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Abstract: Delivery speed and product cost are critical to both our customers and our shareholders. Test cost has historically 

represented a third or more of overall product cost. Testing requires considerable time investments as well, especially given the 

nature of products in the aerospace domain, and their safety demands. In this paper we describe work in use today at a large 

aerospace manufacturer to optimize test and inspection operations in complex engineering products. We extend Deming’s work 

from the theoretical to application by applying a decision tree and data analytics to test information, resulting in significant 

savings in dollars and time for test and inspection operations. A bill-of-materials plus operations visualization is employed to 

initially identify test and inspection operation candidates for removal, and then Deming’s work is extended in this paper to 

determine the business case for removal, resulting in a final approval by experts driven by the underlying data. The decision tree 

is described, as well as algorithms to estimate failure rate and rework costs that are integral to applying Deming’s analysis. A 

small set of business case results for removing an inspection and a test operation using the applied analysis are shared. 
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1. Introduction 

Test cost represents between 30%-50% of product cost, as 

detailed in previous works [1-4]. A single test operation may 

be comprised of over 1000 test measurements. In 2017, we 

formed an analytics team focused on reducing engineering test 

cost [5]. We initially found the data quality problematic and 

challenging, but were able to develop methods for users to 

improve its quality for analytics use [6]. Maksi et al detail 

related work to leverage improved test data quality to identify 

test reduction possibilities [7]. This paper describes our work 

systematically applying knowledge to remove expensive test 

operations, while maintaining product integrity, extending the 

work of Deming [8]. Visualization of test operations is 

described in a previous study [9], and was used to provide 

context for the current work. The bill-of-materials plus 

operations view used as the basis for these visualizations is 

described by Jiao et al. [10], which employs NIST’s (National 

Institute of Standards and Technology) CMSD (Core 

Manufacturing Simulation Data) standard [11]. The d3.js tool 

suite is described by Bostock [12]. 

2. Approach 

We examined the analysis proposed by Deming [8], chapter 

15, for reducing incoming lot inspections, and extended his 

work to test operations within our factory. This was used to 

create a business case to determine if it made sense to remove 

a redundant test. The analysis suggested by Deming is simple; 

if the failure rate is less than the cost of the incoming 

inspection over the cost of addressing the failure at a later 

point in the production process then consider removing the 

incoming inspection. (See Figure 1.) 
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Figure 1. Deming Analysis. 

Stated in another way, it costs more to complete a test on all 

units than it costs to repair failures later in the production 

process. Deming’s analysis assumes omniscience and no error, 

which of course was not available to us. 

From Deming [8], p. 41: 

Case 1: If P < K1/K2, no inspection 

Case 2: if P > K1/K2, 100% inspection 

Essentially we have a straightforward question, is the 

failure rate, P, for a test less than the ratio of the cost of the test, 

K1, over the total cost of capturing a defective unit at a later 

test, K2? Given the realities of the data we were working with, 

there were five major challenges with even the simple formula 

that Deming proposed (and these challenges encompass the 

entire formula): 

1. How does one calculate the cost (either of doing an 

operation, or of performing rework)? 

2. What is P (the true underlying failure rate)? 

3. What is K1 exactly and what are K1’s bounds? 

4. What is K2 (the cost of rework associated with failures at 

the upper level test)? 

5. What inspection or test operations are redundant? 

In the aerospace and defense industries test failures are well 

documented. Even issues as a result of test station problems, 

operator error (e.g. did not plug in the unit), or factory 

blackouts would be recorded at the unit level, therefore we 

needed to tease out failures or issues that were actually 

traceable to hardware problems. 

2.1. Cost 

The most important question that all others predicate upon 

is whether cost can be mined and or calculated. If the cost data 

is unavailable or unknowable then all follow on questions are 

moot. In our case we have plenty of touch labor data (charged 

hours) available to us and traceable to units, but the hours 

charged by engineers, support, and maintenance were difficult 

to derive and trace to a per unit cost. Additionally we could not 

know the overhead costs associated with security, electricity, 

and other utilities. It was determined that the touch labor hours 

were a good proxy for cost and that all other costs were 

approximately linearly proportional, therefore costs (within 

the same product line) could be compared and well 

approximated using touch labor data. 

2.2. Failure Rate 

The failure rate, P, is calculated empirically as the total 

number of units that failed on the first test attempt and required 

rework, divided by the total number of distinct units tested. 

Where there were a relatively small number of units tested, and 

very few failures, one will have a large uncertainty as to the true 

failure rate. A failure rate of 0% will always be less than the 

ratio of test costs to rework costs, however one can never really 

be completely certain the true failure rate is actually 0. For 

instance, no failures in 100 units may not mean there would be 

no failures in 1000 units (or 10,000 units). In order to ensure we 

could be certain of any savings we used the upper bound of P, 

the failure rate (i.e. the failure rate was overestimated). We 

considered several different methods of calculating the upper 

bound of P, the failure rate, including the Clopper-Pearson 

interval, an upper confidence bound based on the Beta 

distribution, the Wilson Score and the Wilson Score with 

Continuity [13, 14]. The upper bounds calculated by these 

methods were very similar. We ultimately settled on the Wilson 

Score with Continuity because we could easily calculate the 

Wilson Score with continuity in a SQL query. See (1) below. 

��� = 1 − ��	
0, 
� 


 =	
2��1 − ��� +	�� − ����� − 1� + 4��1 − ����� + �4�1 − ��� − 2� + 1�

2�� + ���  

(1) Where n is the number of trials, x is the number of 

passes, PUB is the upper bounds for the failure rate, PE is 

the empirically calculated failure rate ((n-x)/n), z is the 

z-score from a Normal distribution that corresponds to 

the desired confidence (often we choose z = 2.97), and α 

is the error (1 – confidence interval). 

2.3. The Cost of Performing the Test 

The cost of performing the lower level test, K1, is more 

difficult to estimate. Our products have varying TAKT times 

ranging from minutes to tens of hours and therefore K1 is 

highly dependent upon the factory and the product specifics. 
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K1 was estimated/derived by examining the touch labor data 

for the lower level test (i.e. the one we were attempting to 

remove). Given the various external factors affecting the 

actual charge labor time we were very careful about the 

timeframe in which we used to estimate K1. We always 

consulted factory product engineers and management to 

ensure there were no process changes or design changes that 

straddled the timeframe that we used to estimate K1. 

K1 needs to also account for costs associated with 

opportunity for failure not associated with hardware, meaning 

K1 needs to bundle in the cost of failures associated with test 

position problems, and operator error. Whatever failure rate 

that is not associated with hardware, as outlined in the 

previous section (2.2.), should be taken into account for the 

rolled up cost of K1. The specifics of how to roll these costs in 

K1 will be unique to each factory and or product, however the 

costs for our products were reasonably estimated using the 

following (2): 

�� ≈ 	� ! +	∑#$%&$%  

(2) Where � ! is the average labor cost of units that passed, ∑#$% is the sum of all rework associated with failures 

that were not related to hardware (the unit), and FNH is the 

number of units that failed non-hardware related issues. 

2.4. Rework Costs 

K2 is the total cost to capture a failure at a later point in 

production (see Figure 2). Many aerospace products include a 

complex assembly process. Testing is conducted at different 

points and at different stages of assembly. If a defective unit is 

not tested and the defect is found later in the process, the 

product must be disassembled, repaired, reassembled and 

retested. If the defect is found immediately after the deleted 

test the cost associated with K2 is minimal. If the failure 

cannot be detected until much later in the production process 

the cost associated with K2 may be very large. In a typical 

factory scenario there are a very small number of rework 

scenarios that span multiple assemblies since the failures are 

found at the lower level. 

 

Figure 2. Rework Diagram for Estimation of K2. 

We developed an algorithm to estimate K2 based on all 

historic data (3). 

�� ≈ '( + #� + '( = 2'( + #� 

(3) Where SW is the standard work content from the lower 

level test to the upper level test (where the failure is now 

found), and R1 is the historical average of touch labor 

hours needed go from the lower level test to the upper 

level test. 

2.5. Redundant Operation Identification 

Initially we completed Deming analyses on test operations 

identified by product engineers. These engineers had intimate 

knowledge of the test process for specific assemblies and they 

identified tests that were potentially redundant. We found 

instances where there was a sound business case to remove a 

test operation, and instances where the failure rate and cost of 

rework precluded removing a test. Our analysis was very 

successful, but inefficient. This method was constrained to 

conducting analyses on a single assembly. However our 

production process involves combining many complex 

assemblies into a final production unit. It was rare to find an 

engineer with intimate knowledge of test requirements for 

multiple assemblies, much less the entire production build. 

The Production Flow Visualization (PFV) the authors 

developed, described previously [9], and depicted in Figure 3, 

provided a complete picture of the entire test process for a 

production unit which was then leveraged to facilitate 

conversations about potentially redundant operations with 

OP(-1) TEST 1, T1 OP(1)OP(-M) OP(N) TEST 2, T2......

 Defect 

found at T1 

↓

Rework 

Standard work

Failure that would have 

been caught at T1 →

Standard work

Rework to get to T1

R1 (Rework)

...

SW (Standard Work)

 approximately SW (Standard Work)
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groups of experts. 

To further understand the operating context this paper is 

describing, Figure 4 below is the zoomed in look at a portion 

of Figure 3, to a specific part and operations, with their 

operation number (name), description, first pass test yield, 

hardware-driven yield, average labor, and earned standard 

hours information available. 

 

Figure 3. Production Flow Visualization (bill-of-materials plus operations view), from [9]. 

 
Figure 4. Highlighting details in Production Flow Visualization from [9]. 

Production Flow Visualization clearly shows types of tests 

completed on sub-assemblies, the tests completed after the 

sub-assembly is integrated into an assembly, and finally when 

integrated into the production unit. In some instances a 

sub-assembly was exposed to a thermal environment or 

vibration test three (3) or more times. Using Production Flow 

Visualization (known alternately as bill-of-materials and 

operations [10]), we looked for instances where a specific type 

of test was repeated in the production chain. We created a list 

of tests that were potentially redundant (using our simple 

analysis). We then completed a Deming analysis and 

presented our results to a group of production experts. 

2.6. The Whole Picture 

The Deming Analysis for test reduction is based on a key 

assumption that removal of the lower level test does not 

increase/change the escape rate at the upper level test (either that 

the upper level test has 100% perception to lower level defects or 

that the introduction of the lower level defects do not affect the 

escape rate from the upper level test). All final assessments as to 

whether a test should be removed was a decision made by 

product experts, and we relied heavily upon test and product 

engineering assessments of the likelihood of capturing failures at 

the later test. Additionally, the work that could have transpired 

in-between the lower level test and the upper level test is 

generically assumed to be reversible (e.g., no bonding operations) 

and therefore the forward flow work content is a good estimate of 

the reverse flow work content (e.g., torqueing and un-torqueing a 

bolt take roughly the same amount of labor). If the engineers 

were not confident that the defect would be captured, we did not 

recommend removing the initial test. 

Below is the entire equation (4) that was used to assess the 

viability of test or inspection operation removal. 

) = 	� −	���� =	��� −	*�
 ! +	∑#$%&$% +
�2'( � #��

 

Fully zoomed out view of 

bill-of-materials plus 

operations – little detail visible 

Zoomed in view providing 

progressive disclosure of detail 
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When D > 0 then Keep the Operation 

When D < 0 then proceed to review by a panel of experts to 

consider removing the operation 

3. Results 

We found three common outcomes to our analysis: 

1. removing the test resulted in cost savings with an 

acceptable increase in risk of passing a bad unit 

2. removing the test resulted in minimal cost savings 

3. removing the test was not advisable because of high test 

failure rates, or high cost to address the failure later in the 

production process 

Many of the analyses we completed spanned multiple 

sub-assemblies and assemblies. This meant that if a test was 

eliminated on a sub-assembly or component the defect would 

not be discovered until test at the assembly or production unit 

level. The total cost to capture a failure at a later point in 

production, K2, would include disassembly of the assembly to 

remove the component, and disassembly of the component to 

correct the defect. The failing component would have to 

complete all steps in the production flow until it was 

successfully reinstalled and tested in another assembly. K2 is 

defined as the total cost of rework for the defective component 

to be removed, repaired, retested and reassembled in another 

assembly. Production flow visualization provided insight into 

testing at each level of production assembly, and visualized the 

number of assembly and test operations performed between the 

test to be removed and the test that would capture any defects. 

The Deming algorithm and the production flow 

visualization allowed us to look for test reduction 

opportunities that we could present to engineers for final 

review and approval. We use data driven estimates for all 

Deming components. We developed SQL based queries to 

automate the process of calculating P, K1, and K2. We then 

created a decision process to determine which operations to 

analyze. The result was a decision tree, depicted below in 

Figure 5. 

 
Figure 5. Deming Decision Tree. 
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The top of the decision tree breaks tests into diagnostic and 

non-diagnostic or acceptance tests. A diagnostic test is 

performed early in development to verify the product meets 

design requirements, or if an unexpected failure becomes 

prevalent. The test is often intended to be temporary, but 

becomes difficult to remove. If a test is determined to be 

diagnostic, and it never fails, the test should be removed. The 

test is not providing any useful information and may be 

stressing a component unnecessarily. Likewise, if a diagnostic 

tests fails very rarely it may not be providing useful 

information to a test engineer. A Deming analysis helps 

determine if there is a business case to remove the test. If the 

process required to remove the test is more expensive than the 

total savings incurred from removing the test then the test is 

not removed. 

The rest of the decision tree guides a data analyst on when 

to apply Deming and when not to apply Deming. In many 

cases P, the failure rate, would have to be many times lower 

before a test could be removed. There are many nodes that 

require engineering input and cannot be assessed with data 

only. For instance, if the test is contractually required or 

safety related, or if the failure will be caught at a later 

operation. An engineering assessment is required to select 

the correct branch of the tree. The decision tree in Figure 5 

helped us to focus our efforts on test operations that could 

most likely be removed. 

While our initial focus was on test operations, we later 

found that the Deming analysis also could be applied to 

inspection operations. There were instances in our factory 

where an inspection was added to the middle of a component 

assembly process in response to production issues. The 

production issue was caught late in the production cycle and 

triggered expensive rework. Often the production process was 

improved and the production issues were eliminated, but the 

new inspection was not. Inspections at our factory are 

performed by quality engineers. A unit may be held up for 

minutes to hours waiting for an available quality engineer to 

complete the inspection. The Deming analysis provided data 

driven evidence that removing the additional inspection would 

not increase the cost of production, consistent also with 

Reinertsen [15]. 

In Table 1, results for a subset of operations initially 

identified using production flow visualization described above 

are included with their actual hours, operation type, failure 

rate, Deming analysis, and touch labor hours saved per unit. 

Table 1. Business case based on reduced touch labor hours. 

Material 
Remove 

Operation 
Type 

Capture Failure 

Operation 
K1 (Hrs) K2 (Hrs) 

Failure Rate, 

Upper Bound 
K1/K2 Deming P < K1/K2 

Touch Labor Hrs 

Saved per unit 

1 150 Inspection 180 0.4 1.30 0.03 0.31 YES 165.6 

6 130 Inspection 200 0.4 3.00 0.14 0.13 NO - 

7 70 Test 80 1.2 10.60 0.00 0.11 YES 90.4 

 

4. Conclusion 

Modern factories are typically awash in data, but 

availability and quantity of data does not necessarily mean 

one has the exact data or metric required for analysis. The 

work herein shows a rigorous application of Edward 

Deming’s theory from [8] and real world results (Table 1). 

Employing the Production Flow Visualization [9], insight 

was gained into testing at each level of production assembly 

to identify potentially redundant test and inspection 

operations. A decision tree was used to determine which 

operations should have the Deming analysis applied. The 

authors’ extension of the Deming lot inspection algorithm [8] 

determined whether a business case existed to remove 

specific test and inspection operations. Both tests and 

inspections were successfully removed using the approach 

detailed in this paper, resulting in lower product cost, and 

greater factory throughput. 
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