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Abstract: Direct measurement of crop water use is difficult and labour intensive. In some cases, the technicalities involved can 

only be exploited by well-trained researchers. Therefore, estimating this important crop parameter from readily available 

climatic data by way of modelling will ease the burden of direct measurement. The aim of the study is to parameterize models of 

canopy conductance of rain-fed cocoa tree, suitable for inclusion in physically-based model for predicting water use of cocoa 

trees. To do this, Sap flow density was monitored in three cocoa trees (Forestaro cultivar group) at the eight (8) year old cocoa 

plantation of the Federal University of Technology, Akure, Nigeria (7° 18' 15.9"N, 5° 07' 32.3"E), from 8
th

 March 2018 to 7
th
 

March 2019, covering the two seasons of the region. Cocoa tree transpiration was determined from the measured sap flow and 

fitted into a physically based model (PM) to derive canopy conductance used for modelling. To choose the best model that 

predicts canopy conductance (the stomata control of water transport) in cocoa trees, Vector Autoregressive Models (VAR), a 

multivariate time series model, and Long Short-Term Memory (LSTM) network, an Artificial Intelligence (AI) model were 

employed. The prediction power of the VAR model was assessed and visualized using the vars R package, while the LSTM 

model, a Recurrent Neural Network (RNN) algorithm was implemented using Python programming within Google COLAB 

jupyter notebook. Before modelling, data were tested for stationarity using the Augmented Dickey-Fuller test. While two-thirds 

of the data were used to train the models, the remaining one-third of the data were used to test the trained model. As VAR models 

were evaluated using R-squared and Root Mean Squared Error (RMSE), LSTM was evaluated by comparing the train loss and 

test loss, and also RMSE. VAR (with Adjusted R-Squared=0.11) is found not to be suitable to model the complex relationship 

between canopy conductance and climatic variables. Further iteration to exclude insignificant climatic variables from the VAR 

model did not also improve the model. However, LSTM with RMSE of 0.026 and having the test loss not dropping below the 

training loss was observed to perform better in modelling the canopy conductance of Cocoa. The result of the research further 

revealed that temporal dynamics of transpiration is complex and difficult to be defined by traditional regression. LSTM with a 

prediction accuracy of 97.4% could therefore be used for the prediction of cocoa canopy conductance. 
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1. Introduction 

Basically, water use characteristics data are time-series in 

nature, meaning that they are time-dependent and 

chronological. Thus, best models that suit water use 

characteristics research should be one that can explain and 

model time series data, resulting into better understanding of 

the stochastic mechanism that gives rise to the observed data 
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and good forecast of future value of the series based on the 

nature of that series and possibly other factors. 

For the past few years, different models have been 

extensively used in analysing time series data similar to water 

use characteristics [1, 2], and such models can be categorised 

into three, namely, traditional time series models, econometric 

models, and artificial intelligence models. 

Traditional time series models describe a variable in respect 

of its own historic variation and pattern, with key focus on 

seasonality. Based on this characteristic, future predictions 

can be made. Example of traditional time series models 

include ARIMA [3, 4], SARIMA [5, 2], Naïve 1, Naïve 2 and 

exponential smoothing models [6]. In looking further at the 

performance of these models, ARIMA and SARIMA have 

been found inconsistent in their prediction performance, and 

thus, researchers have in recent times sought for alternative 

models [6]. Naïve 1, naïve 2 and exponential smoothing 

models have also been employed in research but in many of 

the studies, they have been used as mere yardsticks for 

predicting error [6]. Key feature of most of these time series 

model is that they are univariate in nature, and may not be 

suitable in predicting crop water use that are determined by 

multiple factors. In the present study, traditional time series 

model was not used because crop water use needs to be 

explained by the factors influencing it. 

In contrast to traditional time series models, econometric 

models are useful in description and prediction, using factors 

influencing it [7]. Such approach to forecasting is of great interest 

to crop water use research because it provides information on the 

extent to which crop water use is influenced by determining 

factors. Econometric models such as Autoregressive Distributed 

Lag Model (ADLM) [8], Error Correction Model (ECM) [9], 

Time Varying Parameter (TVP) [10] and Vector Autoregressive 

(VAR) models [11] have been used commonly in literature in 

recent time. However, in the present study, VAR was adopted as 

the model of choice, being a model that has evolved over the 

years as a standard model to analyse multivariate time series data 

[12]. One important feature of VAR is that it is stable, meaning 

that it can create stationary time series that has time invariant 

means, variances and covariance structure, assuming there are 

sufficient starting values [13]. 

In addition to traditional time series models and 

econometric models, artificial intelligence (AI) models are 

other models that have been employed in research involving 

time series data. AI technique has been applied in various 

disciplines in recent times [14]. Its advantage is that prior 

information such as probability and distribution of data are not 

needed [15]. Examples of AI models in use are Artificial 

Neural Network (ANN), Support Vector Regression (SVR), 

Fuzzy Time Series (FTS) [16]. ANN model, which is based on 

simulation of human brain using a computer model is 

composed of interconnected processing elements called 

neurons, which are trained by adjustments of weights 

connecting the neurons such that the difference between the 

predicted and the observed outputs minimised as much as 

possible [17]. A commonly employed algorithm in the 

training is the back-propagation algorithm [18]. It is such that 

a neuron output is computed by joining a transfer function to 

the weighted sum of its input, which later serves as input to 

other neurons. ANN model is reported to be better than 

traditional time series model due to its flexibility in modelling 

non-linearity events [17]. The SVR is based on Support 

Vector Machine (SVM) procedure. The SVM is a nonlinear 

generalisation of the Generalized Portrait algorithm developed 

in Russia in the 1960s [19]. In real sense, SVM algorithm is 

deeply rooted in statistical machine learning and has wide 

real-world applications [20]. SVM has been applied to 

nonlinear regression modelling, such as in support vector 

regression (SVR) [21, 22]. SVR has been adjudged to be 

more powerful and flexible than traditional time series model 

like ARIMA when used in the field of social science [12]. 

Wen et al. [23] evaluated ETo estimate of SVM models by 

comparing the output with the ETo calculated using Penman–

Monteith FAO 56 equation (PMF-56) and found that the ETo 

estimated using SVM with limited climatic data was in good 

agreement with those obtained using the conventional 

PMF-56 equation employing the full complement of 

meteorological data. In the case of FTS model, it has the 

advantage of analysing short time series with few historical 

data. However, the drawback of FTS is that it is not good 

enough in terms of accuracy. There are suggestions for more 

research geared towards improving the accuracy and 

ascertaining its consistency [24]. 

Water use characteristics and climatic data are time series 

events that are difficult to predict accurately using traditional 

regression. Unlike regression predictive modelling, time 

series also imposes the complexity of a sequence dependence 

among the input variables. A powerful type of ANN designed 

to handle sequence dependence is known as recurrent neural 

networks. The Long Short-Term Memory (LSTM) network is 

a form of recurrent neural network used in deep learning 

because very large architectures can be effectively trained [25, 

26]. LSTMs (or long-short term memory networks) allow for 

analysis of sequential or ordered data with long-term 

dependencies present [25]. A special advantage of LSTMs 

compared to other time series models such as ARIMA and 

VAR, is that data does not need to be stationary (i.e. constant 

mean, variance, and autocorrelation), in order for LSTM to 

learn [27] for this reason LSTM was employed as a modelling 

tool in the study. 

2. Materials and Methods 

2.1. Sap Flow Measurement 

Sap flow density of three cocoa trees was measured, 

following Granier [28] thermal dissipation design. The study 

was conducted at 8 years old cocoa plantation of the Federal 

University of Technology, Akure, Nigeria (7° 18' 15.9"N, 5° 

07' 32.3"E), from 8
th

 March 2018 to 7
th

 March 2019, covering 

the two seasons of the region. Cocoa tree transpiration was 

determined from the measured sap flow and fitted into a 

physically based model (Penman-Monteith) to derive canopy 

conductance used for modelling. 
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2.2. Analysis of Canopy Conductance 

The analysis of cocoa canopy conductance in this research 

was based on the formulation of Penman-Monteith (PM) in 

equation (1) [29]: 

��� = ∆���	
��
����� ��
∆� � �����

�� �
            (1) 

where, λ (J kg
-1

) the latent heat of water vapourization, Ec (kg 

m
-2

 s
-1

) the canopy transpiration, ��  (ms
-1

) is the canopy 

conductance, ∆ (kpa K
-1

) the rate of change of vapour pressure 

with temperature, � (kpa K
-1

) the psychometric constant, ρa 

(kg m
-3

) the dry air density, Cp (J kg
-1

 K
-1

) the specific heat 

capacity of the air, De (kpa) the vapour pressure deficit, �� 

(ms
-1

) the aerodynamic conductance, Rn (W m
-2

) the net 

radiation at the canopy level and G (W m
-2

) is the soil heat flux 

that will be taken as 10% of Rn [30]. Aerodynamic 

conductance- ��  was derived following the formulation of 

[31] in equation (2): 
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where, Ƙ is von Karman constant (0.41), z (m) is the height of 

wind speed measurement, d (m) the zero plane displacement 

estimated as d=0.67 hc, with hc (m) as the tree mean height, zo 

(m) is the roughness length taken as 0.1hc, and uz (m s
-1

) is the 

wind speed at height z. 

Canopy conductance ( g) ) representing the integrated 

behaviour of the leaf stomata conductance [32], is the key crop 

parameter reflecting its physiological response to changing 

atmospheric conditions. Inversion of the Penman-Monteith 

equation (equation 1) has been used successfully to derive 

canopy conductance [33]. It was estimated by rearranging 

equation 1 to give equation 3 and substituting the sap-flow 

transpiration values. 

g) =  *+,-./
∆�01	2��3/4567 ./	 +�∆� *�,-

          (3) 

2.3. Modelling Canopy Conductance 

In this study, Vector Autoregressive Models (VAR) and 

Long Short-Term Memory (LSTM) networks were used to 

simulate cocoa canopy conductance and predict the stomata 

conductance of the cocoa tree. The process of VAR is defined 

in equation 4: 

89 = :;89	�+……………:>89	> + ?9       (4) 

where, :@ are (K X K) coefficient matrices for i=1, ……, 

p and ut is a K-dimensional process with E(ut)=0 and the 

invariant positive definite covariance matrix ��?9?9
A� =

Σ (white noise) (Saigal and Mehrotra, 2012). VAR model 

in this study was implemented using vars R package, while 

LSTM model, a Recurrent Neural Network (RNN) 

algorithm was implemented using Python programming 

within Google COLAB jupyter notebook. The approach 

followed in employing the models in the modelling is as 

stated below: 

2.3.1. Splitting of Datasets 

In total, the sap flow data covered about 12 months out of 

which the first eight (8) months (between March and October) 

was used as the training data set to build the model, while the 

latter four months (between November and February) was 

used as the testing data set for the model, meaning that the 

training data set accounted for about 67% of the data set while 

the testing data set accounts for about 33% of the data. For 

model optimization and cross-validation, the data was divided 

into two equal sets. The first data consists of all the odd days 

of measurement, while the second set of data was all the even 

days of measurement. The second set of data was used to 

validate the model that will be fitted on the first set of data and 

vice versa. This type of validation has been used by [34, 35]. 

2.3.2. Checking Data for Non-stationary Component 

Before subjecting the data to vector autoregression, there is 

a need to check if the data is stationary because standard errors 

from non-stationary data are unreliable. If the data is 

non-stationary, stationarity needs to be achieved by 

differencing before subjecting the data to vector 

autoregression [36]. Thus, data were tested for stationarity 

using the Augmented Dickey-Fuller test. 

2.3.3. Selection of the Order of Model 

Before vector autoregression, the optimum number of lags 

needed to be known and this was done using the VARselect 

function of the R vars package. Optimum lag for the VAR model 

was selected based on the Schwarz Criterion (SC) of the 

VARselect function. SC was preferred to the popular Akaike 

Information Criterion (AIC) because AIC tends to choose the lag 

number of lags which is inappropriate for VAR models [37]. 

2.3.4. Estimation of Model Coefficients 

Basically for a set of endogenous variables 8�……………….8A , 

coefficients of VAR are computed effectively [13]. Once VAR 

model coefficients were estimated, further tests such as 

autocorrelation, forecasting, and dynamic behaviour of model 

(impulse response functions) were carried out. These 

processes were implemented using the VAR function of the R 

vars package based on the optimum lag chosen by SC. To 

assess the fitness of the models, the significance of regression 

and adjusted R
2
 was used. Adjusted R

2
 was used instead of R

2
 

because it is more reliable and unbiased when comparing 

models with an unequal number of explanatory variables [38]. 

Models that are not significant at the 5% level, and whose R
2
 

is less than 50% were discarded. 

2.3.5. Diagnostics Test 

It is typical of time series data that the variable value 

observed in the current time can be influenced by values of 

that variable in previous periods. Thus, it is very common to 

have autocorrelation of residuals when fitting time series 

models [37]. Models with autocorrelation may have prediction 

intervals that are large and unreliable. In the present study, for 

a model to be recommended to be used for prediction, it must 

show evidence of no autocorrelation, no overfitting, high 

fitness and high accuracy. Therefore, VAR models were tested 

for autocorrelation using Portmanteau test implemented in R 
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portes package [39], LSTM on the other hand was tested using 

line plot of train and test loss. 

2.3.6. Prediction and Model Evaluation 

VAR model was implemented by R programming using 

vars R package and the algorithm of LSTM model was 

implemented by Python programming ran in Google COLAB 

jupyter notebook. In order to select the best model to 

recommend, fitness of the VAR model was evaluated using 

R-squared. For the LSTM, its evaluation was done by 

comparing the train loss and test loss, and also RMSE. 

2.3.7. Impulse Response Analysis 

The impulse response analysis is a type of analysis that can 

show the extent to which a response variable will react to the 

effect of shocks in the explanatory variables [13]. Impulse 

response analysis, which is implemented by impulse response 

function (irf) function of var R package is a moving average 

representation of VAR in equation 5. Equation 5 represents an 

orthogonal representation of impulse response function [40]: 

D9 = ∑ F@
G
@HI J9	@

K                  (5) 

where J9
K  and F@  signify impulse response functions, 

because they can explain the behaviour of D@9  as influenced 

by shocks J9
K. Impulse response analysis results are useful in 

that it shows how long the effect of shocks will be. 

3. Results and Discussion 

Figure 1 shows the correlation matrix of cocoa canopy 

conductance  �g)�  with air temperature, Solar Radiation, 

Reference Evapotranspiration, Rainfall, and Relative humidity. 

Correlation of g) with all the environmental variables was 

observed to be poor and as a result the dependence of g) on 

the combined climatic variables could not be established. 

Oguntunde and van de Giesen [41] obtained a similar result 

in the Anacardium occidentale plantation. From the 

foregoing, the use of traditional simple or multiple linear 

regression models for predicting g) a time series variable 

may not likely yield a good result. Before employing the time 

series model, the stationarity test conducted on the data using 

the Augmented Dickey-Fuller test shows that the g) data 

and the climatic variables were stationary and therefore 

suitable for the time series model. The result of the test is 

presented in Table 1. 

The result of Vector Autoregressive Models (VAR) 

presented in Table 2 revealed that the Adjusted R-squared of 

0.1139 (11%) is very low. This imply that only about 11% of 

cocoa canopy conductance ( g) ) was explained by the 

variation in the climatic data. Further iteration to exclude 

insignificant climatic variable from the model did not also 

improve the model. 

For the LSTM model, the line plot of train and test loss in 

Figure 2 strongly suggests no evidence of overfitting because 

the test loss does not drop below training loss. On the whole, 

the Root Mean Squared Error (RMSE) value of 0.026 and 

prediction accuracy of 97.4% strongly indicate that LSTM is far 

better than VAR model in predicting canopy conductance. This 

is further corroborated by the result presented in Figure 3. 

 

Figure 1. Correlation matrix of Canopy Conductance(Gc) and climate variables. 

Legend: Air temperature (AirTc_Avg); Solar Radiation (Solar_W_Avg): Reference Evapotranspiration (ETo): Rainfall (Rain_mm_Tot): Relative humidity 

(RH_Avg) 
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Table 1. Augmented Dickey-Fuller Test on Stationarity. 

Variable P-value Dickey Fuller Comment 

Rainfall 0.01 -16.261 Stationary 

Relative Humidity 0.01 -8.983 Stationary 

Wind Speed 0.01 -13.509 Stationary 

Solar Radiation 0.01 -20.482 Stationary 

Reference Evapotranspiration 0.01 -20.427 Stationary 

Atmospheric Pressure 0.01 -4.8103 Stationary 

Air Temperature 0.01 -12.338 Stationary 

Canopy Conductance 0.01 -15.265 Stationary 

Table 2. VAR Modelling result. 

 
Estimate Std. Error t value Pr(>|t|) 

Rain_mm_Tot.11 1.78e-04 7.43e-04 0.239 0.810767 

RH_Avg.11 5.95e-04 8.59e-04 0.693 0.488358 

WS_ms_Avg.11 1.51e-02 4.26e-03 3.533 0.000414 *** 

Solar_W_Avg.11 -1.90e-04 7.39e-05 -2.566 0.010325 * 

ETo.11 1.97e-01 9.09e-02 2.172 0.029922 * 

BP_mBar_Avg.11 -3.25e-03 2.55e-03 -1.274 0.202848 

AirTC_Avg.11 -1.31e-03 2.94e-03 -0.447 0.654615 

Gc.11 2.26e-01 1.48e-02 15.287 < 2e-16 * ** 

Rain_mm_Tot.12 9.65e-05 7.55e-04 0.128 0.898256 

RH_Avg.12 4.91e-04 1.22e-03 0.402 0.687364 

WS_ms_Avg.12 1.11e-03 5.20e-03 0.213 0.831094 

Solar_W_Avg.12 2.57e-04 7.37e-05 3.482 0.000502 *** 

ETo.12 -4.09e-01 9.17e-02 -4.456 8.55e-06 *** 

BP_mBar_Avg.12 -3.93e-04 4.28e-03 -0.092 0.926932 

AirTC_Avg.12 4.81e-03 4.25e-03 1.131 0.257907 

Gc.12 7.50e-02 1.51e-02 4.961 7.25e-07 *** 

Rain_mm_Tot.13 3.13e-03 7.28e-04 4.304 1.71e-05 *** 

RH_Avg.13 -7.79e-05 8.53e-04 -0.091 0.927269 

WS_ms_Avg.13 -6.79e-03 4.19e-03 -1.621 0.105098 

Solar_W_Avg.13 -3.79e-05 6.99e-05 -0.542 0.587667 

ETo.13 1.17e-01 8.76e-02 1.331 0.18336 

BP_mBar_Avg.13 5.50e-03 2.58e-03 2.131 0.033114 * 

AirTC_Avg.13 -1.51e-03 2.93e-03 -0.515 0.606665 

Gc.13 3.92e-02 1.49e-02 2.638 0.008374 ** 

const -1.98e+00 7.70e-01 -2.581 0.009868 ** 

--- 
    

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ' .' 0.1 ' 

Residual standard error: 0.08536 on 4846 degrees of freedom 

Multiple R-squared: 0.1182, Adjusted R-squared: 0.1139 

F-statistic: 27.07 on 24 and 4846 DF, p-value: < 2.2e-16 

 

Figure 2. Diagnostic Line Plot of LSTM Model. 
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Figure 3. LSTM Modelling: Observed versus Predicted (RMSE=0.026). 

4. Conclusion 

Crop water-use modeling is a complex non-linear 

time-series task. In the past, some of the models formulated to 

predict water use characteristics of cocoa in the tropics did not 

usually take into consideration the time-series nature of the 

climatic data and the crop water-use characteristics. Having 

acknowledged the time-series nature of the water-use 

characteristics of cocoa and the multivariate nature of climatic 

inputs contributing to crop evapotranspiration, we compared 

the suitability VAR and LSTM in predicting cocoa canopy 

conductance, and LSTM was found to be better. The reason 

why LSTM model performs better than VAR model is its 

ability to model non-linear relationships and time-series 

sequence. In general, the proposed LSTM model to predict 

cocoa canopy conductance can as well be applicable to sites 

with ecological conditions. In addition, our result also 

demonstrated the advantage of deep learning techniques over 

traditional statistical models in predicting crop water use 

characteristics that are time-series in nature. 
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