider the following strategy: It is optimal to reject job type-1 if it arrives during state (F�, F�) and to accept if it 

arrives during state (F� + 1, F� + 1). Note that 

max{J� − 
� + GH(F� + 2, F�), GH(F� + 1, F�)} + max{J� −
� + GH(F� + 1, F� + 1), GH(F�, F� + 1)} ≥J� −
� + GH(F� + 2, F�) + GH(F�, F� + 1).               (20) 

Using (18) twice, we get 

J� −
� + GH(F� + 2, F�) + GH(F�, F� + 1) ≥ GH(F�, F�) + J� − 
� + GH(F� + 2, F� + 1) =max{J� − 
� + GH(F� + 1, F�), GH(F�, F�)} + max{J� − 
� + GH(F� + 1, F� + 1), GH(F�, F� + 1)}.                      (21) 

                                                             
1
 This step is inspired by [1] and [2] that study the submodular value functions in dynamic programming. 
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Therefore, using the induction hypothesis, equations (20 

and (21), if the optimal actions are to reject job type-1 if it 

arrives during state (F�, F�) and to accept if it arrives during 

state (F� + 1, F� + 1) , whenever (18) holds for I > 0 , it 

holds for I + 1 as well. 

Lastly, it is easy to see that if it is optimal to take the same 

decision when job type-1 arrives during state (F�, F�)  and 

state (F� + 1, F� + 1), then whenever (18) holds for I > 0, it 

holds for I + 1 as well.  

Note that (16) is a contraction mapping and the Bellman 

operator T preserves monotonicity and sub-modularity 

properties of Vn(·) when applied repeatedly [12]. Also, both 

state space (x1, x2)∈S
2
 and action space (accept/reject/do 

nothing) are finite, which gives limn→∞ Vn =V. From Lemma 

2, V (x1, x2) is a submodular function. As a consequence, we 

have an optimal threshold policy [2, 12] (also known as 

trunk-reservation or switching-curve policy [13]). A direct 

application of Theorem 2 in Savin et al. [13] leads us to 

Proposition 2. 

5. Conclusion 

We consider a principal that receives two types of jobs 

according to a Poisson process. The principal assigns jobs to 

an agent (server) who may or may not accept them. The 

agent prefers one type of job over the other. The principal has 

two decisions to make: which job to admit and how much to 

pay the agent so that they accept the job assigned to them. 

We derived propositions 1 and 2 to help make the latter and 

the former decisions respectively. There are a number of 

ways to extend this paper. In the paper, we consider a single 

representative agent because we assume all agents have 

similar preferences. But what happens when the agents have 

heterogeneous preferences? What is the optimal number of 

agents c to hire? What happens when there are more than two 

types of jobs? What should be the optimal prices J�and J� 

paid by the customers to the principal? These are some of the 

possible research questions to explore in future works. 
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